JPS6151609B2 - - Google Patents

Info

Publication number
JPS6151609B2
JPS6151609B2 JP58045960A JP4596083A JPS6151609B2 JP S6151609 B2 JPS6151609 B2 JP S6151609B2 JP 58045960 A JP58045960 A JP 58045960A JP 4596083 A JP4596083 A JP 4596083A JP S6151609 B2 JPS6151609 B2 JP S6151609B2
Authority
JP
Japan
Prior art keywords
inductor
thick
heated
steady
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58045960A
Other languages
Japanese (ja)
Other versions
JPS59173220A (en
Inventor
Yasuo Watanabe
Shigeki Kishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP4596083A priority Critical patent/JPS59173220A/en
Publication of JPS59173220A publication Critical patent/JPS59173220A/en
Publication of JPS6151609B2 publication Critical patent/JPS6151609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は異なる肉厚を有する金属条材のうち特
に大形で肉厚差の大きいものを効率よく然も均質
に熱処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently and uniformly heat treating metal strips having different wall thicknesses, particularly large ones with large thickness differences.

近時、海洋開発などに使用されている金属製の
構造物は、それ自体が大型である上にそれが設置
される周囲の自然環境が厳しいため、風浪などに
よつて破壊されることがままある。
Recently, metal structures used for offshore development are large in size, and the natural environment in which they are installed is harsh, so they are easily destroyed by wind and waves. be.

従来、このような破壊を防止するためには上記
構造物の強度の増大を図ることが必要であるとの
観点から、高張力厚肉の鋼材が構造材として使用
されているが、なお前記構造物の海没等の事故が
発生しているのは上記構造材の低温靭性や溶接性
などに問題点があるからと考えられている。
Conventionally, from the viewpoint that it is necessary to increase the strength of the above structures in order to prevent such destruction, high tensile and thick steel materials have been used as structural materials. It is believed that accidents such as objects being submerged in the sea occur because of problems with the low-temperature toughness, weldability, etc. of the above-mentioned structural materials.

従つて、強度が充分で且つ靭性の優れた構造物
を建設するには、ある程度構造乃至は形状を整え
た状態の構造材を調質することによつて靭性の増
大を図り、またこの構造材における強度節の接続
も欠点が顕在化しやすい溶接を避けてネジ継手に
することが望ましい。この点を構造材に鋼管を用
いた場合についてみると、該鋼管の端部にネジ継
手のための厚肉部を形成し、またこの肉厚の異な
る鋼管の靭性を増大させるには、その材料全体に
均質な熱処理を施さなければならないこととな
る。
Therefore, in order to construct a structure with sufficient strength and excellent toughness, it is necessary to improve the toughness of the structural material by tempering the structural material after the structure or shape has been adjusted to a certain extent. It is also desirable to use threaded joints to connect the strength joints, avoiding welding, which is likely to cause defects. Considering this point when steel pipes are used as structural materials, it is necessary to form thick-walled parts at the ends of the steel pipes for threaded joints, and to increase the toughness of steel pipes with different wall thicknesses, it is necessary to This means that uniform heat treatment must be applied to the entire surface.

ところが、上記のような鋼管は構造材として用
いるため、全体の肉厚が大きい上にネジ継手に形
成される管端部が他の部分の、例えば3倍程度の
肉厚に形成されるので肉厚差も大きく、然も、全
体の形状は直径が50cm程度から数mにも及び、更
には長さが少なくとも12m以上もあり重量が少な
くとも7、8トン以上あるため、従来公知の一般
的な熱処理方法や装置によつては上記のような鋼
管に効率よく均一に熱処理を施すことは事実上不
可能である。
However, since the above-mentioned steel pipes are used as structural materials, their overall wall thickness is large, and the pipe ends formed into threaded joints are formed to be, for example, three times as thick as other parts. There is a large difference in thickness, and the overall shape ranges from about 50 cm in diameter to several meters, is at least 12 m long, and weighs at least 7 or 8 tons, so Depending on the heat treatment method and equipment, it is virtually impossible to efficiently and uniformly heat treat the steel pipe as described above.

