JPS6126744A - Wear resistant aluminum alloy - Google Patents

Wear resistant aluminum alloy

Info

Publication number
JPS6126744A
JPS6126744A JP14732984A JP14732984A JPS6126744A JP S6126744 A JPS6126744 A JP S6126744A JP 14732984 A JP14732984 A JP 14732984A JP 14732984 A JP14732984 A JP 14732984A JP S6126744 A JPS6126744 A JP S6126744A
Authority
JP
Japan
Prior art keywords
alloy
weight
primary
present
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14732984A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ishizaka
信啓 石坂
Masaaki Nakamura
正明 中村
Haruki Abe
春樹 阿部
Kazuhiro Washizu
鷲頭 和裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONDA KINZOKU GIJUTSU KK
Honda Motor Co Ltd
Showa Aluminum Industries KK
Original Assignee
HONDA KINZOKU GIJUTSU KK
Honda Motor Co Ltd
Showa Aluminum Industries KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONDA KINZOKU GIJUTSU KK, Honda Motor Co Ltd, Showa Aluminum Industries KK filed Critical HONDA KINZOKU GIJUTSU KK
Priority to JP14732984A priority Critical patent/JPS6126744A/en
Publication of JPS6126744A publication Critical patent/JPS6126744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain a wear resistant Al alloy by adding specified amounts of Si, Cu, Mg, Ni, Ti, Ca and Na to Al. CONSTITUTION:The composition of an Al alloy is composed of, by weight, 12- 14% Si, 4-5.5% Cu, 0.5-1.5% Mg, 0.5-1.5% Ni, 0.1-0.25% Ti, <0.005% Ca, <0.001% Na and the balance Al with inevitable impurities. An Al alloy having superior wear resistance and undergoing hardly reduction in the machinability and shock resistance is obtd. by specifying the kinds and contents of chemical components as mentioned above.

Description

【発明の詳細な説明】 A8発明の目的 (11産業上の利用分野 本発明は、内燃機関用摺動部材の構成材料として好適な
、耐摩耗性アルミニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION A8 OBJECTS OF THE INVENTION (11) INDUSTRIAL APPLICATION FIELD The present invention relates to a wear-resistant aluminum alloy suitable as a constituent material of sliding members for internal combustion engines.

(2)従来の技術 従来、内燃機関用摺動部材、例えばピストンの構成材料
としては、JIS  ACBA材(Si11〜13重量
%)、AC8B材C8t  8.5〜10.5重量%)
、ACBC材(Si 8.5〜10゜5重量%)等のロ
ーエックスにより代表される共晶タイプのアルミニウム
合金と、JIS  ACQA材(Si  22〜24重
景%)、AC9B材(Si  18〜20重量%)等の
過共晶タイプの高ケイ素アルミニウム合金が使用されて
いる。
(2) Prior Art Conventionally, the constituent materials for sliding members for internal combustion engines, such as pistons, are JIS ACBA material (Si 11-13% by weight), AC8B material C8t (8.5-10.5% by weight).
, ACBC material (Si 8.5-10°5% by weight) and other eutectic type aluminum alloys represented by Lowex, JIS ACQA material (Si 22-24 weight%), AC9B material (Si 18- Hypereutectic type high silicon aluminum alloys such as 20% by weight) are used.

(3)  発明が解決しようとする問題点しかしながら
、過共晶タイプの高ケイ素アルミニウム合金においては
、硬質な初晶Siが組織内に多量に分散しているため、
共晶タイプのアルミニウム合金に比べて優れた耐摩耗性
を有する反面、被削性および耐衝撃性が低下し、その使
用が限定されるという問題がある。特に、前記高ケイ素
アルミニウム合金によりピストンを構成した場合には、
粒径の大きな初晶Siが脱落し易いためその脱落した初
晶Siが摩耗を促進する原因となる。
(3) Problems to be solved by the invention However, in hypereutectic type high-silicon aluminum alloys, a large amount of hard primary Si is dispersed within the structure.
Although it has superior wear resistance compared to eutectic type aluminum alloys, it has a problem in that its machinability and impact resistance are reduced, which limits its use. In particular, when the piston is made of the high-silicon aluminum alloy,
Since primary crystal Si having a large particle size easily falls off, the dropped primary crystal Si becomes a cause of accelerating wear.

