JPS6151483B2 - - Google Patents

Info

Publication number
JPS6151483B2
JPS6151483B2 JP56187261A JP18726181A JPS6151483B2 JP S6151483 B2 JPS6151483 B2 JP S6151483B2 JP 56187261 A JP56187261 A JP 56187261A JP 18726181 A JP18726181 A JP 18726181A JP S6151483 B2 JPS6151483 B2 JP S6151483B2
Authority
JP
Japan
Prior art keywords
train
deceleration
command
running
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56187261A
Other languages
Japanese (ja)
Other versions
JPS5889005A (en
Inventor
Shigeru Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56187261A priority Critical patent/JPS5889005A/en
Publication of JPS5889005A publication Critical patent/JPS5889005A/en
Publication of JPS6151483B2 publication Critical patent/JPS6151483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 本発明は、列車自動運転制御装置に関し、特に
チヨツパ制御等による回生ブレーキ機能を有する
列車の回生ブレーキ有効度を極力高めることによ
り、列車の消費電力が最もなくなる様に自動運転
制御する装置、に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic train operation control device, and in particular, the present invention relates to an automatic train operation control device, and in particular, by increasing as much as possible the effectiveness of regenerative braking of a train having a regenerative braking function using chopper control etc. The present invention relates to a device for controlling operation.

地下鉄電車や近郊通勤電車に於いては、朝夕の
ラツシユ時と昼間の閑散時とでは列車運行本数が
大幅に異なることは周知の通りであるが、列車が
回生ブレーキを作動させた場合、ラツシユ時には
回生ブレーキにより架線に戻された電力を消費す
る他の列車が常にあり、有効に電力回生が行なわ
れるが、閑散時には回生負荷となる他の列車が少
ないため、回生電力が有効に受け入れられず、回
生効率が低下するという問題がある。
As for subway trains and suburban commuter trains, it is well known that the number of trains running during rush hours in the morning and evening differs significantly from during quiet periods in the daytime. There are always other trains consuming the power returned to the overhead wires by regenerative braking, and power regeneration is performed effectively.However, during off-peak hours, there are few other trains serving as regenerative loads, so regenerated power cannot be received effectively. There is a problem that regeneration efficiency decreases.

この点を更に技術的に検討してみると、第1図
はチヨツパ式回生ブレーキ制御における列車速度
一回生電力特性曲線を示し、図中、実線―か
ら破線―′に示される様に、回生ブレーキを
かけている車両が発生する回生電力の瞬時値
(KW)は、一定の減速度の回生ブレーキが作用
していても、列車速度の変化と共に時々刻々変化
し、速度と共に下がつて行くことを示している。
また、回生電力の瞬時値は同じ列車であれば減速
度βが大きい方が高くなる。尚、図中、点―
―を結ぶ線を境界線とする、その右上の領域
は、チヨツパ制御装置の動作原理に基づく回生電
力特性上の制約領域を成すもので本発明とは直接
関係ない。(因に、この様な速度領域において
は、回生ブレーキ量が制限されるところでも、自
動的に機械的ブレーキが補足的に作用して、列車
としては指令された減速度でブレーキがかかるこ
とになり運用上の支障はない。) 次に第2図は回生ブレーキ作動中に架架線電圧
が上昇した場合に主モーター電流を抑制すること
により回生電流を抑制し、架線通電圧の発生を抑
制する際の特性曲線の1例を示す。第2図に示さ
れる例では、架線電圧が1650Vを上回るとモータ
ー電流が制限され始め、架線電圧の上昇と共に主
モーター電流が減少せしめられる。すなわち、回
生ブレーキ力にて負担する等価減速度βが低減さ
れることになる。列車が回生ブレーキ中に、回生
電力を吸収する架線側の負荷がなくなると、架線
電圧が上昇するが、上述の様な方式により回生車
両の方で回生電力量を絞めることにより、架線電
圧が過大になることを防ぎ、給電系統全体の安定
性が保たれることになる。
Considering this point further technically, Fig. 1 shows the train speed-to-regenerated power characteristic curve in chopper type regenerative brake control. The instantaneous value (KW) of the regenerative power generated by the train being applied changes from moment to moment as the train speed changes, even if the regenerative braking at a constant deceleration is applied, and it decreases with the speed. It shows.
Furthermore, for the same train, the instantaneous value of regenerative power will be higher if the deceleration β is larger. In addition, in the figure, the point -
The upper right area, whose boundary line is the line connecting the lines, forms a constraint area on the regenerated power characteristics based on the operating principle of the chopper control device, and is not directly related to the present invention. (Incidentally, in such a speed range, even if the amount of regenerative braking is limited, the mechanical brake will automatically act supplementarily and the train will be able to brake at the commanded deceleration. (There is no operational problem.) Next, Figure 2 shows that when the overhead line voltage increases during regenerative braking, the main motor current is suppressed to suppress the regenerative current and the generation of overhead line voltage. An example of the characteristic curve is shown below. In the example shown in FIG. 2, motor current begins to be limited when the overhead line voltage exceeds 1650V, causing the main motor current to decrease as the overhead line voltage increases. That is, the equivalent deceleration β borne by the regenerative braking force is reduced. When a train is under regenerative braking and there is no load on the overhead wire side that absorbs regenerative power, the overhead wire voltage increases, but by reducing the amount of regenerated power on the regenerative vehicle side using the method described above, the overhead wire voltage will not become excessive. The stability of the entire power supply system is maintained.