本発明は上述のように大形で全体の肉厚が大き
い上に端部に形成される厚肉部がさらに大きな肉
厚差で厚肉に形成されている鋼管のような金属条
材に効率よく且つ均質な熱処理を施すことのでき
る方法を提供することを目的としてなされたもの
で、その構成は、両端側が定常部より大きな肉厚
に形成された異なる肉厚を有する金属条材を垂直
乃至は水平な向きで定置すると共に、その肉厚の
異なる部分の始端側にそれぞれ環状の誘導子を配
置し、該誘導子を前記条材の長手方向に移動させ
ることにより前記条材を連続的に加熱しつつ、加
熱された部分に連続的に冷却水を供給する熱処理
に於て、前記条材の一方の厚肉部は厚肉部用誘導
子により該厚肉部全体を包囲した状態で所定温度
になるまで加熱し、この後前記誘導子に加熱され
た部分の放射対流損失分の補填をする電力を供給
して該誘導子をその後端側が定常部との境界部乃
至はその近傍に至るまで移動させながらこの移動
と同期して上記加熱された部分に連続的に冷却水
を供給することにより前記厚肉部に対する熱処理
を施し、この処理に連続して該厚肉部に続く定常
部の始端側に配置した定常部用誘導子に電力を供
給して定常部の加熱を始めると共に該誘導子を定
常部の他端側へ向け移動させながら該移動と同期
して該誘導子により加熱された部分に連続的に冷
却水を供給することにとよつて定常部を連続的に
熱処理する一方、前記定常部の熱処理途中にある
前記誘導子がそこから定常部の終端に到達するの
に要する時間と他の厚肉部全体を厚肉部用誘導子
により所定温度まで加熱するのに要する時間とが
一致するように、該他の厚肉部用誘導子に電力を
供給して該厚肉部の加熱を開始し、前記定常部用
誘導子が定常部の終端部乃至はその近傍に到達し
たら該定常部用誘導子への給電を停止すると共に
前記他の厚肉部用誘導子にそれにより加熱された
部分の放射対流損失分を補填するに足りる電力を
供給しつつ該誘導子を定常部の境界側から他端側
へ移動させつつこの移動と同期して該誘導子によ
り加熱された部分に連続的に冷却水を供給するこ
とを特徴とするものである。
As mentioned above, the present invention is effective for metal strips such as steel pipes, which are large in size and have a large overall wall thickness, and the thick wall portions formed at the ends are thicker with a larger difference in wall thickness. This method was developed with the aim of providing a method that can perform heat treatment well and uniformly, and its structure consists of vertically or is placed in a horizontal direction, and annular inductors are placed on the starting end sides of parts with different wall thicknesses, and the inductors are moved in the longitudinal direction of the strip to continuously move the strip. In the heat treatment in which cooling water is continuously supplied to the heated part while heating, one thick part of the strip is placed in a predetermined state with the entire thick part surrounded by an inductor for the thick part. Heating the inductor until it reaches a certain temperature, and then supplying power to the inductor to compensate for the radiation convection loss in the heated part, so that the rear end of the inductor reaches the boundary with the stationary part or its vicinity. The thick part is heat-treated by continuously supplying cooling water to the heated part in synchronization with this movement, and following this treatment, the steady part following the thick part is heated. Power is supplied to the inductor for the stationary section placed on the starting end side to start heating the stationary section, and the inductor is moved toward the other end of the stationary section and heated by the inductor in synchronization with the movement. The stationary section is continuously heat-treated by continuously supplying cooling water to the stationary section. Power is supplied to the inductor for the thick wall so that the time required to heat the entire other thick wall part to a predetermined temperature by the inductor for the thick wall matches. When the inductor for the stationary section reaches the end of the stationary section or the vicinity thereof, the power supply to the inductor for the stationary section is stopped and the other inductor for the thick section is heated. The inductor is moved from the boundary side of the stationary part to the other end side while supplying enough power to compensate for the radiation convection loss of the heated part, and the inductor is heated in synchronization with this movement. The feature is that cooling water is continuously supplied to the parts.