したがって、ピストンのような摺動部材の構成材料にお
いては、適当粒径の初晶Siを適当量均一に分散させて
晶出させることが必要である。
Therefore, in the constituent material of a sliding member such as a piston, it is necessary to uniformly disperse and crystallize an appropriate amount of primary crystal Si having an appropriate particle size.

本発明は上記に鑑み、過共晶タイプとしてはSi含有量
を最も少ない範囲にとどめると共に初晶Siの晶出を制
御して、過共晶タイプの高ケイ素アルミニウム合金の持
つ優れた耐摩耗性を維持しつつ、被削性および耐衝撃性
の低下を抑制した前記アルミニウム合金を提供すること
を目的とする。
In view of the above, the present invention suppresses the Si content to the lowest range for a hypereutectic type and controls the crystallization of primary Si, thereby achieving excellent wear resistance of a hypereutectic type high-silicon aluminum alloy. It is an object of the present invention to provide an aluminum alloy that suppresses deterioration in machinability and impact resistance while maintaining the following properties.

B0発明の構成 +11  問題点を解決するための手段本発明に係る耐
摩耗性アルミニウム合金は、Si  12.0〜14.
0重量%、Cu  4.0〜5.5重量%、Mg0.5
〜1.5重量%、Ni0.5〜1゜5重量%、Ti  
 0.1〜0.25重量%、Ca0、0 O50重量%
以下、Na  0.0010重量%以下、残部Alおよ
び不可避不純物より構成されることを特徴とする。
B0 Structure of the Invention +11 Means for Solving the Problems The wear-resistant aluminum alloy according to the present invention has Si 12.0 to 14.
0% by weight, Cu 4.0-5.5% by weight, Mg0.5
~1.5% by weight, Ni0.5~1°5% by weight, Ti
0.1-0.25 wt%, Ca0,0 O50 wt%
Hereinafter, it is characterized by being composed of 0.0010% by weight or less of Na, the balance being Al and unavoidable impurities.

(2)作 用 本発明における各化学成分の機能および含有量の限定理
由は以下の通りである。
(2) Function The reason for limiting the function and content of each chemical component in the present invention is as follows.

Siは、耐摩耗性、強度および鋳造性を向上させるため
に必要な化学成分であるが、その含有量が12.0重量
%を下回ると十分な耐摩耗性等を得ることができず、一
方含有量が14.0重量%を上回ると晶出する硬質な初
晶Si量が過剰となり被削性、耐衝撃性および靭性が低
下する。したがって、Siの含有量は12.0〜14.
0重量%の範囲に限定される。
Si is a chemical component necessary to improve wear resistance, strength, and castability, but if its content is less than 12.0% by weight, sufficient wear resistance etc. cannot be obtained; If the content exceeds 14.0% by weight, the amount of hard primary Si crystallized will be excessive and machinability, impact resistance, and toughness will deteriorate. Therefore, the Si content is 12.0 to 14.
It is limited to a range of 0% by weight.

Cuは、固溶体硬化および時効析出硬化に寄与する化学
成分であると共にAI!−Si系合金の共晶点を低Si
側へ移動させ、初晶Siの面積比率を増大することによ
り耐摩耗性を向上させる機能を有するが、これはCuの
含有量を4.0〜5.5重量%の範囲に設定した場合に
得られるもので、したがってCuの含有量は前記範囲に
限定される。
Cu is a chemical component that contributes to solid solution hardening and age precipitation hardening, and is also a chemical component that contributes to AI! - Lower the eutectic point of Si-based alloys
It has the function of improving wear resistance by moving the primary Si to the side and increasing the area ratio of primary Si. Therefore, the Cu content is limited to the above range.