一方、第3図は列車がある速度V0から回生ブ
レーキを作動させた場合の回生電力―時間特性曲
線を示すものである。図中,,,,′
で示した点は、第1図中の同一符号を付した点に
対応するものである。減速度β=4.0Km/h/s
で回生ブレーキをかけた場合の回生電力量
(KWh)は、図中、点―――――を
結ぶ線で囲まれた面積で示され、減速度β=2.0
Km/h/sで回生ブレーキをかけた場合の回生電
力量(KWh)は、点―――′―′を結
ぶ線で囲まれた面積(斜線部)である。エネルギ
ー保存の法則により、減速度を高くしようと低く
しようと列車を同じ速度から停止に至らしめる際
に変換される運動エネルギー量は同じであるか
ら、第1図のチヨツパ制御自体の持つ回生電力制
限曲線――によつて生ずる差異が充分小さ
いと考えれば、β=4.0Km/h/sの場合の回生
電力量と、β=2.0Km/h/sの場合の回生電力
量とにそれぞれ対応する上記の面積はほぼ等しい
とみなされる。しかしながら、架線側の回生電力
吸収負荷が少なく負荷電力W0(KW)しか吸収
し得ない様な場合、β=4.0Km/h/sで回生ブ
レーキを作動させた場合、第3図中のW0を上回
る電力領域は、架線電圧上昇が起こり、第2図で
示す様な回生電力絞り込み制御が行なわれる結
果、回生電力が抑制され、回生電力量としては、
点――――――を結ぶ線で囲まれ
る面積に相当するものとなる。すなわち点―
―を結ぶ線で囲まれた面積相当分の電力量だけ
減少する。一方、同一条件下で、β=2.0Km/
h/sにて回生ブレーキをかけた場合は、W0
上回ることがないので、回生電力量は減少するこ
とはない。このことは、回生負荷が少ない閑散ダ
イヤ運転時には列車の減速度を小さくして回生ブ
レーキをかければ回生有効度が向上することを意
味する。
On the other hand, FIG. 3 shows a regenerative power-time characteristic curve when the regenerative brake is activated from a certain speed V0 of the train. In the figure,,,,′
The points indicated by 2 correspond to the points with the same reference numerals in FIG. Deceleration β=4.0Km/h/s
The amount of regenerated electricity (KWh) when regenerative braking is applied at
The amount of regenerated electricity (KWh) when regenerative braking is applied at Km/h/s is the area (shaded area) surrounded by the line connecting the points ---'-'. According to the law of conservation of energy, the amount of kinetic energy converted when bringing a train from the same speed to a stop is the same regardless of whether the deceleration is high or low, so the regenerative power limit of the chopper control itself as shown in Figure 1 If we consider that the difference caused by the curve is sufficiently small, the regenerated electric energy when β = 4.0 Km/h/s corresponds to the regenerated electric energy when β = 2.0 Km/h/s, respectively. The above areas are considered to be approximately equal. However, in a case where the regenerative power absorption load on the overhead line side is small and can only absorb load power W 0 (KW), when the regenerative brake is operated at β = 4.0 Km/h/s, W In the power range exceeding 0 , the overhead line voltage increases, and as a result of the regenerative power narrowing control shown in Figure 2, the regenerative power is suppressed, and the regenerative power amount is:
It corresponds to the area surrounded by the line connecting the points. In other words, the point-
- The amount of power is reduced by the amount of electricity equivalent to the area surrounded by the line connecting the lines. On the other hand, under the same conditions, β=2.0Km/
When regenerative braking is applied at h/s, the amount of regenerated electric power does not decrease because it does not exceed W 0 . This means that during off-season operation with less regenerative load, the effectiveness of regeneration can be improved by reducing the deceleration of the train and applying regenerative braking.

