JPS6151252B2 - - Google Patents

Info

Publication number
JPS6151252B2
JPS6151252B2 JP56018374A JP1837481A JPS6151252B2 JP S6151252 B2 JPS6151252 B2 JP S6151252B2 JP 56018374 A JP56018374 A JP 56018374A JP 1837481 A JP1837481 A JP 1837481A JP S6151252 B2 JPS6151252 B2 JP S6151252B2
Authority
JP
Japan
Prior art keywords
pedestal
vibration
detector
load detector
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56018374A
Other languages
Japanese (ja)
Other versions
JPS57132036A (en
Inventor
Zenji Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMV Corp
Original Assignee
IMV Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMV Corp filed Critical IMV Corp
Priority to JP56018374A priority Critical patent/JPS57132036A/en
Publication of JPS57132036A publication Critical patent/JPS57132036A/en
Publication of JPS6151252B2 publication Critical patent/JPS6151252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0288Springs

Description

【発明の詳細な説明】 本発明は、加硫ゴム等の試験片の動バネ定数の
測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring dynamic spring constants of test pieces such as vulcanized rubber.

一般に、加硫ゴムの動的性質試験方法として、
「JIS K6394−1976」に記載の方法によれば、荷
重波形及びたわみ波形を測定記録し、荷重振幅及
びたわみの振幅並びに荷重とたわみの位相角を測
つて、所定の式によつて絶対バネ定数、貯蔵バネ
定数、損失バネ定数及び損失係数を算出する。
Generally, as a method for testing the dynamic properties of vulcanized rubber,
According to the method described in "JIS K6394-1976," the load waveform and deflection waveform are measured and recorded, the load amplitude and deflection amplitude, and the phase angle of load and deflection are measured, and the absolute spring constant is calculated using a predetermined formula. , calculate the storage spring constant, loss spring constant and loss coefficient.

従来、上記方法の実施に使用されてきた測定装
置は、具体的には、第1図と第2図と第3図に
夫々示す3方式のものがある。
Specifically, there are three types of measuring devices that have been conventionally used to carry out the above method, as shown in FIGS. 1, 2, and 3, respectively.

第1図に示す測定装置では、基礎a上に下部台
座bを固定して振動発生機cの本体dを立設し、
振動台eを上方に向け、試験片取付板fを介して
試験片gを載置し、さらに試験片取付板fを介し
て荷重検出器hが取付けられ、他方、上記本体d
の上端には上部台座iが左右に張り出して固着さ
れると共に該上部台座iに2本の円柱j,jが立
設され、該円柱j,jの上部に橋絡状として横棒
kが上下位置調整自在に取付けられ、該横棒kに
上記荷重検出器hが垂設され、該横棒kと下方の
上部台座iの間に、試験片gと荷重検出器hが挾
着されている。また、たわみ測定用LVDT
(Linear VariabIe DifferentiaI Transformer)
mはその固定側が上部台座i上面に固着され振動
台eの変位を検出する。
In the measuring device shown in FIG. 1, a lower pedestal b is fixed on a foundation a, and a main body d of a vibration generator c is erected.
With the vibration table e facing upward, a test piece g is placed on it via a test piece mounting plate f, and a load detector h is attached via the test piece mounting plate f, while the above-mentioned main body d
At the upper end, an upper pedestal i is fixed and protrudes left and right, and two cylindrical columns j and j are erected on the upper pedestal i, and a horizontal bar k is vertically connected to the top of the cylindrical columns j and j as a bridge. The load detector h is mounted vertically on the horizontal bar k, and the test piece g and the load detector h are clamped between the horizontal bar k and the lower upper pedestal i. . In addition, LVDT for deflection measurement
(Linear VariabIe DifferentiaI Transformer)
The fixed side of m is fixed to the upper surface of the upper pedestal i, and detects the displacement of the vibration table e.

第2図に示す測定装置では、基礎a上に矩形枠
状の架台nが立設され、該架台nの底部pには振
動発生機台座rが固定され、振動発生機qは空気
バネs,sを介して該台座rに支持されて振動台
eが上方を向き、架台nの上辺部tとの間に、試
験片gと荷重検出器h等を挾持する。そしてたわ
み測定用LVDT mの固定側は、荷重検出器h取
付点近傍の上辺部t中央部分に、固定され、振動
台eの変位を検出する。なおuは試験片gの寸法
に応じて上下位置を調整出来る上下位置設定機構
である。
In the measuring device shown in FIG. 2, a rectangular frame-shaped pedestal n is erected on a foundation a, a vibration generator pedestal r is fixed to the bottom p of the pedestal n, and the vibration generator q is connected to air springs s, A vibrating table e is supported by the pedestal r via s and faces upward, and a test piece g, a load detector h, etc. are sandwiched between it and the upper side t of a pedestal n. The fixed side of the LVDT m for deflection measurement is fixed to the central portion of the upper side t near the attachment point of the load detector h, and detects the displacement of the vibration table e. Note that u is a vertical position setting mechanism that can adjust the vertical position according to the dimensions of the test piece g.

