JPS6151511A - Ultrasonic wave converging device - Google Patents

Ultrasonic wave converging device

Info

Publication number
JPS6151511A
JPS6151511A JP17481584A JP17481584A JPS6151511A JP S6151511 A JPS6151511 A JP S6151511A JP 17481584 A JP17481584 A JP 17481584A JP 17481584 A JP17481584 A JP 17481584A JP S6151511 A JPS6151511 A JP S6151511A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic wave
receiving element
wave transmitting
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17481584A
Other languages
Japanese (ja)
Inventor
Hiroyuki Funadokoro
船所 宏行
Hisanori Otsuki
大槻 寿則
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17481584A priority Critical patent/JPS6151511A/en
Publication of JPS6151511A publication Critical patent/JPS6151511A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves

Abstract

PURPOSE:To reduce the size of the device and also to reduce an offset quantity by making the aperture diameter of the side end part of an ultrasonic wave transmitting and receiving element by a specific value smaller than the diameter of its front surface. CONSTITUTION:A cone 29 is mounted on the front surface of the ultrasonic wave transmitting and receiving element 26 fixed by a holder 27 by using a cone holding plate 30, and an ultrasonic wave from the element 26 is reflected by the conic reflecting surface 29a of the cone 29, further reflected by the parabolic inner peripheral reflecting surface 28a of the horn 28, and converged on a focus O. In this case, the diameter (d) of the aperture of the horn 28 at the side of the element 26 is mde smaller than the diameter (e) of the element 26 to inhibit an ultrasonic wave from near the outer periphery of the element 26 from passing through the aperture part of the horn 28. Thus, the influence of a contour wave is eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は超音波集束装置に関するものである。[Detailed description of the invention] Industrial applications This invention relates to an ultrasonic focusing device.

従来例の構成とその問題点 従来の超音波集束装置は、超音波送受波素子の前面に装
着される円錐形の反射面をもつコーンと、このコーンと
同軸上に配置され、かつ放物曲面をなす内周反射面を有
するホーンとからなり、前記ホーンの両端の開口径が前
記超音波送受波素子の口径以上となったものである。以
下その概略を説明すると、第3図において、保持器2に
固定された超音波送受波素子1に高電圧パルスを印加す
ると、空気中に所定の周波数の超音波パルスが送波され
る。超音波送受波素子1から送波された超音波パルス(
矢印)は超音波送受波素子1の前面に装着されたコーン
4に到達し、その円錐形反射面で反射して方向を変えた
後ホーン3の内周反射面に到達する。ホーン3の内周反
射面は放物曲面を形成しており、反射された超音波は焦
点0で集束する構造になっている。コーン保持板5はコ
ーン4をホーン3に対して所定の位置に固定している。
Conventional configuration and its problems Conventional ultrasonic focusing devices include a cone with a conical reflecting surface attached to the front of the ultrasonic transceiver element, and a parabolic curved cone placed coaxially with this cone. and a horn having an inner circumferential reflective surface forming a shape, and the aperture diameter at both ends of the horn is larger than the diameter of the ultrasonic wave transmitting/receiving element. The outline will be explained below. In FIG. 3, when a high voltage pulse is applied to the ultrasonic transceiver element 1 fixed to the holder 2, an ultrasonic pulse of a predetermined frequency is transmitted into the air. Ultrasonic pulses transmitted from the ultrasonic transceiver element 1 (
The arrow) reaches the cone 4 attached to the front surface of the ultrasonic wave transmitting/receiving element 1, is reflected by the conical reflecting surface, changes direction, and then reaches the inner circumferential reflecting surface of the horn 3. The inner reflective surface of the horn 3 forms a parabolic curved surface, and the reflected ultrasonic waves are converged at a focal point of 0. The cone holding plate 5 fixes the cone 4 in a predetermined position relative to the horn 3.