MgおよびNiは、部材鋳造後熱処理を施すことにより
強度および靭性を向上させる機能を有するが、これはM
gおよびNiの含有量を、共に0゜5〜1.5重量%の
範囲に設定した場合に得られるもので、したがってMg
およびNiの含有量は前記範囲に限定される。
Mg and Ni have the function of improving strength and toughness by applying heat treatment after casting the part, but this
This is obtained when the content of both Mg and Ni is set in the range of 0°5 to 1.5% by weight, and therefore Mg
The content of Ni is limited to the above range.

Tiは、マクロ結晶粒を微細化して引張り強度を向上さ
せるために必要な化学成分であるが、その含有量が0.
1重量%を下回ると結晶粒の微細化効果が少なく、一方
含有量が0.25重量%を上回ると粗大な針状Al−T
i−Si化合物が晶出して靭性が低下し、また引張り強
度向上への効果も少ない。したがって、Tiの含有量は
0.1〜0.25重量%の範囲に限定される。
Ti is a chemical component necessary to refine macrocrystal grains and improve tensile strength, but if its content is 0.
If the content is less than 1% by weight, the effect of refining the crystal grains will be small, while if the content exceeds 0.25% by weight, coarse acicular Al-T will be produced.
The i-Si compound crystallizes, resulting in a decrease in toughness and little effect on improving tensile strength. Therefore, the Ti content is limited to a range of 0.1 to 0.25% by weight.

Ca、NaはAJ−Si系合金の共晶点を高Si側へ移
動させ、初晶Siの晶出を妨げる機能を有するもので、
Caの含有量を0.0050重量%以下に、またNaの
含有量を0.ooio重量%以下にそれぞれ設定するこ
とにより初晶Siの晶出量を適当量に制御することがで
きる。
Ca and Na have the function of moving the eutectic point of the AJ-Si alloy to the high Si side and preventing the crystallization of primary Si.
The Ca content is 0.0050% by weight or less, and the Na content is 0.0050% by weight or less. By setting each content to ooiowt% or less, the amount of primary Si crystallized can be controlled to an appropriate amount.

Feおよびその他の不純物は、アルミニウム合金の靭性
を低下させる原因となるので、0.5重量%以下に抑え
ることが望ましい。
Since Fe and other impurities cause a decrease in the toughness of the aluminum alloy, it is desirable to suppress them to 0.5% by weight or less.

熱処理条件は、通常この種合金に適用される条件と同じ
であり、したがって溶体化処理は500〜510℃にて
1〜2時間、ま、た人工時効処理は240−250℃に
て5〜10時間それぞれ行われる。
The heat treatment conditions are the same as those normally applied to this type of alloy, thus solution treatment at 500-510°C for 1-2 hours, and artificial aging at 240-250°C for 5-10 hours. Each time will be held.

(3)実施例 下表は本発明合金Aと二種類の従来合金B (JIs 
 ACBC材)、C(JIS  ACQB材)の化学成
分およびその含有量を示す。
(3) Examples The table below shows the present invention alloy A and two conventional alloys B (JIs
The chemical components and contents of ACBC material) and C (JIS ACQB material) are shown.

本発明合金Aおよび従来合金B、Cより、JTS4号舟
底型を用いて鋳物材を鋳造し、それら鋳物材に505℃
にて3時間の溶体化処理を施した後水冷し、次いで23
0℃にて5時間の人工時効処理を施した。
Castings were cast from the alloy A of the present invention and conventional alloys B and C using a JTS No. 4 boat bottom mold, and the castings were heated to 505°C.
After solution treatment for 3 hours at
Artificial aging treatment was performed at 0°C for 5 hours.