次に本発明の実施例を図に拠り説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

1は両端部にネジ継手を形成するため、この部
を厚肉部1a,1bに形成した構造材としての鋼
管で、1cは前記両厚肉部間の定常部である。
Reference numeral 1 denotes a steel pipe as a structural member in which thick-walled portions 1a and 1b are formed in order to form threaded joints at both ends, and 1c is a stationary portion between the two thick-walled portions.

而して、上記鋼管1には、例えば呼び径が500
mm、全長12m、定常部1cの肉厚が25mm、両端の
厚肉部1a,1bの肉厚が75mmで、該厚肉部の長
さが700mmに形成されたものなどがあるが、本発
明が適用できる金属条材は上記鋼管に限られない
こと勿論である。尚、第1図々示のものは厚肉部
1a,1bの形態が異なつたものである。
Therefore, the steel pipe 1 has a nominal diameter of 500 mm, for example.
mm, the total length is 12 m, the wall thickness of the steady part 1c is 25 mm, the wall thickness of the thick wall parts 1a and 1b at both ends is 75 mm, and the length of the thick wall part is 700 mm, but the present invention Of course, the metal strips to which this can be applied are not limited to the above-mentioned steel pipes. Incidentally, the structure shown in FIG. 1 differs in the form of the thick portions 1a and 1b.

2は上記鋼管1の厚肉部1a用の誘導子、3は
定常部1c用の誘導子、4は厚肉部1b用の誘導
子で、ここでは厚肉部1a,1bの形態が異なる
ため、厚肉部用の誘導子は各別のものが用意され
るが、厚肉部1a,1bが同一形態であれば、厚
肉用の誘導子は1個で足りる。第2図はこの場合
の例を示すものである。
2 is an inductor for the thick-walled portion 1a of the steel pipe 1, 3 is an inductor for the steady-state portion 1c, and 4 is an inductor for the thick-walled portion 1b. Although different inductors are prepared for each thick-walled portion, if the thick-walled portions 1a and 1b have the same form, one thick-walled inductor is sufficient. FIG. 2 shows an example of this case.

而して、厚肉部用の誘導子2,4は夫々に厚肉
1a,1bを全部覆う程度の幅広の帯状で、その
下端部に冷却水噴出用のノズル2b,4bを有す
る冷却水ジヤケツト2a,4aを設けてある また、定常部用の誘導子3は前記誘導子2,4
よりは狭幅で、第3図に示すように2種類の冷却
水噴出用のノズル3b,31bを有する冷却水ジ
ヤケツト3a,31aを具備している。
Thus, the inductors 2 and 4 for thick-walled parts are each in the form of a wide band that completely covers the thick-walled parts 1a and 1b, and each has a cooling water jacket having nozzles 2b and 4b for spouting cooling water at its lower end. In addition, the inductor 3 for the stationary section is provided with the inductors 2 and 4a.
As shown in FIG. 3, the cooling water jackets 3a and 31a have two types of cooling water jetting nozzles 3b and 31b.

上記誘導子2乃至4は、本発明方法の実施に当
り、垂直な向きで定置した鋼管1に対して、第1
図に示す状態で設定し、第5図乃至第10図に示
す工程により鋼管1に連続的に熱処理を施す。
When carrying out the method of the present invention, the inductors 2 to 4 are placed at the first
The steel pipe 1 is set in the state shown in the figure, and the steel pipe 1 is continuously subjected to heat treatment through the steps shown in FIGS. 5 to 10.

まず第5図々示のように、誘導子3を定置した
まま、それに電力を供給して厚肉部1aを加熱し
始め該部1aが所定温度例えば900℃になるまで
定置状態で加熱する。このとき他の誘導子3,4
は作動されていない。図中Hは加熱された部分で
ある。
First, as shown in Figure 5, while the inductor 3 is kept stationary, power is supplied to it to begin heating the thick portion 1a until the thick portion 1a reaches a predetermined temperature, for example, 900°C. At this time, other inductors 3 and 4
is not activated. In the figure, H is a heated portion.