このような構成からなる超音波集束装置を超音波送受波
素子1の前面に装着することにより、焦点Oに到達する
超音波の信号強度は超音波集束装置を装着しない場合に
比較して著しく増大する。また、たとえば点Aのように
焦点0から離れた点における信号強度は超音波集束装置
を装着しない場合に比較して低下するため指向性が鋭敏
になる。
By attaching the ultrasonic focusing device having such a configuration to the front surface of the ultrasonic transceiver element 1, the signal strength of the ultrasonic waves reaching the focal point O is significantly increased compared to the case where no ultrasonic focusing device is attached. do. Furthermore, the signal intensity at a point away from the focal point 0, such as point A, is lower than when no ultrasonic focusing device is attached, so the directivity becomes more sensitive.

なお焦点0から発射あるいは反射された超音波は前述し
た経路を逆にたどり超音波送受波素子1に到達するため
、このとき超音波送受波素子1が感知する受波信号を信
号処理することにより、超音波の受波も可能な構成にな
っている。
Note that the ultrasonic waves emitted or reflected from the focal point 0 follow the above-mentioned path in the reverse direction and reach the ultrasonic wave transmitting/receiving element 1. It is also configured to receive ultrasonic waves.

第4図は前述した超音波集束装置を装着した超音波送受
波素子をねじ締めロボットに通用し、穴位置補正機能を
実現した際のねじ締めヘッド邪の概略を示す図である。
FIG. 4 is a diagram schematically showing a screw tightening head when the ultrasonic wave transmitting/receiving element equipped with the ultrasonic focusing device described above is used in a screw tightening robot to realize a hole position correction function.

ホーン8、コーン9、コーン保持板IOから構成された
超音波集束装置を前面に装着した超音波送受波素子6は
保持器7を介してねじ締めヘッド11に固定されている
。ねじ締めへラド11はマニプレータ12に固定されて
おり、外部からの制御信号によりX方向、Y方向に移動
する。第4図において超音波送受波素子6から送波され
た超音波はコーン9.ホーン8で反射され、被測定物1
3に到達し、逆の経路を経て超音波送受波素子6に到達
する。また超音波送受波素子6の前面から被測定物13
までの距離は、超音波送受波素子6の前面から焦点まで
の距離りに一致するように設定されており、超音波送受
波素子6は被測定物13との距mLを保ちながらマニプ
レータ12によりX方向、Y方向に移動する。
An ultrasonic transmitting/receiving element 6 equipped with an ultrasonic focusing device composed of a horn 8, a cone 9, and a cone holding plate IO on the front side is fixed to a screw head 11 via a retainer 7. The screw tightening rod 11 is fixed to a manipulator 12, and is moved in the X direction and the Y direction by an external control signal. In FIG. 4, the ultrasonic wave transmitted from the ultrasonic wave transmitting/receiving element 6 is transmitted to the cone 9. It is reflected by the horn 8 and the object to be measured 1
3 and reaches the ultrasonic wave transmitting/receiving element 6 via the reverse route. In addition, the object to be measured 13 is
The distance to is set to match the distance from the front surface of the ultrasonic wave transmitting/receiving element 6 to the focal point, and the ultrasonic wave transmitting/receiving element 6 is moved by the manipulator 12 while maintaining the distance mL from the object to be measured 13. Move in the X and Y directions.