次に、第3図に示す従来の測定装置では、基礎
aに振動発生機台座rが固定され、門型の架台n
は振動発生機本体dに直接連設され、架台n及び
振動発生機qは空気バネsを介して台座rに支持
されている。そして、たわみ測定用LVDT mの
固定側は架台nの上辺部tの中央の荷重検出器h
近傍に固着されている。さらに荷重検出器hには
マスキヤンセル用加速度検出器vが取付けられ
る。
Next, in the conventional measuring device shown in FIG. 3, a vibration generator pedestal r is fixed to a foundation a, and a gate-shaped mount
is directly connected to the vibration generator main body d, and the pedestal n and the vibration generator q are supported by the pedestal r via an air spring s. The fixed side of the LVDT m for deflection measurement is the load detector h located at the center of the upper side t of the mount n.
It is fixed nearby. Furthermore, an acceleration detector v for a masking cell is attached to the load detector h.

ところで、上述の第1図と第2図と第3図のい
ずれの装置に於ても、機械構造の振動伝達上から
見て、架台の共振、振動発生機の反力、及び振動
台の横方向振動等の誤差要因によつて誤差が大で
あり、十分に精度の高い測定は不可能であつた。
By the way, in any of the above-mentioned devices shown in Fig. 1, Fig. 2, and Fig. 3, when viewed from the perspective of vibration transmission of the mechanical structure, resonance of the pedestal, reaction force of the vibration generator, and lateral vibration of the vibration table are observed. The error was large due to error factors such as directional vibration, and measurement with sufficiently high accuracy was impossible.

特に、乗用車のエンジンの防振ゴム等のように
高い振動数域に於ても正確な動バネ定数を測定さ
ねばならないという要望が、最近高まりつつあ
り、前記「JIS K6394」規格のように記録波形か
ら読みとる方法でも不十分となり、最近は荷重信
号とたわみ信号をデジタル伝達関数測定装置に入
力し、動バネ定数を測定する方法が開発研究され
ている。このデジタル伝達関数測定装置の精度
は、振幅で1%以下、位相で1度以下のものが普
通になつている。従つて、動バネ定数測定装置の
精度も、同等乃至それ以上の精度が要求されはじ
め、上述の第1〜3図に例示したような従来の動
バネ定数測定装置ではこの要求に応えることが出
来なかつた。
In particular, there has been an increasing demand to accurately measure dynamic spring constants even in high frequency ranges, such as those of anti-vibration rubber for passenger car engines. The method of reading from the waveform is no longer sufficient, and recently a method has been developed and researched in which the dynamic spring constant is measured by inputting the load signal and deflection signal into a digital transfer function measuring device. The accuracy of this digital transfer function measuring device is generally less than 1% for amplitude and less than 1 degree for phase. Therefore, the accuracy of the dynamic spring constant measuring device is required to be equal to or higher than that, and conventional dynamic spring constant measuring devices such as those illustrated in Figs. 1 to 3 above cannot meet this demand. Nakatsuta.

ここで、上述の第1〜3図に例示の従来の測定
装置の誤差要因について分析する。
Here, error factors of the conventional measuring device illustrated in FIGS. 1 to 3 described above will be analyzed.

() 架台の共振 架台の共振を励起する力は試験片に加わる力
である。第1,2,3図共に、架台の共振振動
数では勿論、その近傍の振動数では、荷重検出
器hが動くため、(荷重検出器の質量+荷重検
出器側の試験取付板の質量)と(荷重検出器の
加速度)との積に相当する出力が、余分に荷重
検出器から出力される。第3図ではこの余分の
出力はマスキヤンセル用加速検出器vで検出し
電気回路でキヤンセルされるように考えがちで
あるが、実際上は共振状態では荷重検出器hと
取付板fは完全な剛体として軸方向だけに振動
する訳ではないので、キヤンセルは出来ない。
また、第2図と第3図の方式では、たわみ測定
用LVDT mの固定側は架台n上部に固定され
ているが、架台nが共振したときは荷重検出器
側の試験取付板fの軸心の振動と、架台上部固
定点の振動は異なるので、たわみ測定に誤差を
生ずるのである。
() Resonance of the mount The force that excites the resonance of the mount is the force applied to the test piece. In both Figures 1, 2, and 3, the load detector h moves not only at the resonant frequency of the pedestal, but also at nearby frequencies, so (mass of the load detector + mass of the test mounting plate on the load detector side) An additional output corresponding to the product of (acceleration of the load detector) is output from the load detector. In Figure 3, it is easy to think that this extra output is detected by the acceleration detector v for the mask canceller and canceled by the electric circuit, but in reality, in the resonance state, the load detector h and the mounting plate f are completely disconnected. Since it is a rigid body and does not vibrate only in the axial direction, cancellation is not possible.
In addition, in the methods shown in Figures 2 and 3, the fixed side of the LVDT m for deflection measurement is fixed to the top of the pedestal n, but when the pedestal n resonates, the axis of the test mounting plate f on the load detector side Since the vibration of the center and the vibration of the fixed point on the top of the frame are different, this causes an error in the deflection measurement.