上記厚肉部1aが所定温度に加熱されたら、誘
導子2に供給される電力を、加熱された部分Hの
熱放射対流損失分を補う程度のものに下げると同
時に該誘導子2を上方へ向け移動させ始め、且
つ、ジヤケツト2aのノズル2bから冷却水C2
を噴出させる(第6図参照)。
When the thick portion 1a is heated to a predetermined temperature, the power supplied to the inductor 2 is reduced to a level that compensates for the heat radiation convection loss of the heated portion H, and at the same time the inductor 2 is moved upward. The cooling water C2 starts to move toward the
(See Figure 6).

上記により厚肉部1aはその下方から上方へ向
け順次連続的に熱処理が施されると共に、誘導子
2の保温加熱作用により後から冷却される厚肉部
1aの上方が温度降下することもないから、厚肉
部1aの均質な熱処理を実現できる。尚、図中C
は加熱後冷却された部分である。
As a result of the above, the thick wall portion 1a is sequentially and continuously heat treated from the bottom to the top, and the temperature above the thick wall portion 1a, which is later cooled due to the heat retention heating action of the inductor 2, does not drop. Therefore, uniform heat treatment of the thick portion 1a can be realized. In addition, C in the figure
is the part that has been cooled after heating.

上記誘導子2が上動を続け、該誘導子2により
加熱された部分Hの全域が熱処理されたら、該誘
導子2への電力の供給、冷却水の噴出を止めると
同時に、定常部1cの下端部に設定されている定
常部用の誘導子3に電力が供給されて上動され始
め、誘導子3による定常部1cの熱処理に移行さ
れる(第7図参照)。尚、上方の厚肉部1bが既
に熱処理された厚肉部1aと同一形状であるとき
は、前記厚肉部用の誘導子2を更に上動させて上
部の厚肉部1bの部位にセツトすることになる。
When the inductor 2 continues to move upward and the entire area of the part H heated by the inductor 2 is heat-treated, the supply of power to the inductor 2 and the spouting of cooling water are stopped, and at the same time, the stationary part 1c is stopped. Electric power is supplied to the inductor 3 for the stationary section set at the lower end, and it begins to move upward, and the inductor 3 begins heat treatment of the stationary section 1c (see FIG. 7). Incidentally, when the upper thick wall portion 1b has the same shape as the thick wall portion 1a that has already been heat treated, the inductor 2 for the thick wall portion is further moved upward and set at the upper thick wall portion 1b. I will do it.

定常部1cの熱処理は、前記誘導子3の加熱上
動と共に冷却水C3がジヤケツト3aのノズル3
bから噴出されることにより連続的に行われる
が、該誘導子3が定常部1cの所定位置に到達す
ると、上部の厚肉部1bに設定されている誘導子
4が該部1bの加熱を開始するようにしてある
(第8図参照)。
The heat treatment of the stationary part 1c is carried out by heating the inductor 3 and moving the cooling water C3 through the nozzle 3 of the jacket 3a.
When the inductor 3 reaches a predetermined position in the stationary part 1c, the inductor 4 set in the upper thick part 1b heats the part 1b. (See Figure 8).

即ち、所定位置は定常部1c加熱用の誘導子3
が移動途中の適宜位置から定常部1cの終端に到
達するまでに要する時間と、上記の厚肉部1bを
所定温度例えば誘導子4により900℃に加熱する
のに要する時間とが一致するときで定まり、S=
Vt(S:定常部用誘導子3の残り移動距離mm、
V:前記誘導子3の移動速度mm/sec、t:厚肉部
1b、を所定温度に加熱するのに要する時間
sec)の式から求めるものである。
That is, the predetermined position is the inductor 3 for heating the stationary part 1c.
When the time required for the thick portion 1b to reach the terminal end of the stationary portion 1c from an appropriate position during movement coincides with the time required for heating the thick portion 1b to a predetermined temperature, for example, 900° C. by the inductor 4. Determined, S=
Vt (S: remaining moving distance of steady section inductor 3 mm,
V: moving speed of the inductor 3 mm/sec, t: time required to heat the thick portion 1b to a predetermined temperature
sec).