第4図において15は超音波送受波素子6から送波され
集束した超音波ビームと被測定物13の交点を示し、1
6はこの点からマニプレータ12を所定の距離だけX方
向に移動したときの超音波送受波素子6から送波され集
束した超音波ビームと被測定物13の交点を示す。第5
図の実線18は第4図においてマニプレータ12を交点
15の位置から交点16の位置まで所定の間隔で移動さ
せながら超音波送受波素子6で超音波を送受波したとき
の反射信号強度を示すもので、横軸にマニプレータ12
のX方向の移動量を、縦軸に反射信号強度をとりプロッ
トし、2次曲線で補間処理を行った結果の一例である。
In FIG. 4, reference numeral 15 indicates the intersection of the focused ultrasonic beam transmitted from the ultrasonic wave transmitting/receiving element 6 and the object to be measured 13;
Reference numeral 6 indicates the intersection of the focused ultrasonic beam transmitted from the ultrasonic transceiver element 6 and the object to be measured 13 when the manipulator 12 is moved a predetermined distance in the X direction from this point. Fifth
A solid line 18 in the figure indicates the reflected signal intensity when the ultrasonic wave is transmitted and received by the ultrasonic wave transmitting/receiving element 6 while moving the manipulator 12 at a predetermined interval from the position of the intersection point 15 to the position of the intersection point 16 in FIG. And the manipulator 12 is on the horizontal axis.
This is an example of the results obtained by plotting the amount of movement in the X direction of , with the reflected signal strength on the vertical axis, and performing interpolation processing using a quadratic curve.

なおこの従来例では超音波送受波素子6と被測定物13
の距離は75nm、交点15と交点16の距離は10B
、マニプレータ12の移動間隔は1鶴である。また被測
定穴14の直径は5111とした。第5図において反射
信号強度はマニプレータ12の移動量が6111の位置
で最小になり、その時の反射信号強度は2600mVで
ある。このとき超音波送受波素子6から送波され集束し
た超音波と被測定物13の交点は被測定物13上の被測
定穴14のX方向中心位置に一致する。
Note that in this conventional example, the ultrasonic transceiver element 6 and the object to be measured 13
The distance between is 75 nm, and the distance between intersection 15 and intersection 16 is 10B.
, the movement interval of the manipulator 12 is one crane. Further, the diameter of the hole 14 to be measured was set to 5111 mm. In FIG. 5, the reflected signal intensity is at its minimum at the position 6111, where the amount of movement of the manipulator 12 is 6111, and the reflected signal intensity at that time is 2600 mV. At this time, the intersection of the focused ultrasonic waves transmitted from the ultrasonic wave transmitting/receiving element 6 and the object to be measured 13 coincides with the center position of the hole to be measured 14 on the object to be measured 13 in the X direction.

従ってこの時のマニプレータ12の位置座標に予め設定
されている超音波送受波素子6のX方向オフセット量(
超音波送受波素子6から送波され集束した超音波と被測
定物13の交点と、ドライバビット17の延長と被測定
物13の交点との距離)δを加えた座標にマニプレータ
12を移動することにより、ドライバビット17を被測
定穴14のX方向中心軸上に移動させることができる。
Therefore, the X-direction offset amount (
The manipulator 12 is moved to the coordinates of adding δ (distance) between the intersection of the ultrasonic wave transmitted and focused from the ultrasonic wave transmitting/receiving element 6 and the object to be measured 13 and the intersection of the extension of the driver bit 17 and the object to be measured 13. This allows the driver bit 17 to be moved onto the central axis of the hole 14 to be measured in the X direction.