ところが、従来の列車の運転手による運転方法
は路線際に設置された力行、惰行及びブレーキの
各切換指令を与えるべき地点標識を目安としてい
た。すなわち、第4図aはこの様な従来の運転方
法による列車運転曲線及び減速度曲線の1例を示
すが、固定された地点信号(標識)である点P0
(力行―惰行切換点)、及び点B0(惰行―ブレー
キ切換点)に基づき運転しているので、架線電圧
が高くなると、架線電圧がE2の場合の一点鎖線
曲線で示す通り、点A―S2―S4―Bを通る運転曲
線となり、架線電圧がE2より低いE1の場合の実
線曲線上の点A―S1―S2―Bを通る運転曲線と比
較すると、より高い速度で加速及び惰行し、より
高速の点S4からブレーキをかけ、しかも所定のB
点で停車するために第4図bに示される如く、よ
り大きな減速度βを必要とすることになる。こ
のことは、閑散運転時において架線電圧が高い場
合に、回生有効率が一層悪くなる様な運転の仕方
(第3図参照)をしていることを意味している。
また、必要以上に高速まで加速して運転し、次の
駅に早く着き過ぎるというのも力行時に多くのエ
ネルギーを消費しすぎる事となつてくる。
However, the conventional driving method used by train drivers has been based on point markers installed along the route where commands for switching between power running, coasting, and braking should be given. That is, Fig. 4a shows an example of a train operation curve and deceleration curve according to such a conventional operation method, and the point P 0 (powering-coasting switching point) which is a fixed point signal (sign) , and point B 0 (coasting-brake switching point), so when the overhead line voltage increases, the point A - S 2 - S 4 - as shown by the dot-dashed line curve when the overhead line voltage is E 2 The running curve passes through point B, and when compared with the running curve passing through point A- S1 - S2 -B on the solid curve when the overhead wire voltage is E1 lower than E2 , the vehicle accelerates and coasts at a higher speed, Apply the brakes from the higher speed point S 4 , and at the predetermined B
In order to stop at a point, a larger deceleration β1 is required, as shown in FIG. 4b. This means that when the overhead wire voltage is high during quiet operation, the regeneration efficiency becomes worse (see FIG. 3).
Also, driving at higher speeds than necessary and arriving at the next station too early can consume too much energy during power running.

本発明はこの様な従来の運転方式の欠点に鑑み
てなされたもので、力行時の電力節減及び回生有
効率を高める運転を、架線電圧に対応して自動的
に行なわしめる方式を提供するものである。
The present invention has been made in view of the shortcomings of the conventional operation method, and provides a method for automatically performing operation in response to the overhead wire voltage to reduce power consumption during power running and to increase the regeneration efficiency. It is.