() 振動発生機の反力 振動発生機の反力は、振動発生機の加振力と
大きさが等しく向きが逆である。仮に、振動台
の質量を7Kg、試験片取付板の質量を3Kg、試
験片の動バネ定数を10Kg/mmとし、試験片に0.1
mmのたわみ振幅を加えるとすれば、試験片に加
わる力は試験振動板に関係なく一定で、1Kgf
であるが、必要な加振力は100Hzのとき約40Kg
f、200Hzのとき約160Kgf、300Hzのとき約360
Kgfとなり、振動数の2乗に比例する。高い振
動数では測定すべき荷重の数100倍の反力が発
生することになる。
() Reaction force of the vibration generator The reaction force of the vibration generator is equal in magnitude and opposite in direction to the excitation force of the vibration generator. Assume that the mass of the shaking table is 7Kg, the mass of the test piece mounting plate is 3Kg, the dynamic spring constant of the test piece is 10Kg/mm, and the test piece is 0.1
If a deflection amplitude of mm is applied, the force applied to the specimen is constant regardless of the test diaphragm, and is 1 Kgf.
However, the required excitation force is approximately 40Kg at 100Hz.
f, approx. 160Kgf at 200Hz, approx. 360 at 300Hz
Kgf, which is proportional to the square of the vibration frequency. At high frequencies, a reaction force 100 times greater than the load to be measured will be generated.

第1図の方式では反力は基礎が受け止める
が、上部台座i・円柱j・横棒kが完全に静止
している訳ではない。これ等の構造によつて反
力は複雑な伝わり方をして、荷重検出器hと
LVDT mの固定側を動かすことになる。今、
荷重検出器の等価質量を1Kgとし、上部の試験
片取付板の質量を3Kgとすると、荷重振幅の測
定精度を1%とするには、荷重検出器が軸方向
に動くことによる余分の出力は0.01Kg以下でな
ければならない。加速度は、0.01Kgf÷4Kg=
0.0025gとなる。第1図の方式ではこのような
値を実現することは不可能である。
In the method shown in Figure 1, the reaction force is absorbed by the foundation, but the upper pedestal i, cylinder j, and horizontal bar k are not completely stationary. Due to these structures, the reaction force is transmitted in a complicated manner, and the reaction force is transmitted to the load detector h.
The fixed side of LVDT m will be moved. now,
Assuming that the equivalent mass of the load detector is 1Kg and the mass of the upper specimen mounting plate is 3Kg, in order to achieve a load amplitude measurement accuracy of 1%, the extra output due to the load detector moving in the axial direction is Must be less than 0.01Kg. Acceleration is 0.01Kgf÷4Kg=
It becomes 0.0025g. It is impossible to achieve such a value with the method shown in FIG.

また第3図の方式では、反力によつて振動発
生機qと架台nは上下方向に動き、この動きが
完全な上下方向往復運動であると共に振動発生
機qと架台nが完全剛体として作用する限りマ
スキヤンセルは完全に働き、測定誤差を生じな
い。しかし現実には架台nの第1次共振振動数
以下で架台nのねじれ運動、振動発生機qと架
台nの剛体回転運動が発生し、マスキヤンセル
ではキヤンセルできない出力が発生し、誤差を
発生した。
In addition, in the method shown in Fig. 3, the reaction force causes the vibration generator q and the pedestal n to move in the vertical direction, and this movement is a complete reciprocating motion in the vertical direction, and the vibration generator q and the pedestal n act as completely rigid bodies. As long as this is done, the masking cell will work perfectly and will not produce any measurement errors. However, in reality, torsional movement of pedestal n and rigid body rotational motion of vibration generator q and pedestal n occur below the first resonance frequency of pedestal n, resulting in an output that cannot be canceled by a mask canceller, resulting in an error. .

() 振動台の横方向振動 振動台eの横方向振動は避けることが出来な
い。横方向振動の原因は振動台eのガイド機構
の軸心と加振力発生機構の軸心の不一致、振動
台重心のそれらの軸心からのずれであり、振動
台ガイド機構または振動発生機ガイド機構の共
振が励起されたとき顕著となる。横方向振動が
発生したとき、振動台eには軸方向往復運動の
他に、ピツチング又はヨーイングが加わつてい
る。ピツチング又はヨーイングあるいはその合
成運動が発生したとき荷重検出器hはそれらの
運動の荷重検出平面の平均値を検出するが、第
1,2,3図のいずれの方式に於ても、たわみ
検出は振動台eの円周上の特定の点のたわみを
検出しているので、誤差が発生する。比較的横
方向振動が少ないとされている振動発生機でも
3〜5%程度のピツチング又はヨーイングを発
生する振動数が使用振動数範囲内に数点存在す
る。往復運動とピツチング又はヨーイング運動
の間には位相角を決定する要因はないから、2
つの運動の位相角が90度になる瞬間が存在す
る。このときたわみと荷重の位相角の測定誤差
は、tan-10.03〜tan-10.05で計算でき、1.7〜2.9
度となる。
() Lateral vibration of the shaking table The lateral vibration of the shaking table e cannot be avoided. The causes of lateral vibration are the mismatch between the axis of the guide mechanism of the shaking table e and the axis of the excitation force generation mechanism, and the deviation of the center of gravity of the shaking table from those axes. This becomes noticeable when the resonance of the mechanism is excited. When lateral vibration occurs, pitching or yawing is applied to the vibration table e in addition to the axial reciprocating motion. When pitching, yawing, or their combined motion occurs, the load detector h detects the average value of the load detection plane of those motions, but in any of the methods shown in Figures 1, 2, and 3, deflection detection is not possible. Since the deflection at a specific point on the circumference of the vibration table e is detected, an error occurs. Even with a vibration generator that is said to have relatively little lateral vibration, there are several frequencies within the usable frequency range that generate pitching or yawing of about 3 to 5%. Since there is no factor that determines the phase angle between reciprocating motion and pitching or yawing motion, 2
There is a moment when the phase angle of the two motions becomes 90 degrees. At this time, the measurement error of the phase angle of deflection and load can be calculated from tan -1 0.03 to tan -1 0.05, which is 1.7 to 2.9
degree.