而して、上方の厚肉部1bがその誘導子4の定
置加熱により加熱され始めて所定温度例えば900
℃に加熱されるころ、定常部1c用の誘導子3は
該部1cの略上端に到達する。ここで、定常部1
cはその誘導子3の下方に配設した冷却水ジヤケ
ツト3aのノズル3bからの噴出冷却水C3によ
つて冷却されているため、該誘導子3がそれ以上
移動できない位置に到達すると、その誘導子直下
を冷却することができなる。そこで、該誘導子3
の上半部に設けられているジヤケツト31aに通
水してそのノズル31bから冷却水C31を噴出
させ、定常部1cの上端部を冷却できるようにし
てあるのである(第9図参照)。
The upper thick part 1b begins to be heated by the stationary heating of the inductor 4 and reaches a predetermined temperature, for example, 900°C.
℃, the inductor 3 for the stationary portion 1c reaches approximately the upper end of the portion 1c. Here, steady part 1
c is cooled by the cooling water C3 jetted from the nozzle 3b of the cooling water jacket 3a disposed below the inductor 3, so when the inductor 3 reaches a position where it cannot move any further, its guidance The area directly below the child can be cooled. Therefore, the inductor 3
Water is passed through a jacket 31a provided in the upper half, and cooling water C31 is spouted from a nozzle 31b of the jacket 31a, thereby cooling the upper end of the stationary portion 1c (see FIG. 9).

一方、上記のようにして定常部1c全域に対す
る熱処理が完了すると、これに引続き上部の厚肉
部1bを加熱していたその誘導子4が熱の放射対
流損失分を補う程度の加熱出力で駆動されるよう
になると同時に上方へ移動し始め、且つ、その冷
却水ジヤケツト4aのノズル4bから冷却水C4
が噴出されて、この厚肉部1bを連続的に熱処理
するのである(第10図参照)。
On the other hand, when the heat treatment for the entire area of the stationary part 1c is completed as described above, the inductor 4 that was subsequently heating the upper thick part 1b is driven with a heating output that is sufficient to compensate for the radiation convection loss of heat. At the same time, the cooling water C4 begins to move upward, and the cooling water C4 starts to move upward from the nozzle 4b of the cooling water jacket 4a.
is ejected, and the thick portion 1b is continuously heat-treated (see FIG. 10).

このようにすれば、異なる肉厚を有する鋼管の
ような金属条材に連続的に熱処理を施すことがで
きるが、本発明方法は処理対象が大形で然も肉厚
差が大きいものであつても効率よく且つ均一な品
質の熱処理が可能である点が従来方法にはない特
色である。
In this way, metal strips such as steel pipes having different wall thicknesses can be heat-treated continuously, but the method of the present invention is suitable for treating large objects with large differences in wall thickness. The feature that conventional methods do not have is that heat treatment can be performed efficiently and with uniform quality.