同様(7)?[をY方向に適用することによりドライバ
ビット17を被測定穴14のY方向中心軸上に移動させ
ることができ、前記2工程を連続して実施することによ
り、ドライバビット17を被測定穴14の中心軸上に移
動させることができる。この後にねじを供給してドライ
バビット17を回転させながら下降させれば、ねじをね
じ穴に確実に締め付けることができ、ねじ締め作業の高
精度化、高効率化が実現できる。一方、第5図の破線1
9は、超音波送受波素子6R体(超音波集束装置を装着
しない状態)をねじ締めへラド11に固定して、前述の
超音波集束装置を装着した時と同じ条件において超音波
送受波素子6で超音波を送受波したときの2次曲線によ
る補間処理結果である。なお、この時超音波送受波素子
6から送波される超音波は集束しないのでオフセット量
は超音波ビームの中心と被測定物13の交点と、ドライ
バビット17の延長と被測定物13の交点との距離とし
ている。
Similar (7)? By applying [ in the Y direction, the driver bit 17 can be moved onto the center axis of the hole to be measured 14 in the Y direction, and by performing the above two steps consecutively, the driver bit 17 can be moved to the center axis of the hole to be measured 14 can be moved on the central axis of If a screw is then supplied and the driver bit 17 is rotated and lowered, the screw can be reliably tightened into the screw hole, and high precision and efficiency of the screw tightening work can be realized. On the other hand, the broken line 1 in Figure 5
9 fixes the ultrasonic transmitting/receiving element 6R body (without the ultrasonic focusing device) to the screw head 11, and then attaching the ultrasonic transmitting/receiving device under the same conditions as when the ultrasonic focusing device is attached. 6 is the result of interpolation processing using a quadratic curve when transmitting and receiving ultrasonic waves. Note that at this time, since the ultrasonic waves transmitted from the ultrasonic transceiver element 6 are not focused, the offset amount is determined by the intersection between the center of the ultrasonic beam and the object to be measured 13, and the intersection between the extension of the driver bit 17 and the object to be measured 13. It is the distance from

第5図における実線18と破線19を比較すると、実線
18すなわち超音波集束装置を装着した時の結果の方が
最小信号強度と最大信号強度の差が太き(、超音波集束
装置を装着することにより氷検出感度が向上することが
わかる。この氷検出感度の向上は、従来の超音波集束装
置を用いない超音波送受波素子単体では氷検出感度が低
すぎて検出不可能な小径穴の位置検出が可能となること
を念珠しており、超音波集束装置の効果は弗素に大なる
ものがある。
Comparing the solid line 18 and the broken line 19 in FIG. It can be seen that the ice detection sensitivity is improved by this.This improvement in ice detection sensitivity is due to the fact that the ice detection sensitivity is too low to be detected by a single ultrasonic transceiver element without using a conventional ultrasonic focusing device. We hope that position detection will be possible, and fluorine has a great effect on ultrasonic focusing devices.

しかしながら、超音波集束装置を装着することにより超
音波送受波素子6単体の場合に比べて大径化しオフセソ
)Iδが増加する。このオフセット量δの増加はドライ
バビット17の被測定穴14の中心位置上への移動時間
を増加させ、大径化はねじ締めロボットの動作範囲の狭
小化を招くという問題点があった。
However, by installing the ultrasonic focusing device, the diameter of the ultrasonic wave transmitting/receiving element 6 increases compared to the case of using only the ultrasonic wave transmitting/receiving element 6, and the offset Iδ increases. This increase in the offset amount δ increases the time it takes for the driver bit 17 to move to the center position of the hole 14 to be measured, and an increase in the diameter leads to a narrowing of the operating range of the screw tightening robot.

また超音波送受波素子6から送波される超音波によって
形成される音場は一様ではなく、第6図は超音波送受波
素子20から超音波が送波された時の超音波送受波素子
20近傍における音場のモデルを示す図である。超音波
送受波素子20から発射される超音波は、音源の前面に
のみ平面波として放射される直進波21と、音源の周辺
部から球面状に放射される輪郭波22に分類することが
できる。第6図において超音波送受波素子20の口径を
a、超音波送受波素子20の中心軸上の点Cと超音波送
受波素子20の距離をXとすると、0点に到達する超音
波の波形は前述した直進波21と輪郭波22の合成され
た波形となる。第7図はこの波形を示した図であり、2
3,24.25は、それぞれx / aの値が0.1.
 0.5. 1.0のときの波形を示している。第7図
に示すように超音波送受波素子20から送波された超音
波の波形は輪郭波22による影響で歪むことがわかる。
Furthermore, the sound field formed by the ultrasonic waves transmitted from the ultrasonic transceiver element 6 is not uniform, and FIG. 3 is a diagram showing a model of a sound field in the vicinity of an element 20. FIG. Ultrasonic waves emitted from the ultrasonic transceiver element 20 can be classified into straight waves 21, which are emitted as plane waves only to the front of the sound source, and contour waves 22, which are emitted in a spherical shape from the periphery of the sound source. In FIG. 6, if the aperture of the ultrasonic wave transmitting/receiving element 20 is a, and the distance between the point C on the central axis of the ultrasonic wave transmitting/receiving element 20 and the ultrasonic wave transmitting/receiving element 20 is X, then the ultrasonic wave reaching the zero point The waveform is a composite waveform of the above-mentioned straight wave 21 and contour wave 22. FIG. 7 is a diagram showing this waveform, and 2
3, 24.25 have x/a values of 0.1.
0.5. The waveform when the value is 1.0 is shown. As shown in FIG. 7, it can be seen that the waveform of the ultrasonic wave transmitted from the ultrasonic wave transmitting/receiving element 20 is distorted due to the influence of the contour wave 22.