まず、本発明が着目した点は、閑散運転ダイヤ
かどうかを判明するよりは、架線電圧値を検出す
る方がより適確であるということである。何故な
ら、回生負荷が少ない状態では平均的に架線電圧
も変電所の無負荷時送り出し電圧に近くなり高く
なつているからである。但し、架線電圧は負荷の
変動、架線のインピーダンスに基づき、地点ごと
に変動があるので常に上下変動しているので、列
車を安定に制御するには、ある所定の期間(時間
幅)内における平均架線電圧値を検出するといつ
た積算平均架線電圧検知を行ない、この検知電圧
の大きさにより、列車に作用させるブレーキ減速
度指令を変えるのが好ましい。また、上述の所定
期間の平均電圧値としては例えば、当該列車が力
行している期間中における平均架線電圧をとつて
もよいし、又は、たつた今通過した―駅区間の走
行時間中(1回の力行、惰行、回生ブレーキを含
む)の平均架線電圧をとつてもよい。
First, the present invention has focused on the fact that it is more accurate to detect the overhead wire voltage value than to determine whether or not it is a quiet operation timetable. This is because when the regenerative load is low, the overhead line voltage is on average high and close to the no-load sending voltage of the substation. However, the overhead line voltage varies from point to point based on load fluctuations and overhead line impedance, so it constantly fluctuates up and down, so in order to stably control trains, it is necessary to calculate the average voltage within a certain period (time width). It is preferable that when the overhead line voltage value is detected, the integrated average overhead line voltage is detected, and the brake deceleration command applied to the train is changed depending on the magnitude of this detected voltage. In addition, as the average voltage value for the above-mentioned predetermined period, for example, the average overhead line voltage during the period when the train is running, or the running time (1 (including power running, coasting, and regenerative braking) may be taken as the average overhead line voltage.

また、列車は所定の運転ダイヤ通りに走らねば
ならないが、上述の様なブレーキ時の減速度の加
減だけを適当にやつていたのでは、駅間走行時間
が変動し運転ダイヤを乱してしまうことになる。
そこで本発明においては、力行から惰行、及び惰
行からブレーキ動作へ移るときの運転モード切換
地点を可変なものとすることになり、前述のブレ
ーキ減速度の加減を行なつた場合でも所定の運転
ダイヤ通りに列車走行せしめるようにしている。
Additionally, trains must run according to a predetermined operating schedule, but if only the deceleration during braking was adjusted appropriately as described above, the travel time between stations would fluctuate and the operating schedule would be disrupted. It turns out.
Therefore, in the present invention, the operating mode switching points when moving from power running to coasting and from coasting to braking operation are made variable, so that even when the brake deceleration is increased or decreased as described above, the predetermined operating schedule remains constant. They are trying to force trains to run on the street.

しかしながら、一般に、各駅間距離及びその間
の路線の勾配、曲り等の状況はそれぞれの駅間毎
に異なつているので、力行ノツチオフ(力行―惰
行切換)地点やブレーキ作用(惰行―ブレーキ切
換)地点の最適地点を架線電圧値に対応して―義
的に決めるよう普遍的な数式を求めることは不可
能に近い。
However, in general, the distance between stations and the conditions such as gradients and curves of the line between them are different for each station, so the power running not-off point (power running - coasting changeover) point and the braking action point (coasting - brake changeover) point are different between each station. It is almost impossible to find a universal formula that logically determines the optimal point in response to the overhead line voltage value.

第5図は、特定の駅間において、変電所間隔や
路線勾配等を考慮して所定の運行ダイヤで走行す
るため、積算平均架線電圧に対応した減速度をシ
ミユレーシヨン計算で得た特性曲線である。すな
わち、所定の運行ダイヤで走行するには、架線電
圧の積算平均値が例えばE2の場合、減速度β
でブレーキをかければよいことを示している。こ
の場合の減速度βは第3図における回生電力
W0を越えない最適な指令値である。
Figure 5 is a characteristic curve obtained through simulation calculations of the deceleration corresponding to the integrated average overhead wire voltage, in order to run on a predetermined schedule that takes into account substation intervals, route gradients, etc. between specific stations. . That is, in order to travel according to a predetermined schedule, if the accumulated average value of the overhead wire voltage is, for example, E 2 , the deceleration β 2
This indicates that you should apply the brakes. In this case, the deceleration β 2 is the regenerative power in Figure 3.
This is the optimal command value that does not exceed W 0 .