本発明は以上詳述した従来の動バネ定数測定装
置の誤差要因を全て解消し、極めて精度の高い測
定が出来るようにすることを目的とする。そこ
で、第1の発明の特徴とする処は、振動台を下方
に向けて倒立状としてかつガイド機構付空気バネ
を介して架台に、振動発生機を取付け、さらに、
変位検出器台座及び荷重検出器を、上記架台の底
部・基礎等の剛体部に取付けて構成された点にあ
り、第2の発明の特徴とする処は、加振軸心に対
称に2個の変位検出器を配設し、2点の平均変位
を演算する平均演算回路を介して、上記加振軸心
に於ける試験片のたわみを測定するように構成さ
れた点にある。
It is an object of the present invention to eliminate all the error factors of the conventional dynamic spring constant measuring device detailed above and to enable extremely highly accurate measurement. Therefore, the first aspect of the invention is characterized in that the vibration table is in an inverted shape facing downward, and a vibration generator is attached to the stand via an air spring with a guide mechanism, and further,
The second invention is characterized in that the displacement detector pedestal and the load detector are attached to a rigid body part such as the bottom or foundation of the pedestal, and the second invention is characterized by two pedestals symmetrically about the vibration axis. A displacement detector is disposed, and the deflection of the test piece at the excitation axis is measured via an average calculation circuit that calculates the average displacement of two points.

以下、図示の実施例に基づき本発明を詳説す
る。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第4図及び第5図に於て、1は基礎であり、該
基礎1上に架台2がその底部2aを当接させて固
定され、該架台2はいわば倒立門型状であつて該
架台2の上端位置にガイド機構付空気バネ3,3
を介して、振動発生機4が取付けられ、従つて該
架台2は、振動発生機台座を兼用してなる。ま
た、振動発生機4は振動台5を鉛直下方に向け
て、倒立状として架台2の上端部に載置され、そ
の加振軸心Aを鉛直状に保持すべく上記空気バネ
3のガイド機構は振動発生機4が鉛直上下方向に
のみ自由度を有するように支持案内する。
In FIGS. 4 and 5, 1 is a foundation, and a pedestal 2 is fixed on the foundation 1 with its bottom 2a in contact with it, and the pedestal 2 is in the shape of an inverted gate, so to speak. Air spring 3 with a guide mechanism at the upper end position of 2
A vibration generator 4 is attached through the mount 2, and thus the pedestal 2 also serves as a vibration generator pedestal. The vibration generator 4 is placed on the upper end of the pedestal 2 in an inverted configuration with the vibration table 5 facing vertically downward, and the air spring 3 is guided by a guide mechanism to maintain the vibration axis A vertically. supports and guides the vibration generator 4 so that it has a degree of freedom only in the vertical and up-down directions.

そして第5図は動電型とした場合を一例として
示すが、本図に於て、振動発生機4は、励磁コイ
ル6を内有する外容器体7から左右に突設された
トラニオン軸8,8を、上記ガイド機構付空気バ
ネ3にて保持し、鉛直上下方向に振動すると共
に、その振動が架台2に伝達されないように振動
絶縁されている。そして該外容器体7には振動台
5が挿通され、空気バネ及びロツキングアーム等
にて鉛直上下動自在に保持され、該振動台5に固
着されたドライブコイル9に所定波形・所定周波
数の電気を流すことにより振動台5の振動を制御
するものである。(なお、電気油圧式振動発生機
を用いるも自由であるが図示省略した。) しかして、第4図に於て、架台底部2a上に3
個のブロツク10,11,12からなる上下位置
設定機構13を載置し、さらにその上に荷重検出
器14を載置し、該荷重検出器14と上記振動台
5との間に、順次試験片取付板15・試験片1
6・試験片取付板17をサンドイツチ状に挾持さ
せ、取付ける。上下位置設定機構13は、試験片
16の寸法に合わせて上下位置を設定するもので
あり、直接的に荷重検出器14を載置するブロツ
ク10は倒立状屋根型であり、該ブロツク10の
左右下方斜面にブロツク11,12が左右から当
接支持し、加振軸心Aを中心に一対の該ブロツク
11,12が左右の対称位置に配設され、該ブロ
ツク11,12の左右位置を調整することによつ
て中央のブロツク10の上面位置を上下に調整
し、底板2aから、荷重検出器14下面までの寸
法を自由に設定できる。しかも図より明らかな如
く、取付板17と試験片16と取付片15及びブ
ロツク10の軸心は、前記加振軸心Aに一致して
載置される。
FIG. 5 shows an example of an electrodynamic type. In this figure, the vibration generator 4 includes a trunnion shaft 8, which protrudes left and right from an outer container body 7 having an excitation coil 6 therein. 8 is held by the air spring 3 with a guide mechanism, vibrates vertically in the vertical direction, and is vibration-insulated so that the vibration is not transmitted to the pedestal 2. A vibration table 5 is inserted into the outer container body 7, and is held vertically movably by an air spring, a locking arm, etc., and a drive coil 9 fixed to the vibration table 5 generates a predetermined waveform and a predetermined frequency. The vibration of the vibration table 5 is controlled by flowing electricity. (It is also possible to use an electro-hydraulic vibration generator, but it is not shown in the figure.) In FIG.
A vertical position setting mechanism 13 consisting of blocks 10, 11, and 12 is placed, and a load detector 14 is placed on top of it, and a test is performed between the load detector 14 and the vibration table 5. Piece mounting plate 15/test piece 1
6. Clamp the test piece mounting plate 17 like a sandwich and attach it. The vertical position setting mechanism 13 sets the vertical position according to the dimensions of the test piece 16. The block 10 on which the load detector 14 is directly placed has an inverted roof shape, and the left and right sides of the block 10 are Blocks 11 and 12 are abutted and supported from the left and right on the lower slope, and the pair of blocks 11 and 12 are arranged in symmetrical positions on the left and right with the vibration axis A as the center, and the left and right positions of the blocks 11 and 12 are adjusted. By doing so, the upper surface position of the central block 10 can be adjusted up and down, and the dimension from the bottom plate 2a to the lower surface of the load detector 14 can be freely set. Furthermore, as is clear from the figure, the axes of the mounting plate 17, the test piece 16, the mounting piece 15, and the block 10 are placed so as to coincide with the vibration axis A.