第1図(A)〜(C)は本発明合金Aおよび従来合金B
、Cより得られた鋳物材の断面顕微鏡写真図(200倍
)をそれぞれ示し、比較的大きな黒点部分が初晶Siで
ある。
Figures 1 (A) to (C) show alloy A of the present invention and conventional alloy B.
, C show cross-sectional micrographs (200x magnification) of the casting material obtained from C, and the relatively large black dots are primary Si crystals.

第1図(A)の本発明合金Aにおいては、適当な粒径の
初晶Siが適当量均一に分散して晶出していることが明
らかである。第1図(B)の共晶タイプの従来合金Bに
おいて、初晶Siの晶出がなく、また第1図(C)の過
共晶タイプの従来合金Cにおいては、初晶Siの晶出量
が多く、またそれらの粒径も粗大である。   。
In the alloy A of the present invention shown in FIG. 1(A), it is clear that an appropriate amount of primary crystal Si having an appropriate particle size is uniformly dispersed and crystallized. In the eutectic type conventional alloy B shown in Fig. 1(B), there is no crystallization of primary Si, and in the hypereutectic type conventional alloy C shown in Fig. 1(C), no primary crystal Si crystallizes. The amount is large, and their particle size is also coarse. .

第2図は本発明合金Aおよび従来合金Bより得られた鋳
物材より試験片を切出し、それら試験片に大鏡式摩擦摩
耗試験を行った結果を示す。試験条件は、乾式で、相手
材にはJIS  Fe12材よりなる円盤を用い、円盤
の回転速度を低速および高速の二通に設定した。
FIG. 2 shows the results of test pieces cut from casting materials obtained from alloy A of the present invention and conventional alloy B, and subjected to a large mirror friction and wear test on the test pieces. The test conditions were dry, a disk made of JIS Fe12 material was used as the mating material, and the rotation speed of the disk was set at two speeds: low speed and high speed.

第2図より本発明台金Aは従来合金Bに比べて優れた耐
摩耗性を有することが明らかである。
It is clear from FIG. 2 that the base metal A of the present invention has superior wear resistance compared to the conventional alloy B.

第3図は被削性を調べるため、本発明合金Aおよび従来
合金Bの試験片について切削抵抗を測定した結果を示す
。測定方法は、高速旋盤にはダイヤモンドバイトを使用
し、切削速度、切込み量および送り速度を一定にし、無
潤滑で3回繰り返し切削を行い、1回毎に切削抵抗を測
定した。第3図(1)〜(3)は第1回目〜第3回目の
切削加工にそれぞれ該当する。図中、aは主分力、bは
送り分力、Cは背分力をそれぞれ示し、また斜線無しの
部分は切削前を、斜線を施した部分は切削後をそれぞれ
示す。
FIG. 3 shows the results of measuring cutting resistance of test pieces of alloy A of the present invention and conventional alloy B in order to investigate machinability. The measurement method was to use a diamond cutting tool on a high-speed lathe, keep the cutting speed, depth of cut, and feed rate constant, perform repeated cutting three times without lubrication, and measure the cutting resistance each time. 3 (1) to (3) correspond to the first to third cutting operations, respectively. In the figure, a indicates the principal component force, b indicates the feed component force, and C indicates the backward force, and the unhatched portions indicate before cutting, and the hatched portions indicate after cutting.

第3図より本発明合金Aは共晶タイプの従来合金Bに比
べて切削抵抗の増分は僅かであり、被削性の低下が少な
いことが明らかである。
From FIG. 3, it is clear that the increase in cutting resistance of the alloy A of the present invention is smaller than that of the conventional eutectic type alloy B, and the decrease in machinability is small.