第6図aは、第5図に示された特性曲線に基づ
き、特定の駅間A―Bにおいて所定の運転ダイヤ
で運行するための力行ノツチオフ地点特性曲線
(実線)及びブレーキ開始地点特性曲線(破線)
をシミユレーシヨン計算によつてプロツトした運
転モード切換地点特性曲線図である。すなわち、
積算平均した架線電圧がE2のときは、第5図よ
り所望の減速度βが求まり、一方、この減速度
β(第6図c)でB駅に到着するには、第6図
bの一点鎖線で示すように地点P2で力行ノツチオ
フを行ない且つ地点B2でブレーキ動作を開始さ
せればA―B駅間の所定運転ダイヤ通り走行する
ことができる。同様にして積算平均架線電圧が
E1の場合には第6図bの実線の列車走行を行な
わせればよい。
Based on the characteristic curves shown in FIG. 5, FIG. 6a shows a power running notch-off point characteristic curve (solid line) and a braking start point characteristic curve ( dashed line)
FIG. 3 is a characteristic curve diagram of a driving mode switching point plotted by simulation calculation. That is,
When the integrated average overhead wire voltage is E 2 , the desired deceleration β 2 can be found from Fig. 5. On the other hand, in order to arrive at station B at this deceleration β 2 (Fig. 6 c), the desired deceleration β 2 is determined from Fig. 6. If the power running is turned off at point P2 and the brake operation is started at point B2 , as shown by the dashed line in b, the vehicle can run according to the prescribed operating schedule between stations A and B. Similarly, the integrated average overhead line voltage is
In the case of E1 , it is sufficient to cause the train to run as shown in the solid line in Figure 6b.

第7図は、上述した第5図及び第6図a―cに
おける特性曲線を利用して列車の自動運転制御を
行なうための本発明装置を示すブロツク図であ
り、図中、列車走行地点検出器1の出力は走行駅
間判別器2及び運転モード切換指令発生装置3に
入力され、走行駅間判別器2の出力は減速度特性
曲線読出装置4及び運転モード切換地点特性曲線
読出装置5に入力されている。読出装置4及び5
には積算平均架線電圧検出器6が接続されてお
り、この検出器6には架線電圧検出器7が接続さ
れている。運転モード切換地点特性曲線読出装置
5の出力は運転モード切換指令発生装置3に入力
され、減速度特性曲線読出装置4の出力は減速度
指令値発生装置8に入力されている。減速度指令
値発生装置8は運転モード切換指令発生装置3か
らの出力も入力するようになつており、発生装置
3及び8の各出力は車両制御装置9に入力されて
いる。尚、読出装置4及び5は、それぞれ、第5
図及び第6図aの特性曲線が予め記憶されてい
る。
FIG. 7 is a block diagram showing a device of the present invention for automatically controlling train operation using the characteristic curves shown in FIG. 5 and FIGS. 6 a to 6 c. The output of the running station distance discriminator 2 is input to the running station distance discriminator 2 and the driving mode switching command generating device 3, and the output of the running station distance discriminating device 2 is input to the deceleration characteristic curve reading device 4 and the driving mode switching point characteristic curve reading device 5. It has been entered. Reading devices 4 and 5
An integrated average overhead line voltage detector 6 is connected to the , and an overhead line voltage detector 7 is connected to this detector 6 . The output of the driving mode switching point characteristic curve reading device 5 is input to the driving mode switching command generating device 3, and the output of the deceleration characteristic curve reading device 4 is input to the deceleration command value generating device 8. The deceleration command value generating device 8 also receives the output from the driving mode switching command generating device 3, and each output of the generating devices 3 and 8 is input to the vehicle control device 9. Note that the reading devices 4 and 5 are respectively
The characteristic curves shown in Fig. 6 and Fig. 6a are stored in advance.

次に、第7図に示された本発明に係る列車自動
運転制御装置の好ましい一実施例の動作を説明す
る。
Next, the operation of a preferred embodiment of the automatic train operation control device according to the present invention shown in FIG. 7 will be described.