この波形の歪は前述のねし穴位置検出におけるねし穴位
置検出精度を低下させるという問題点があった。
This waveform distortion poses a problem in that it lowers the accuracy of detecting the tapped hole position described above.

発明の目的 この発明は、超音波集束装置の小径化、オフセット量δ
の減少および輪郭波の影響を除去することによる穴位置
検出精度の向上を図ることができる超音波集束装置を提
供することを目的としている。
Purpose of the Invention This invention aims to reduce the diameter of an ultrasonic focusing device and reduce the offset amount δ.
An object of the present invention is to provide an ultrasonic focusing device that can improve hole position detection accuracy by reducing the effects of contour waves and eliminating the influence of contour waves.

発明の構成 この発明は、超音波送受波素子と、この超音波送受波素
子の前面の中央位置に配置されてその前面に概略円錐形
反射面を対向したコーンと、このコーンに同軸に配置さ
れておおむね放物曲面をなす内周反射面が前記円錐形反
射面に対向するとともに前記超音波送受波素子側端部の
開口径が超音波送受波素子の前面の口径よりも所定量小
さく形成されたポーンとを備えたことを特徴としている
Structure of the Invention The present invention provides an ultrasonic wave transmitting/receiving element, a cone disposed at the center of the front surface of the ultrasonic wave transmitting/receiving element and having a generally conical reflecting surface facing the front surface, and an ultrasonic wave transmitting/receiving element arranged coaxially with the cone. An inner peripheral reflecting surface having a generally parabolic curved surface faces the conical reflecting surface, and an opening diameter at an end on the side of the ultrasonic wave transmitting/receiving element is formed to be smaller by a predetermined amount than an aperture at the front surface of the ultrasonic wave transmitting/receiving element. It is characterized by having a pawn.

これにより、超音波集束装置の小径化、オフセット量の
減少、輪郭波の影響を除去することによる穴位置検出精
度の向上が可能になる。
This makes it possible to reduce the diameter of the ultrasonic focusing device, reduce the amount of offset, and improve hole position detection accuracy by eliminating the influence of contour waves.