即ち、本発明では肉厚に応じた複数の誘導子を
用いると共に、厚肉部に対しては予熱を含む加熱
を施した後、その誘導子の加熱出力を加熱された
部分の熱の放射対流による損失を補う程度のもの
に落してから移動させ始めると共に、加熱部分を
冷却して連続的に熱処理するから、厚肉部の熱処
理においておよそ熱処理むらの生じることはな
く、また、この厚肉部に続く定常部は専用の誘導
子によつて効果的な加熱、冷却を連続的に施し、
更に、この定常部に続く他の厚肉部に対しては、
専用の誘導子によつて前記定常部の処理途中から
加熱を始め、定常部の熱処理が完了すれば、それ
に引続き直ちにその誘導子を移動させ始めると同
時に冷却を施すから、複数の誘導子を用いながら
も肉厚の異なる条材に処理むらのない連続的な熱
処理を施すことができるからである。
That is, in the present invention, a plurality of inductors are used depending on the wall thickness, and after heating including preheating is applied to the thick wall portion, the heating output of the inductor is converted to the radiation convection of the heat of the heated portion. Since the heated part is cooled and heat-treated continuously, there is no uneven heat treatment in the thick-walled part. The stationary part that follows is continuously subjected to effective heating and cooling using a dedicated inductor.
Furthermore, for other thick parts following this steady part,
Using a dedicated inductor, heating is started in the middle of the processing of the stationary part, and once the heat treatment of the stationary part is completed, the inductor is immediately moved and cooling is performed at the same time, so multiple inductors are used. However, it is possible to perform continuous heat treatment without uneven treatment on strips having different thicknesses.

因に、肉厚が異なる条材を1個の誘導子で加熱
することも理論上は可能であるが、条材全体が大
形のもので然も肉厚差も大きい場合には、極めて
大型の電源装置を必要とし、設備コストが極めて
高価なものとなり、実用性に欠けるのみならず、
肉厚差が大きいために加熱効率も悪いといつた難
点がある。
Incidentally, although it is theoretically possible to heat strips with different wall thicknesses with a single inductor, if the entire strip is large and the difference in wall thickness is large, it may be extremely large. It requires a power supply device, which makes the equipment cost extremely high and is not only impractical, but also
The disadvantage is that heating efficiency is poor due to the large difference in wall thickness.

尚、本発明においては、処理対象が鋼管でその
肉厚が大きいため、外部加熱だけでは充分な熱処
理効果が得られないときは、第3図に示すように
鋼管1の内部に内面熱処理用の冷却ジヤケツト5
aを具備した誘導子5を、先の実施例で述べた熱
処理操作に同期して作動させるようにしてもよ
い。
In the present invention, since the object to be treated is a steel pipe with a large wall thickness, if a sufficient heat treatment effect cannot be obtained only by external heating, a heat treatment device is installed inside the steel pipe 1 as shown in Fig. 3. cooling jacket 5
The inductor 5 equipped with a may be operated in synchronization with the heat treatment operation described in the previous embodiment.

この場合において、定常部1c用の誘導子3が
該部1cの上端部に到達し、冷却水ジヤケツト3
1aから冷却水C31を噴出するとき、上記内面
側の誘導子5は冷却水C5をノズル5bから噴出
しつつ前記誘導子3に対応する部位のみを速かに
移動して厚肉部1b用の誘導子4の移動に同期で
きるようにする。
In this case, the inductor 3 for the stationary part 1c reaches the upper end of the part 1c, and the cooling water jacket 3
When spouting cooling water C31 from 1a, the inductor 5 on the inner surface side jets the cooling water C5 from the nozzle 5b, and quickly moves only the portion corresponding to the inductor 3 to form a section for the thick portion 1b. To be able to synchronize with the movement of the inductor 4.

これは、鋼管の内、外面において、冷却タイミ
ングに差が生じるのを防ぐためである。
This is to prevent differences in cooling timing between the inner and outer surfaces of the steel pipe.