まず、列車走行地点検出器1は列車が現在走行
している地点を検出する周知の装置で、この検出
器1からの出力は走行駅間判別器2に送られて、
走行地点に応じて走行駅間を読出装置4及び5に
知らせる。一方、読出装置4及び5では、検出器
6から出力される積算平均架線電圧信号も入力し
ているため、積算平均架線電圧が例えば第5図及
び第6図aにおけるE1であれば、まず運転モー
ド切換地点特性曲線読出装置5は、当該駅間に関
する特性曲線(第6図a)からA―B駅間内の力
行ノツチオフ所望地点P1及びブレーキ開始所望地
点B1を読み出して運転モード切換指令発生装置
3に送り、一方、減速度特性曲線読出装置4は、
A―B駅間に関する特性曲線(第5図)から、電
圧E1に対応する減速度βを読み出して減速度
指令値発生装置8へ送る。運転モード切換指令発
生装置3は読出装置5から読み出された力行ノツ
チオフ地点P1信号と列車走行地点検出器1からの
走行地点信号とをまず比較し、一致したとき力行
ノツチオフ指令信号を車両制御装置9へ送つて列
車を力行モードから惰行モードに切り換える。列
車の走行が更に進み、走行地点がB1に達したこ
とが判明したとき運転モード切換指令発生装置3
からブレーキ開始指令信号が車両制御装置9に送
られてブレーキ動作が開始されるとともに減速度
指令値発生装置8へもブレーキ開始指令信号が送
られて先に読み出されている減速度βを車両制
御装置9へ指令して第6図bの実線曲線に沿つた
列車制御が行なわれることとなる。これは第6図
bの一点鎖線曲線に係る積算平均架線電圧E2
場合も同様の制御が行なわれる。
First, the train running point detector 1 is a well-known device that detects the point where the train is currently running, and the output from this detector 1 is sent to the running station discriminator 2.
The reading devices 4 and 5 are informed of the distance between the stations where the vehicle is traveling. On the other hand, since the readout devices 4 and 5 also input the integrated average overhead line voltage signal output from the detector 6, if the integrated average overhead line voltage is E 1 in FIGS. 5 and 6 a, first The driving mode switching point characteristic curve reading device 5 reads out the desired power running notch-off point P 1 and the desired braking start point B 1 between stations A and B from the characteristic curve for the station interval (FIG. 6a), and switches the driving mode. On the other hand, the deceleration characteristic curve reading device 4
The deceleration β 1 corresponding to the voltage E 1 is read out from the characteristic curve (FIG. 5) for the A-B station interval and sent to the deceleration command value generator 8. The operation mode switching command generating device 3 first compares the power running notch-off point P1 signal read out from the reading device 5 and the running point signal from the train running point detector 1, and when they match, controls the vehicle by transmitting the power running notch-off command signal. The signal is sent to device 9 to switch the train from power running mode to coasting mode. When the train travels further and it is determined that the travel point has reached B1 , the operation mode switching command generation device 3
A brake start command signal is sent to the vehicle control device 9 to start the braking operation, and a brake start command signal is also sent to the deceleration command value generator 8 to calculate the deceleration β 1 that has been read out previously. A command is given to the vehicle control device 9 to control the train along the solid curve shown in FIG. 6b. Similar control is carried out in the case of the integrated average overhead wire voltage E2 according to the dashed-dot line curve in FIG. 6b.