しかして、18はたわみ測定用変位検出器であ
り、例えばうず電流式とし、前記振動台5から突
設されたターゲツト板19に対向して、かつ唄振
軸心Aに対称な2点に該変位検出器18,18が
配設される。また、該変位検出器18,18の
各々の台座20,20は、架台底部2aから立設
固定されている。
Reference numeral 18 denotes a displacement detector for measuring deflection, which is, for example, an eddy current type, and is placed at two points opposite to the target plate 19 protruding from the vibration table 5 and symmetrical to the vibration axis A. Displacement detectors 18, 18 are provided. Furthermore, the respective pedestals 20, 20 of the displacement detectors 18, 18 are erected and fixed from the pedestal bottom 2a.

このように、変位検出器台座20は剛体部Gで
あるところの架台底部2aに取付けられている。
あるいは図示省略したが、同じく剛体部Gである
基礎1に取付けられる。他方、前記荷重検出器1
4は、剛体であるブロツク10,11,12を介
して架台底部2aに載置され、あるいは図示省略
したが基礎1に載置し、荷重検出器14も剛体部
Gに取付けられる。
In this way, the displacement detector pedestal 20 is attached to the pedestal bottom 2a, which is the rigid body part G.
Alternatively, although not shown, it is attached to the foundation 1, which is also the rigid body part G. On the other hand, the load detector 1
4 is placed on the base 1 via rigid blocks 10, 11, and 12, or on the foundation 1 (not shown), and the load detector 14 is also attached to the rigid body part G.

次に第6図に於て、荷重検出器14の荷重測定
原理を図示し、試験片16に加わる荷重の平均値
を出力するものであつて、21は円環状の荷重検
出素子であり、仮に振動台5が横方向振動を起こ
してピツチング・ヨーイングを発生したとき、ピ
ツチング・ヨーイングの中心22は、第6図の下
の線図の位置にあつたとしても、2点B,Cの平
均値は、加振軸心Aの運動で代表させることがで
きる。
Next, FIG. 6 illustrates the load measurement principle of the load detector 14, which outputs the average value of the load applied to the test piece 16, where 21 is an annular load detection element. When the vibration table 5 causes lateral vibration and pitching/yawing occurs, even if the center 22 of the pitching/yawing is located at the position shown in the lower line of FIG. 6, the average value of the two points B and C will be can be represented by the motion of the vibration axis A.

また、第7図に於て同様に、変位検出器18,
18を加振軸心Aに対称に2個配設した構成であ
るから、2点D,Eのたわみの平均値は、加振軸
心Aのたわみに相当し、軸心Aそのもののたわみ
を測定したこととなる。
Similarly, in FIG. 7, the displacement detector 18,
18 are arranged symmetrically around the excitation axis A, the average value of the deflections at the two points D and E corresponds to the deflection of the excitation axis A, and the deflection of the axis A itself. This means that it has been measured.

従つて、第6,7,4図にて図示説明した構成
によれば、振動台5の横方向振動が存在しても、
(荷重/たわみ)の値に影響が表われず、誤差を
生じない。
Therefore, according to the configuration illustrated and explained in FIGS. 6, 7, and 4, even if there is lateral vibration of the vibration table 5,
(load/deflection) value is not affected and no error occurs.