実施例の説明 この発明の一実施例を第1図および第2図に基づいて説
明する。第1図において、26は超音波送受波素子、2
7は保持器、28は内周反射面28aをもつホーン、2
9は円錐形反射面29aをもつコーン、30はコーン保
持板である。またホーン28の超音波送受波素子26側
の開口の口径dは超音波送受波素子26の口径eよりも
小さい構造になっている。保持器27に固定された超音
波送受波素子26から送波された超音波の中で、ホーン
28の開口部内を通過した超音波は、超音波送受波素子
26の前面に装着されたコーン29に到達し対向する円
錐形反射面29aで反射して方向を変えた後ホーン28
に到達する。反射面29aに対向するホーン28の内周
反射面28aは放物曲面を形成しており、反射された超
音波は焦点Oに集束する。一方、超音波送受波素子26
の外周近傍から送波された超音波はホーン28の開口部
を通過できないので焦点Oには到達しない。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 and 2. In FIG. 1, 26 is an ultrasonic wave transmitting/receiving element;
7 is a retainer, 28 is a horn having an inner peripheral reflective surface 28a, 2
9 is a cone having a conical reflecting surface 29a, and 30 is a cone holding plate. Further, the aperture d of the opening of the horn 28 on the side of the ultrasonic wave transmitting/receiving element 26 is smaller than the aperture e of the ultrasonic wave transmitting/receiving element 26 . Among the ultrasonic waves transmitted from the ultrasonic wave transmitting/receiving element 26 fixed to the holder 27, the ultrasonic waves passing through the opening of the horn 28 are transmitted to the cone 29 attached to the front surface of the ultrasonic wave transmitting/receiving element 26. After reaching the horn 28 and changing its direction by being reflected by the opposing conical reflecting surface 29a, the horn 28
reach. The inner peripheral reflective surface 28a of the horn 28, which faces the reflective surface 29a, forms a parabolic curved surface, and the reflected ultrasonic waves are focused at a focal point O. On the other hand, the ultrasonic wave transmitting/receiving element 26
Ultrasonic waves transmitted from near the outer periphery of the horn 28 cannot pass through the opening of the horn 28, so they do not reach the focal point O.

なお、この実施例における超音波送受波素子26と焦点
Oの距%!uLは従来例で示した超音波集束装置の場合
と同じ75顛、超音波送受波素子26の直径は36+u
、ホーン28の直径は両端でそれぞれ50.8in、2
6關とした。
In this example, the distance between the ultrasonic transmitting/receiving element 26 and the focal point O is %! uL is 75 mm, which is the same as in the case of the ultrasonic focusing device shown in the conventional example, and the diameter of the ultrasonic wave transmitting/receiving element 26 is 36+u.
, the diameter of the horn 28 is 50.8 inches at both ends, 2
6 questions.

第2図の実線31はこの超音波集束装置を従来例に示し
たねじ締めロボット(第2図)に適用し、従来例に示し
た場合と同条件において超音波送受波素子26を所定の
間隔で移動させながら超音波を送受波したときの反射信
号強度を示すもので、横軸に超音波送受波素子26の移
動量を、縦軸に反射信号強度をとりプロットし、2次曲
線で補間処理を行った結果の一例である。第2図の実線
31において反射信号強度は超音波送受波素子26の移
動量が6鶴の位置で最小になり、そのときの反射信号強
度は1750mVである。第2図の破線32はこの実施
例と同条件において従来例で示した構成の超音波集束装
置(第3図参照)を用いて超音波を送受波した時の2次
曲線による補間処理結果である。第2図における実線3
1と破線32を比較すると、実線31すなわちこの実施
例で示した超音波集束装置を装着した時の結果の方がデ
ータのばらつきが小さく、超音波送受波素子26の外周
近傍から球面状に放射される輪郭波22による影響が除
かれ穴位置検出精度が向上することがわかる。また従来
例で示した超音波集束装置では直径が80m、ねじ締め
ロボットに適用した時のオフセラ+−itは65mであ
るのに対して、この実施例で示した超音波集束装置では
直径が56鰭、オフセット量が52mであり、超音波集
束装置の小径化、オフセット量の減少が実現できる。
A solid line 31 in FIG. 2 indicates that this ultrasonic focusing device is applied to the screw tightening robot (FIG. 2) shown in the conventional example, and the ultrasonic transmitting/receiving elements 26 are set at a predetermined interval under the same conditions as in the conventional example. This shows the reflected signal intensity when ultrasonic waves are transmitted and received while moving the ultrasonic wave element 26.The horizontal axis is the amount of movement of the ultrasonic wave transmitting/receiving element 26, and the vertical axis is the reflected signal intensity, which is plotted and interpolated with a quadratic curve. This is an example of the result of processing. In the solid line 31 in FIG. 2, the reflected signal intensity is at its minimum at the position where the amount of movement of the ultrasonic wave transmitting/receiving element 26 is six cranes, and the reflected signal intensity at that time is 1750 mV. The broken line 32 in FIG. 2 is the result of interpolation processing using a quadratic curve when ultrasonic waves are transmitted and received using the ultrasonic focusing device configured as shown in the conventional example (see FIG. 3) under the same conditions as this embodiment. be. Solid line 3 in Figure 2
1 and the broken line 32, the solid line 31, that is, the result when the ultrasonic focusing device shown in this example is attached, has smaller data variations, and the ultrasonic wave is emitted from near the outer periphery of the ultrasonic wave transmitting/receiving element 26 in a spherical shape. It can be seen that the influence of the contour wave 22 is removed, and the hole position detection accuracy is improved. In addition, the diameter of the ultrasonic focusing device shown in the conventional example is 80 m, and the offset +-it when applied to a screw tightening robot is 65 m, whereas the diameter of the ultrasonic focusing device shown in this example is 56 m. The fin offset amount is 52 m, making it possible to reduce the diameter of the ultrasonic focusing device and reduce the offset amount.