以上述べたように、本発明に係る列車自動運転
制御装置によれば、架線電圧及び走行地点を検出
して運転モードの切換を適宜行なうと共に、ブレ
ーキ時にあつて適切なブレーキ減速度を指令する
ことにより最良の回生有効率を得ることができ、
かつ、必要以上の高速力行を抑えた最も省電力効
果のある列車運転が実現される。
As described above, according to the automatic train operation control device according to the present invention, it is possible to detect the overhead wire voltage and the running point to appropriately switch the operation mode, and also to command an appropriate brake deceleration when braking. The best regeneration efficiency can be obtained by
In addition, train operation with the most power-saving effect is achieved by suppressing unnecessarily high-speed power running.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回生ブレーキ制御における速度―回生
電力特性曲線の一例を示す図、第2図は回生ブレ
ーキ時の架線電圧抑制制御特性曲線の一例を示す
図、第3図は回生電力―時間特性曲線の一例を示
す図、第4図a及びbはそれぞれ従来の固定地点
制御方式における運転曲線及びブレーキ減速度曲
線の一例を示す図、第5図は本発明に用いられる
特定駅間における減速度―績算平均架線電圧の特
性曲線の一例を示す図、第6図a,b、及びc
は、それぞれ、本発明に用いられる特定駅間にお
ける運転モード切換地点特性曲線、運転曲線、及
びブレーキ減速度曲線の一例を示す図、第7図は
本発明に係る列車自動運転制御装置を示すブロツ
ク図、である。 1……列車走行地点検出器、2……走行駅間判
別器、3……運転モード切換指令発生装置、4…
…減速度特性曲線読出装置、5……運転モード切
換地点特性曲線読出装置、6……積算平均架線電
圧検出器、7……架線電圧検出器、8……減速度
指令値発生装置、9……車両制御装置。尚、図
中、同一符号は同一又は相当部分を示す。
Figure 1 is a diagram showing an example of the speed-regenerative power characteristic curve in regenerative braking control, Figure 2 is a diagram showing an example of the overhead line voltage suppression control characteristic curve during regenerative braking, and Figure 3 is the regenerative power-time characteristic curve. Figures 4a and 4b are diagrams showing an example of the operating curve and brake deceleration curve in the conventional fixed point control system, respectively, and Figure 5 is a diagram showing an example of the deceleration between specific stations used in the present invention. Figures 6a, b, and c showing an example of the characteristic curve of the calculated average overhead wire voltage
7 is a diagram showing an example of an operation mode switching point characteristic curve, an operation curve, and a brake deceleration curve between specific stations used in the present invention, and FIG. 7 is a block diagram showing an automatic train operation control device according to the present invention. Figure. 1...Train running point detector, 2...Travel station distance discriminator, 3...Driving mode switching command generator, 4...
...Deceleration characteristic curve reading device, 5... Operation mode switching point characteristic curve reading device, 6... Accumulated average overhead line voltage detector, 7... Overhead line voltage detector, 8... Deceleration command value generating device, 9... ...Vehicle control device. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 回生ブレーキ機能を備えた電気車により構成
された列車に塔載され、所定駅間の走行時間が所
定の運行ダイヤ通りの値に保たれる列車自動運転
制御装置であつて、 架線電圧検出器と、この架線電圧検出器により
所定期間にわたつて検出された電圧を積算してそ
の平均架線電圧を算出する積算平均架線電圧検出
器と、列車走行地点検出器と、該列車走行地点検
出器の出力を入力し力行ノツチオフ指令及びブレ
ーキ開始指令のいずれかの指令を発する運転モー
ド切換指令発生装置と、該運転モード切換発生装
置の出力を入力しブレーキモードにおける減速度
を指令する減速度指令発生装置と、前記列車走行
地点検出器の出力端子に接続され列車が現在どの
駅間を走行しているのかを判別する走行駅間判別
器と、該走行駅間判別器及び前記積算平均架線電
圧検出器の出力を入力し、各走行駅間距離と積算
平均架線電圧との関係において前記運行ダイヤ通
りの列車走行を実現するために予め記憶された最
適な力行ノツチオフ地点特性曲線データ及びブレ
ーキ開始地点特性曲線データから前記列車走行駅
間及び積算平均架線電圧に応じて得られた運転モ
ード切換地点信号を前記モード切換指令発生装置
へ出力する第1の読出装置と、前記走行駅間判別
器及び前記積算平均架線電圧検出器の出力を入力
し、前記積算平均架線電圧に対して前記運行ダイ
ヤ通りの列車走行を実現するために予め記憶され
た最適なブレーキモード減速度特性曲線データか
ら前記列車走行駅間及び積算平均架線電圧に応じ
て得られた減速度指令値を前記減速度指令値発生
装置へ出力する第2の読出装置と、前記運転モー
ド切換指令発生装置及び減速度指令値発生装置の
各出力を受ける車両制御装置と、を備え、前記運
転モード切換指令発生装置は、列車走行地点が前
記運転モード切換地点に達したとき前記力行ノツ
チオフ指令又はブレーキ開始指令を前記車両制御
装置に送り、前記減速度指令値発生装置は、前記
ブレーキ開始指令を受けるまで前記減速度指令信
号を待機させ、前記ブレーキ開始指令を受けたと
き前記減速度指令信号を前記車両制御装置へ送る
ものである、ことを特徴とした列車自動運転制御
装置。
[Scope of Claims] 1. An automatic train operation control device that is mounted on a train made up of electric cars equipped with a regenerative braking function, and that maintains the travel time between predetermined stations at a value according to a predetermined service schedule. an overhead line voltage detector; an integrated average overhead line voltage detector that calculates an average overhead line voltage by integrating voltages detected by the overhead line voltage detector over a predetermined period; a train running point detector; A driving mode switching command generating device which inputs the output of the train running point detector and issues either a power running notch off command or a brake start command, and a driving mode switching command generating device which inputs the output of the driving mode switching generating device and commands deceleration in the brake mode. a deceleration command generator for generating a deceleration command; a running station discriminator connected to an output terminal of the train running point detector to determine between which stations the train is currently running; The output of the integrated average overhead line voltage detector is input, and the optimum power running notch-off point characteristic curve data is stored in advance in order to realize the train running according to the operation schedule in the relationship between the distance between each running station and the integrated average overhead line voltage. and a first reading device for outputting an operation mode switching point signal obtained from the brake start point characteristic curve data according to the distance between the train running stations and the integrated average overhead line voltage to the mode switching command generation device; The outputs of the discriminator and the integrated average overhead wire voltage detector are input, and the calculation is performed from the optimum brake mode deceleration characteristic curve data stored in advance in order to realize the train running according to the operation schedule with respect to the integrated average overhead wire voltage. a second readout device that outputs a deceleration command value obtained according to the inter-station distance and cumulative average overhead line voltage to the deceleration command value generation device; the operation mode switching command generation device and the deceleration command value; a vehicle control device that receives each output of the generator, and the driving mode switching command generating device transmits the power running notch-off command or the brake start command to the vehicle control device when the train traveling point reaches the driving mode switching point. and the deceleration command value generating device waits for the deceleration command signal until it receives the brake start command, and sends the deceleration command signal to the vehicle control device when the brake start command is received. An automatic train operation control device with certain characteristics.
JP56187261A 1981-11-19 1981-11-19 Automatic operation controller for train Granted JPS5889005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187261A JPS5889005A (en) 1981-11-19 1981-11-19 Automatic operation controller for train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187261A JPS5889005A (en) 1981-11-19 1981-11-19 Automatic operation controller for train