次に、上述のように、加振軸心Aに対称な2個
の変位検出器18,18の出力にて、加振軸心A
に於ける試験片16のたわみを演算する平均演算
回路Hを、第8図と第9図に例示する。なお変位
検出器18,18としてうず電流式以外に、
LVDT式や静電容量式を2個用いてもさしつかえ
ない。そして、第8図では、検出器と、発振器及
び検波部を、各々2個づつ使用して、出力を加算
平均する場合を示し、第9図では、検出器2個
と、発振及び検波部を1個、使用するものであ
り、L1,L2は、うず電流式では検出器コイルの
インダクタンスを示し、LVDT式の場合は検出用
コイルのインダクタンスを示す。いずれの場合
も、変位に対応してインダクタンスが変化するこ
とを利用しているので、L1,L2を直列に接続す
れば合成インダクタンスは、L1+L2となり、平
均変位を測定することができる。(LVDT式の場
合は発振コイルと受信コイルで構成されるが、第
9図では詳細を省略した。)なお、静電容量式の
場合は、2組の電極を並列接続すれば同様であ
る。
Next, as described above, the outputs of the two displacement detectors 18, 18 symmetrical to the vibration axis A are used to detect the vibration axis A.
An average calculation circuit H for calculating the deflection of the test piece 16 at the time of the test is illustrated in FIGS. 8 and 9. In addition to the eddy current type displacement detectors 18, 18,
There is no problem even if two LVDT type or capacitance type are used. Fig. 8 shows a case in which two detectors, two oscillators, and two detectors are used to add and average the outputs, and Fig. 9 shows two detectors, two oscillators, and two detectors. L 1 and L 2 indicate the inductance of the detector coil in the case of the eddy current type, and the inductance of the detection coil in the case of the LVDT type. In either case, the fact that inductance changes in response to displacement is used, so if L 1 and L 2 are connected in series, the combined inductance will be L 1 + L 2 , and the average displacement can be measured. can. (The LVDT type is composed of an oscillating coil and a receiving coil, but the details are omitted in FIG. 9.) In the case of the capacitive type, the same effect can be achieved by connecting two sets of electrodes in parallel.

本発明に係る動バネ定数測定装置は上述の構成
であり、機械構造の振動伝達上の誤差要因につい
て考察する。
The dynamic spring constant measuring device according to the present invention has the above-described configuration, and error factors in vibration transmission of the mechanical structure will be considered.

() 架台の共振 本発明では振動発生機台座に相当するところ
の架台2の共振振動数は、従来例の第1・3図
より低く、第2図のものと同程度であるが、共
振を励起する力は、反力と試験片16に加わる
力の2つがあるが、反力はガイド機構付空気バ
ネ3,3によつて吸収されると共に試験片16
に加わる力は剛体部Gが受け止める構成となつ
ているから、いずれの力も測定誤差を生ずる程
度の振動を発生しない。
() Resonance of the pedestal In the present invention, the resonance frequency of the pedestal 2, which corresponds to the vibration generator pedestal, is lower than that of the conventional example shown in Figs. 1 and 3, and is about the same as that of Fig. 2. There are two types of excitation force: a reaction force and a force applied to the test piece 16, but the reaction force is absorbed by the air springs 3 with guide mechanisms and the force applied to the test piece 16.
Since the structure is such that the rigid body part G receives the force applied to the , neither force generates vibration to the extent that it causes a measurement error.

() 振動発生機の反力 反力の主な成分であるところの加振軸心A方
向のそれは空気バネ3にて吸収され、測定誤差
を生ずることはない。反力のうち加振軸心A方
向以外の方向への振動はガイド機構を介して架
台2の上端部を僅かに励起させるが、しかし架
台2の下端部である底部2aは基礎1に固定さ
れているため、荷重検出器14及び変位検出器
台座20は、測定誤差を生ずる程度には振動し
ない。
() Reaction force of the vibration generator The main component of the reaction force, that in the direction of the vibration axis A, is absorbed by the air spring 3 and does not cause measurement errors. Among the reaction forces, vibrations in directions other than the direction of the vibration axis A slightly excite the upper end of the pedestal 2 through the guide mechanism, but the bottom 2a, which is the lower end of the pedestal 2, is fixed to the foundation 1. Therefore, the load detector 14 and the displacement detector pedestal 20 do not vibrate to the extent that they cause measurement errors.

() 振動台の横方向振動 たわみの測定は軸心Aに対称な2点のたわみ
の平均値を測定するから、試験片16の軸心の
たわみを測定したのと同じになる。一方荷重検
出器14は試験片16に加わる荷重の平均値を
出力するので、横方向振動により発生する荷重
は試験片16の軸心の運動で代表させることが
できる。従つて、荷重をたわみで割つた演算結
果は横方向振動の影響は表われない。
() Lateral vibration of the shaking table Deflection is measured by measuring the average value of the deflections at two points symmetrical to the axis A, so it is the same as measuring the deflection at the axis of the test piece 16. On the other hand, since the load detector 14 outputs the average value of the load applied to the test piece 16, the load generated by the lateral vibration can be represented by the movement of the axis of the test piece 16. Therefore, the effect of lateral vibration does not appear in the calculation result obtained by dividing the load by the deflection.

第1〜3図に於て既に説明した従来の測定装置
の場合に比較すれば、本発明に係る測定装置は全
ての誤差要因()()()について非常に優
れた作用効果を有することが明白となつた。
Compared to the conventional measuring devices already explained in FIGS. 1 to 3, the measuring device according to the present invention has very superior effects regarding all error factors ()()(). It became clear.

本発明は以上詳述した如く構成され所期の目的
を有効に達成した。特に、第2の発明の如く、変
位検出器18,18を加振軸心Aを中心に対称な
位置に一対をもつて配設したから、振動台5のピ
ツチング及びヨーイング運動により測定に誤差が
生ずることがなくなつた。また、ガイド機構付空
気バネ3を介して振動発生機4を取付けたから、
振動発生機4の反力が架台2の下部に伝達して誤
差を生ずることがなくなつた。
The present invention has been constructed as described in detail above, and has effectively achieved its intended purpose. In particular, as in the second invention, since the displacement detectors 18, 18 are arranged in pairs at symmetrical positions with respect to the vibration axis A, errors in measurement may occur due to pitching and yawing movements of the vibration table 5. It no longer occurs. In addition, since the vibration generator 4 is attached via the air spring 3 with a guide mechanism,
The reaction force of the vibration generator 4 is no longer transmitted to the lower part of the pedestal 2 and causes errors.