本発明は以上の通りであつて、特に全体が大形
であり、また肉厚差も大きな異なる肉厚を有する
鋼管のような金属条材を、複数の加熱用の誘導子
及び冷却水供給手段を用いて、連続的に効率よく
且つ均一に熱処理することができるから、海洋構
造物の構造材などの熱処理方法として極めて有用
である。
The present invention is as described above, and in particular, a metal strip such as a steel pipe which is large in size as a whole and has a large difference in wall thickness, is provided with a plurality of heating inductors and a cooling water supply means. Since heat treatment can be carried out continuously, efficiently and uniformly using this method, it is extremely useful as a heat treatment method for structural materials of marine structures, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す一部を断
面とした正面図、第2図は同じく別例の正面図、
第3図は同じく他の別例の正面図、第4図は定常
部加熱用誘導子の部分拡大断面図、第5図乃至第
10図は本発明方法の一例の工程図である。 1……鋼管、1a,1b……厚肉部、1c……
定常部、2〜5……誘導子、2a〜5a,31a
……冷却水ジヤケツト、2b〜5b,31b……
冷却水噴出ノズル。
FIG. 1 is a partially sectional front view showing the implementation state of the method of the present invention, FIG. 2 is a front view of another example,
FIG. 3 is a front view of another example, FIG. 4 is a partially enlarged sectional view of an inductor for heating a stationary part, and FIGS. 5 to 10 are process diagrams of an example of the method of the present invention. 1... Steel pipe, 1a, 1b... Thick wall part, 1c...
Stationary part, 2-5... Inductor, 2a-5a, 31a
...Cooling water jacket, 2b to 5b, 31b...
Cooling water jet nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 両端側が定常部より大きな肉厚に形成された
異なる肉厚を有する金属条材を垂直乃至は水平な
向きで定置すると共に、その肉厚の異なる部分の
始端側にそれぞれ環状の誘導子を配置し、該誘導
子を前記条材の長手方向に移動させることにより
前記条材を連続的に加熱しつつ、加熱された部分
に連続的に冷却水を供給する熱処理に於て、前記
条材の一方の厚肉部は厚肉部用誘導子により該厚
肉部全体を包囲した状態で所定温度になるまで加
熱し、この後前記誘導子に加熱された部分の放射
対流損失分の補填をする電力を供給して該誘導子
をその後端側が定常部との境界部乃至はその近傍
に至るまで移動させながらこの移動と同期して上
記加熱された部分に連続的に冷却水を供給するこ
とにより前記厚肉部に対する熱処理を施し、この
処理に連続して該厚肉部に続く定常部の始端側に
配置した定常部用誘導子に電力を供給して定常部
の加熱を始めると共に該誘導子を定常部の他端側
へ向け移動させながら該移動と同期して該誘導子
により加熱された部分に連続的に冷却水を供給す
ることによつて定常部を連続的に熱処理する一
方、前記定常部の熱処理途中にある前記誘導子が
そこから定常部の終端に到達するのに要する時間
と他の厚肉部全体を厚肉部用誘導子により所定温
度まで加熱するのに要する時間とが一致するよう
に、該他の厚肉部用誘導子に電力を供給して該厚
肉部の加熱を開始し、前記定常部用誘導子が定常
部の終端部乃至はその近傍に到達したら該定常部
用誘導子への給電を停止すると共に前記他の厚肉
部用誘導子にそれにより加熱された部分の放射対
流損失分を補填するに足りる電力を供給しつつ該
誘導子を定常部の境界側から他端側へ移動させつ
つこの移動と同期して該誘導子により加熱された
部分に連続的に冷却水を供給することを特徴とす
る異なる肉厚を有する金属条材の熱処理方法。
1 Metal strips with different wall thicknesses with both ends thicker than the stationary part are placed vertically or horizontally, and annular inductors are placed on the starting end sides of the parts with different wall thicknesses. In the heat treatment, the strip is continuously heated by moving the inductor in the longitudinal direction of the strip, and cooling water is continuously supplied to the heated portion. One of the thick parts is heated until it reaches a predetermined temperature with the entire thick part surrounded by an inductor for the thick part, and then the radiation convection loss of the part heated by the inductor is compensated. By supplying power and moving the inductor until its rear end reaches the boundary with the stationary part or its vicinity, and in synchronization with this movement, continuously supplying cooling water to the heated part. The thick portion is subjected to heat treatment, and following this treatment, power is supplied to an inductor for the steady portion disposed on the starting end side of the steady portion following the thick portion to start heating the steady portion, and the inductor is heated. The stationary section is continuously heat-treated by moving the inductor toward the other end of the stationary section and continuously supplying cooling water to the part heated by the inductor in synchronization with the movement. The time required for the inductor, which is in the middle of the heat treatment of the steady part, to reach the end of the steady part from there, and the time required to heat the entire other thick part to a predetermined temperature by the inductor for the thick part. In order to match, power is supplied to the other thick-walled inductor to start heating the thick-walled part, and when the steady-state inductor reaches the end of the steady-state part or its vicinity, the heating of the thick-walled part starts. While stopping the power supply to the inductor for the stationary section and supplying sufficient power to the other inductor for the thick section to compensate for the radiation convection loss of the heated section, the inductor is connected to the inductor for the stationary section. A method for heat treatment of metal strips having different wall thicknesses, characterized by moving metal strips from a boundary side to the other end side and continuously supplying cooling water to a portion heated by the inductor in synchronization with this movement.
JP4596083A 1983-03-22 1983-03-22 Heat treatment of metallic bar material having different wall thickness Granted JPS59173220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4596083A JPS59173220A (en) 1983-03-22 1983-03-22 Heat treatment of metallic bar material having different wall thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4596083A JPS59173220A (en) 1983-03-22 1983-03-22 Heat treatment of metallic bar material having different wall thickness