C0発明の効果 本発明によれば、各種化学成分およびその含有量を特定
することにより優れた耐摩耗性を有し、また被削性およ
び耐衝撃性の低下を抑制したアルミニウム合金を提供し
得るものである。
C0 Effects of the Invention According to the present invention, by specifying various chemical components and their contents, it is possible to provide an aluminum alloy that has excellent wear resistance and suppresses deterioration in machinability and impact resistance. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)乃至(C)は本発明合金および二種類の従
来合金の顕微鏡写真図、第2図は本発明合金および従来
合金の摩耗試験結果を示すグラフ、第3図(1)乃至(
3)は本発明合金および従来合金の被削性試験結果を示
すグラフである。 A・・・本発明合金、B・・・従来合金。。)1′ (A) (B) 第3図 名1 第2図 ztj           台TA  台1Nゴ昭和
59年11月−1日 1.事件の表示 昭和59年 特  願第147329 号2、発明の名
称 耐摩耗性アルミニウム合金 3、補正をする者 事件との関係特許出願人 名 称  (532)本田技研工業株式会社住 所  
東京都港区新橋四丁目4番5号 第1ニジムラビル5 
補正命令の日付 昭和59年10月9日(発送日:昭和59年10月30
日)6、補正の対象 明細書の「発明の詳細な説明」および「図面の簡単な説
明」の欄7補正の内容 別  紙  の  遺ヒて−jへ\ 1 明細書第7頁第6行〜第8頁第4行を下記の通り訂
正する。 記 [第1図(A〜(0は本発明合金Aおよび従来合金B。 Cより得られた鋳物材における金属組織を示す顕微鏡写
真(200倍)をそれぞれ示し、比較的大きな黒点部分
が初晶Siである。 第1図(74の本発明合金Aにおいては、適当な粒径の
初晶Siが適当量均一に分散して晶出していることが明
らかである。第1図(句の共晶タイプの従来合金Bにお
いては初晶Siの晶出がなく、また第1図(Qの過共晶
タイプの従来合金Cにおいては初晶Siの晶出量が多く
、またそれらの粒径も粗大である。」 2、明細書第9頁第14行、 ・・・「従来合金の」・・・・・・とあるを、・・・「
従来合金における金属1組織を示す」・・・・・・と訂
正する。 以上
Figures 1 (A) to (C) are micrographs of the alloy of the present invention and two types of conventional alloys, Figure 2 is a graph showing the wear test results of the alloy of the present invention and the conventional alloy, and Figures 3 (1) to (
3) is a graph showing the machinability test results of the present invention alloy and the conventional alloy. A: Invention alloy, B: Conventional alloy. . )1' (A) (B) Figure 3 Name 1 Figure 2 ztj Platform TA Platform 1N Go November 1, 1980 1. Indication of the case 1982 Patent Application No. 147329 2 Name of the invention Wear-resistant aluminum alloy 3 Person making the amendment Name of the patent applicant related to the case (532) Honda Motor Co., Ltd. Address
1st Nijimura Building 5, 4-4-5 Shinbashi, Minato-ku, Tokyo
Date of amendment order: October 9, 1980 (Shipping date: October 30, 1982)
6. Contents of amendment in Column 7 "Detailed Description of the Invention" and "Brief Description of Drawings" of the specification subject to amendment ~Page 8, line 4 is corrected as follows. Figure 1 (A to (0) shows micrographs (200x magnification) showing the metallographic structure of the casting materials obtained from the present invention alloy A and the conventional alloy B. The relatively large black dots are primary crystals. It is clear that in the alloy A of the present invention shown in Figure 1 (74), an appropriate amount of primary Si with an appropriate particle size is uniformly dispersed and crystallized. In the conventional alloy B of the crystal type, there is no crystallization of primary Si, and in the conventional alloy C of the hypereutectic type shown in Fig. 1 (Q), the amount of primary Si crystallized is large, and the grain size of 2.Page 9, line 14 of the specification..."Conventional alloy"......"
This is corrected as "It shows the metal 1 structure in conventional alloys."that's all

Claims (1)