Publications (2)

Publication Number Publication Date
JPS5889005A JPS5889005A (en) 1983-05-27
JPS6151483B2 true JPS6151483B2 (en) 1986-11-08

Family

ID=16202875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187261A Granted JPS5889005A (en) 1981-11-19 1981-11-19 Automatic operation controller for train

Country Status (1)

Country Link
JP (1) JPS5889005A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635331B1 (en) 2012-08-14 2016-07-08 미쓰비시덴키 가부시키가이샤 Train-information management device and device control method
EP2886406B1 (en) 2012-08-14 2017-03-15 Mitsubishi Electric Corporation Train-information management device and device control method
JP6430157B2 (en) * 2014-06-20 2018-11-28 株式会社東芝 Driving curve generation device, driving support device, automatic driving device, driving support system, automatic driving system, driving curve generation method and program

Also Published As

Publication number Publication date
JPS5889005A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
JP4188135B2 (en) Method and system for monitoring and regulating power consumed by a transportation system
JP2576719B2 (en) Railway system
KR101478717B1 (en) System, sub-station and method for recovering brake energy of rail vehicles, rail vehicles for this system
US7349797B2 (en) Emission management for a hybrid locomotive
EP0982176B1 (en) Power supply system for an electric driven vehicle
CN101516701B (en) Driver of rolling stock
CN101563253B (en) Energy-regulating system for a vehicle
KR101033360B1 (en) Control device of electric vehicle provided with fixed position automatic stop control means
US10766367B2 (en) Train control device
JPS6151483B2 (en)
KR102114124B1 (en) Wireless Power Transmission Wirless Trolley Applied Speed Control Algorithm For Meeting The Charge Amount In The Dynamic Charge Interval And The Static Charge Interval
JP6001350B2 (en) Railway system
JP4856219B2 (en) Mobile control device
JP2010154607A (en) Method of controlling emergency brake in electric motor car
JP2001069604A (en) Electric vehicle controller and dc/dc converter
JP5922555B2 (en) Operation management system
KR102027482B1 (en) How To Operate With Speed Control Algorithm To Meet Charged Amount In A Wireless Power Transmission The Wireless Tram System
CA2379775A1 (en) Method for power optimization in a vehicle/train having an efficiency that depends on the operating point
JP2001320831A (en) Electric rolling stock for railway
JPH06141403A (en) Vehicle controller and electric railcar controller
JP3499079B2 (en) Electric car control device
JPS58165606A (en) Automatic train operation controller
KR100492740B1 (en) Regenerative Inverter of Railway Vehicles_
CN108839572B (en) Power management system
SERBIA THE ENERGY SAVING SYSTEM WITH THE CAF URBOS 3 OF URBAN PUBLIC TRANSPORT IN BELGRADE