Publications (2)

Publication Number Publication Date
JPS59173220A JPS59173220A (en) 1984-10-01
JPS6151609B2 true JPS6151609B2 (en) 1986-11-10

Family

ID=12733818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4596083A Granted JPS59173220A (en) 1983-03-22 1983-03-22 Heat treatment of metallic bar material having different wall thickness

Country Status (1)

Country Link
JP (1) JPS59173220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179008A (en) * 1985-02-01 1986-08-11 田代 正憲 Illumination street tower
JPH0465481B2 (en) * 1984-10-24 1992-10-20 Masanori Tashiro

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207216A (en) * 1999-11-18 2001-07-31 Dai Ichi High Frequency Co Ltd Heat treatment method and device for metallic cylindrical body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852455A (en) * 1981-09-24 1983-03-28 Nippon Steel Corp Steel sheet for easy opening can top with superior can opening property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852455A (en) * 1981-09-24 1983-03-28 Nippon Steel Corp Steel sheet for easy opening can top with superior can opening property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465481B2 (en) * 1984-10-24 1992-10-20 Masanori Tashiro
JPS61179008A (en) * 1985-02-01 1986-08-11 田代 正憲 Illumination street tower

Also Published As

Publication number Publication date
JPS59173220A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US4168993A (en) Process and apparatus for sequentially forming and treating steel rod
US2367715A (en) Method and apparatus for metal treatment and fabrication
JPS6151609B2 (en)
GB2039808A (en) Method and installation for manufacturing multilayer pipes
JPH037728B2 (en)
EP0086408A2 (en) Method and apparatus for heat treating steel
JPS5937728B2 (en) Cooling method of steel strip in continuous furnace
JPS5584203A (en) Surface cracking suppressing method of slab at hot rolling
JPS5573477A (en) Tig or mig automatic welding method of stainless steel pipe
JPS5496446A (en) Welding method for welded steel pipe of high toughness
JPS551975A (en) Production of molten metal plated steel pipes
JP2808825B2 (en) Cladding treatment method for steel pipe inner surface
JPS6314047B2 (en)
JPS5887227A (en) Cooling method for post annealing part of electric welded steel pipe
JPS5665934A (en) Continuous annealing method for steel sheet strip
JPS5527401A (en) Preventing method and apparatus for thickness deviation of forge welded pipe
JPS6230248B2 (en)
JPS54120212A (en) Heat treatment apparatus of rolls
JPS569001A (en) Direct feed rolling method
JPS592724B2 (en) Heat treatment method for piping
RU1825691C (en) Process of manufacture of pipe-lines
JPS54118372A (en) Production of cold drawn steel pipe from electrically seamed steel pipe
JPH01240622A (en) Improvement of residual stress in weld zone of vessel
JPS63270412A (en) Solid solution heat treatment method for stainless h-beam steel
JPH1085823A (en) Method for cooling high-temperature rail