【特許請求の範囲】[Claims]  Si12.0〜14.0重量%、Cu4.0〜5.5
重量%、Mg0.5〜1.5重量%、Ni0.5〜1.
5重量%、Ti0.1〜0.25重量%、Ca0.00
50重量%以下、Na0.0010重量%以下、残部A
lおよび不可避不純物よりなる耐摩耗性アルミニウム合
金。
Si12.0-14.0% by weight, Cu4.0-5.5
% by weight, Mg 0.5-1.5% by weight, Ni 0.5-1.
5% by weight, Ti0.1-0.25% by weight, Ca0.00
50% by weight or less, Na0.0010% by weight or less, balance A
A wear-resistant aluminum alloy consisting of l and inevitable impurities.
JP14732984A 1984-07-16 1984-07-16 Wear resistant aluminum alloy Pending JPS6126744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14732984A JPS6126744A (en) 1984-07-16 1984-07-16 Wear resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14732984A JPS6126744A (en) 1984-07-16 1984-07-16 Wear resistant aluminum alloy

Publications (1)

Publication Number Publication Date
JPS6126744A true JPS6126744A (en) 1986-02-06

Family

ID=15427717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14732984A Pending JPS6126744A (en) 1984-07-16 1984-07-16 Wear resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6126744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156446A (en) * 1987-12-14 1989-06-20 Nippon Light Metal Co Ltd Aluminum alloy for casting excellent in pressure resistance
JPH02252363A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp Picture signal binarization circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320243A (en) * 1976-08-06 1978-02-24 Fichtel & Sachs Ag Multistage shifting hub for twoowheel vehicles
JPS58177425A (en) * 1982-04-13 1983-10-18 Nippon Light Metal Co Ltd Manufacture of al-cu-si-mg alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320243A (en) * 1976-08-06 1978-02-24 Fichtel & Sachs Ag Multistage shifting hub for twoowheel vehicles
JPS58177425A (en) * 1982-04-13 1983-10-18 Nippon Light Metal Co Ltd Manufacture of al-cu-si-mg alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156446A (en) * 1987-12-14 1989-06-20 Nippon Light Metal Co Ltd Aluminum alloy for casting excellent in pressure resistance
JPH0565573B2 (en) * 1987-12-14 1993-09-20 Nippon Light Metal Co
JPH02252363A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp Picture signal binarization circuit

Similar Documents

Publication Publication Date Title
JP4137054B2 (en) Gray cast iron alloy and internal combustion engine casting parts
EP0107334B1 (en) Improvements in or relating to aluminium alloys
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
US4055417A (en) Hyper-eutectic aluminum-silicon based alloys for castings
JPH04202737A (en) Wear resistant aluminum alloy excellent in strength
JP2005514519A (en) Nodular cast iron alloy
US4681736A (en) Aluminum alloy
JPH01180938A (en) Wear-resistant aluminum alloy
JPH07188815A (en) Tin-based white metal bearing alloy excellent in heat and fatigue resistance
JPH07145440A (en) Aluminum alloy forging stock
US2357452A (en) Aluminum alloys
JPS6126744A (en) Wear resistant aluminum alloy
US2357450A (en) Aluminum alloy
US2908566A (en) Aluminum base alloy
JPH09296245A (en) Aluminum alloy for casting
JPH10226840A (en) Aluminum alloy for piston
JPH04323343A (en) Aluminum alloy excellent in wear resistance
US5925315A (en) Aluminum alloy with improved tribological characteristics
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
JP3328356B2 (en) Aluminum alloy material for casting
JPH04341537A (en) Aluminum alloy having high strength and wear resistance and excellent in cold forgeability
JPH07252583A (en) Spheroidal graphite cast iron for crank shaft
JP2711296B2 (en) Heat resistant aluminum alloy
JPH01298131A (en) Wear-resistant and high-strength aluminum alloy for casting
JPH1017975A (en) Aluminum alloy for casting