さらに、荷重検出器14は、ブロツク10,1
1,12及び底部2aを介して基礎1上に固定し
たから、試験片16を介して伝わる力による振動
の影響及び架台2の共振とねじ運動の影響を受け
ず一層動バネ定数の測定精度は著しく向上する。
Furthermore, the load detector 14 is connected to the blocks 10, 1
1, 12 and the bottom 2a, the measurement accuracy of the dynamic spring constant is further improved without being affected by vibrations due to the force transmitted through the test piece 16, resonance of the pedestal 2, and screw movement. Significantly improved.

また、第1の発明の如く振動台5を下方に向け
て倒立状としてかつガイド機構付空気バネ3,3
を介して架台2に、振動発生機4を取付け、さら
に、変位検出器台座20,20及び荷重検出器1
4を、上記架台2の底部2a・基礎1等の剛体部
Gに取付けたから、架台2は使用振動数範囲内に
共振点を有するが、共振を励起する力は前述のよ
うに極めて小さく、荷重検出器14及び変位検出
器20を振動させず、振動発生機4の反力は荷重
検出器14及び変位検出器台座20を振動させる
ことがなく、測定精度の著しい向上改善が達成出
来た。
Further, as in the first invention, the vibration table 5 is turned downward in an inverted shape, and the air springs 3, 3 with guide mechanisms are used.
A vibration generator 4 is attached to the pedestal 2 via a
4 is attached to the rigid part G of the bottom 2a of the pedestal 2, the foundation 1, etc., the pedestal 2 has a resonance point within the usable frequency range, but the force that excites resonance is extremely small as described above, and the load The detector 14 and the displacement detector 20 were not vibrated, and the reaction force of the vibration generator 4 did not cause the load detector 14 and the displacement detector pedestal 20 to vibrate, making it possible to achieve a significant improvement in measurement accuracy.

本発明は既述のように従来不明であつた測定の
誤差要因を徹底的に分析し究明してはじめて創作
された優れた発明であるといえる。
As mentioned above, the present invention can be said to be an excellent invention that was created only after thoroughly analyzing and investigating the measurement error factors that were previously unknown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図と第3図は従来例を示す正面図
である。第4図は本発明の一実施例を示す正面
図、第5図は要部詳細断面図、第6図は荷重検出
器の原理説明図、第7図は変位検出器の原理説明
図、第8図と第9図は電気回路図である。 1……基礎、2……架台、2a……底部、3…
…空気バネ、4……振動発生機、5……振動台、
14……荷重検出器、16……試験片、18……
変位検出器、20……変位検出器台座、A……加
振軸心、G……剛体部、H……平均演算回路。
1, 2, and 3 are front views showing conventional examples. Fig. 4 is a front view showing an embodiment of the present invention, Fig. 5 is a detailed cross-sectional view of main parts, Fig. 6 is an explanatory diagram of the principle of a load detector, Fig. 7 is an explanatory diagram of the principle of a displacement detector, 8 and 9 are electrical circuit diagrams. 1... Foundation, 2... Frame, 2a... Bottom, 3...
...Air spring, 4...Vibration generator, 5...Vibration table,
14...Load detector, 16...Test piece, 18...
Displacement detector, 20... Displacement detector pedestal, A... Vibration axis, G... Rigid body portion, H... Average calculation circuit.

Claims (1)

【特許請求の範囲】 1 振動台5を下方に向けて倒立状としてかつガ
イド機構付空気バネ3を介して架台2に、振動発
生機4を取付け、さらに、変位検出器台座20及
び荷重検出器14を、上記架台2の底部2a・基
礎1等の剛体部Gに取付けて構成されたことを特
徴とする動バネ定数測定装置。 2 底部2aが基礎1に固定される架台2と、 振動台5が鉛直下方に向けられると共に、鉛直
上下方向にのみ支持案内するガイド機構付空気バ
ネ3を介して上記架台2の上端に取付けられる振
動発生機4と、 上記架台2の底部2aに載置されたブロツク1
0,11,12からなる上下位置設定機構13を
介して該底部2aに載置される荷重検出器14
と、 上記振動台5から突設されたターゲツト板1
9,19に対向して、かつ加振軸心Aに対称な2
点となるように、上記架台2の底部2aに立設固
定された変位検出器台座20,20に、配設され
る2個の変位検出器18,18と、 を備え、かつ、上記2点の平均変位を演算する平
均演算回路Hを介して、上記振動台5と上記荷重
検出器14との間に挾持された試験片16の加振
軸心Aに於けるたわみを測定するようにしたこと
を特徴とする動バネ定数測定装置。
[Claims] 1. A vibration generator 4 is attached to the pedestal 2 via an air spring 3 with a guide mechanism, with the vibration table 5 facing downward in an inverted shape, and a displacement detector pedestal 20 and a load detector. 14 attached to the rigid body part G of the bottom 2a of the pedestal 2, the foundation 1, etc.. 2. A pedestal 2 whose bottom portion 2a is fixed to the foundation 1, and a vibration table 5 which is oriented vertically downward and is attached to the upper end of the pedestal 2 via an air spring 3 with a guide mechanism that supports and guides only in the vertical up and down direction. A vibration generator 4 and a block 1 placed on the bottom 2a of the pedestal 2
A load detector 14 is placed on the bottom portion 2a via a vertical position setting mechanism 13 consisting of 0, 11, and 12.
and a target plate 1 protruding from the vibration table 5.
9, 19 and symmetrical to the excitation axis A
two displacement detectors 18, 18 disposed on displacement detector pedestals 20, 20 that are erected and fixed on the bottom 2a of the pedestal 2 so as to form a point; The deflection of the test piece 16 held between the vibration table 5 and the load detector 14 at the excitation axis A is measured through an average calculation circuit H that calculates the average displacement of the vibration table 5 and the load detector 14. A dynamic spring constant measuring device characterized by:
JP56018374A 1981-02-09 1981-02-09 Measuring device of dynamic spring constant Granted JPS57132036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56018374A JPS57132036A (en) 1981-02-09 1981-02-09 Measuring device of dynamic spring constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56018374A JPS57132036A (en) 1981-02-09 1981-02-09 Measuring device of dynamic spring constant