なお、第2図において、実線31の反射信号強度は破線
32と比較すると低く、この実施例で示した超音波集束
装置の検出感度は従来例で示した超音波集束装置よりも
低下することがわかるが、この実施例におけるこの検出
感度の低下は実用上支障のない範囲の低下である。
In addition, in FIG. 2, the reflected signal intensity of the solid line 31 is lower than that of the broken line 32, and the detection sensitivity of the ultrasonic focusing device shown in this embodiment may be lower than that of the ultrasonic focusing device shown in the conventional example. As can be seen, the decrease in detection sensitivity in this example is within a range that does not pose a practical problem.

発明の効果 この発明の超音波集束装置によれば、ホーンの超音波送
受波素子側の開口径を超音波送受波素子の口径よりも小
さくしたことにより、超音波集束装置の小径化、ねじ締
めロボットに適用した時のオフセット量の減少、輪郭波
の影響を除去することによる穴位置検出精度の向上を実
現でき、その実用的効果は大なるものがある。
Effects of the Invention According to the ultrasonic focusing device of the present invention, by making the aperture diameter of the horn on the side of the ultrasonic wave transmitting/receiving element smaller than the diameter of the ultrasonic wave transmitting/receiving element, it is possible to reduce the diameter of the ultrasonic focusing device and tighten screws. When applied to robots, it is possible to reduce the amount of offset and improve hole position detection accuracy by eliminating the influence of contour waves, which has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第一2図は超音
波送受波素子の移動量と反射信号強度の関係図、第3図
は従来例の超音波集束装置の断面図、第4図はねじ締め
ロボットに適用した時のねじ締めヘッド部の概略図、第
5図は第4図の構成からなる装置を用いた穴位置検出に
おいて超音波送受波素子をX方向に一定の間隔で平行に
移動させながら超音波を送受波したときの超音波送受波
素子の移動量と反射信号強度の関係図、第6図は超音波
送受波素子の近傍における音場のモデル図、第7図は超
音波送受波素子から送波され第6図における0点に到達
する超音波の波形を示す波形図である。 26・・・超音波送受波素子、28・・・ホーン、29
・・・コーン、d・・・ホーンの口径、e・・・超音波
送受波素子の口径 第1図 第2図 第3図 第5図 第6図
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 12 is a relationship between the amount of movement of the ultrasonic transceiver element and the intensity of the reflected signal, and FIG. 3 is a sectional view of a conventional ultrasonic focusing device. Fig. 4 is a schematic diagram of the screw tightening head when applied to a screw tightening robot, and Fig. 5 shows the ultrasonic transmitting/receiving element at a constant position in the X direction during hole position detection using the device configured as shown in Fig. 4. Figure 6 is a diagram showing the relationship between the amount of movement of the ultrasonic transceiver element and the reflected signal strength when transmitting and receiving ultrasonic waves while moving the ultrasonic wave transceiver in parallel at intervals. FIG. 7 is a waveform diagram showing the waveform of the ultrasonic wave transmitted from the ultrasonic wave transmitting/receiving element and reaching the zero point in FIG. 6. 26... Ultrasonic wave transmitting/receiving element, 28... Horn, 29
...Cone, d...Aperture of the horn, e...Aperture of the ultrasonic transceiver element Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 超音波送受波素子と、この超音波送受波素子の前面の中
央位置に配置されてその前面に概略円錐形反射面を対向
したコーンと、このコーンに同軸に配置されておおむね
放物曲面をなす内周反射面が前記円錐形反射面に対向す
るとともに前記超音波送受波素子側端部の開口径が超音
波送受波素子の前面の口径よりも所定量小さく形成され
たホーンとを備えた超音波集束装置。
an ultrasonic wave transmitting/receiving element, a cone placed at the center of the front surface of the ultrasonic wave transmitting/receiving element and having a generally conical reflecting surface facing the front surface thereof, and a cone placed coaxially with the cone to form a roughly parabolic curved surface. an ultrasonic horn having an inner circumferential reflecting surface facing the conical reflecting surface and an opening diameter at an end on the side of the ultrasonic wave transmitting/receiving element being smaller than a diameter of the front surface of the ultrasonic wave transmitting/receiving element by a predetermined amount; Sound wave focusing device.
JP17481584A 1984-08-20 1984-08-20 Ultrasonic wave converging device Pending JPS6151511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17481584A JPS6151511A (en) 1984-08-20 1984-08-20 Ultrasonic wave converging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17481584A JPS6151511A (en) 1984-08-20 1984-08-20 Ultrasonic wave converging device

Publications (1)

Publication Number Publication Date
JPS6151511A true JPS6151511A (en) 1986-03-14

Family

ID=15985146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17481584A Pending JPS6151511A (en) 1984-08-20 1984-08-20 Ultrasonic wave converging device

Country Status (1)

Country Link
JP (1) JPS6151511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156144A (en) * 1989-10-20 1992-10-20 Olympus Optical Co., Ltd. Ultrasonic wave therapeutic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156144A (en) * 1989-10-20 1992-10-20 Olympus Optical Co., Ltd. Ultrasonic wave therapeutic device

Similar Documents

Publication Publication Date Title
US4326155A (en) Shockwave probe
US4576048A (en) Method and apparatus for ultrasonic inspection of a solid workpiece
US4967873A (en) Acoustic lens apparatus
JPS6151511A (en) Ultrasonic wave converging device
CN115774057A (en) Full-automatic phased array ultrasonic detection system and detection method for weld defects
US5577006A (en) Adaptive acoustic signal target detection system
JPH0518942A (en) Ultrasonic sound speed measuring device according to v(z) characteristic and ultrasonic microscope using the same
JPS60214211A (en) Ultrasonic waves convergent apparatus
JPS6036951A (en) Focusing ultrasonic transducer element
US4080839A (en) Testing method using ultrasonic energy
JPS6444460U (en)
US4603583A (en) Method for the ultrasonic testing of ferritic parts having a cladding
JPH022924A (en) Ultrasonic wave flaw detecting apparatus for seam welded pipe
Ossant et al. Airborne ultrasonic imaging system for parallelepipedic object localization
JPS6333168Y2 (en)
CN214374519U (en) Fine sound beam ultrasonic probe
SU1314235A1 (en) Method and apparatus for measuring sound velocity
JPS6179158A (en) Ultrasonic microscope lens
JPH0545346A (en) Ultrasonic probe
JPH0425508B2 (en)
SU1288590A1 (en) Piezoelectric transducer for ultrasonic checking
CA1067614A (en) Pulse-echo method and system for testing wall thicknesses
SU1298651A1 (en) Method of ultrasonic checking
JPH0565821B2 (en)
JPS5825344Y2 (en) ultrasonic probe