Publications (2)

Publication Number Publication Date
JPS57132036A JPS57132036A (en) 1982-08-16
JPS6151252B2 true JPS6151252B2 (en) 1986-11-07

Family

ID=11969930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56018374A Granted JPS57132036A (en) 1981-02-09 1981-02-09 Measuring device of dynamic spring constant

Country Status (1)

Country Link
JP (1) JPS57132036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349U (en) * 1986-06-20 1988-01-05
JPH0615293B2 (en) * 1986-04-16 1994-03-02 ドネリ− コ−ポレイシヨン Fasteners that secure the panel assembly to the support

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679886B2 (en) * 1997-02-25 2005-08-03 株式会社ミツトヨ Support device for vibration pickup in shaker
JP4953893B2 (en) * 2007-04-17 2012-06-13 倉敷化工株式会社 Abnormal sound inspection method for in-vehicle vibration isolator
US8214104B2 (en) 2007-04-17 2012-07-03 Kabushiki Kako Co., Ltd. Abnormal noise inspection method for anti-vibration device for vehicle use
JP4953894B2 (en) * 2007-04-17 2012-06-13 倉敷化工株式会社 Abnormal sound inspection method for in-vehicle vibration isolator
CN103134649A (en) * 2011-11-23 2013-06-05 徐州联宝科技有限公司 Belleville spring performance detector
CN103245492B (en) * 2013-04-10 2016-01-20 浙江工业大学 Without friction cylinder lateral force resistance proving installation
CN103884579B (en) * 2014-03-14 2016-08-17 中信戴卡宁波轮毂制造有限公司 Spring rate detection device
CN105716846B (en) * 2016-01-30 2018-05-15 湖南海铭德电子科技有限公司 Pointing device with handfeel of keys detection function and button product testing equipment
CN105784347B (en) * 2016-04-21 2018-06-29 同济大学 A kind of helical spring dynamical property test system and test method
CN110307956B (en) * 2019-06-18 2024-01-26 西南交通大学 Lateral vibration device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320478Y1 (en) * 1964-08-22 1968-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320478Y1 (en) * 1964-08-22 1968-08-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615293B2 (en) * 1986-04-16 1994-03-02 ドネリ− コ−ポレイシヨン Fasteners that secure the panel assembly to the support
JPS6349U (en) * 1986-06-20 1988-01-05

Also Published As

Publication number Publication date
JPS57132036A (en) 1982-08-16

Similar Documents

Publication Publication Date Title
CN102365523B (en) Micro gyroscope for determining rotational movements about three spatial axes which are perpendicular to one another
Edwards et al. Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down
JPS6151252B2 (en)
US3699808A (en) Dynamic testing device for visco-elastic materials
RU2368880C1 (en) Test bench for measurement of mass, coordinates of center of masses and tensor of item inertia
US9810710B2 (en) Vibration sensor
JPS61221602A (en) Bridge type coordinate measuring machine
US2873604A (en) Apparatus for determining vibration characteristics
CN1743824A (en) Moving coil dynamic balance control technique
JP3314187B2 (en) Force compensator for inertial mass measurement
CN110441401B (en) Method and device for testing damping coefficient of additive manufacturing material structure
RU2118806C1 (en) Vibration-testing machine
CN208432333U (en) A kind of table top assembly
CN116050076A (en) Modeling design method of uniform sensitivity low-coupling three-dimensional accelerometer
JPS63243544A (en) Control device for dynamic vibration reducer
US3194060A (en) Seismic displacement transducer
Schlegel et al. Application of a scanning vibrometer for the periodic calibration of force transducers
US2724971A (en) Vibration detecting apparatus
JP2000321016A (en) Laser beam displacement measuring apparatus for vibration test
Sin et al. A symmetrically piecewise linear oscillator: design and measurement
JP3738593B2 (en) Method for measuring excitation force of vibration generator
US3902373A (en) Dynamic balancing machine
JP2000292303A (en) Electrodynamic vibration generator and vibration control method
RU2065589C1 (en) Force transducer
RU2536325C2 (en) Determination method of spectrum oscillating characteristics of xps structural elements, and plant for its implementation