JPS6151232B2 - - Google Patents

Info

Publication number
JPS6151232B2
JPS6151232B2 JP7585178A JP7585178A JPS6151232B2 JP S6151232 B2 JPS6151232 B2 JP S6151232B2 JP 7585178 A JP7585178 A JP 7585178A JP 7585178 A JP7585178 A JP 7585178A JP S6151232 B2 JPS6151232 B2 JP S6151232B2
Authority
JP
Japan
Prior art keywords
cooling
evaporator
refrigeration
refrigerant
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7585178A
Other languages
Japanese (ja)
Other versions
JPS553555A (en
Inventor
Hiroshi Yuzuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7585178A priority Critical patent/JPS553555A/en
Publication of JPS553555A publication Critical patent/JPS553555A/en
Publication of JPS6151232B2 publication Critical patent/JPS6151232B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍車において冷凍庫内の冷凍と同時
に運転室内の冷房を可能とする冷凍車用冷房・冷
凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling/refrigeration system for a refrigerated vehicle that is capable of cooling the inside of the freezer and cooling the driver's cabin at the same time.

〔従来の技術〕[Conventional technology]

近年、自動車において冷房装置の装着が一般化
されてくるに従い、冷凍車においても運転室の冷
房に対する要求が高まつている。
In recent years, as the installation of air-conditioning devices in automobiles has become commonplace, there has been an increasing demand for cooling the driver's cabin in refrigerated vehicles as well.

このため、従来実開昭51−7813号公報において
は、冷凍用蒸発器の下流に運転室冷房用蒸発器を
直列に接続して、冷凍庫の冷凍作用と運転室の冷
房作用とを得るようにした装置が提案されてい
る。
For this reason, conventionally, in Japanese Utility Model Application No. 51-7813, an evaporator for cooling the driver's cabin is connected in series downstream of the evaporator for freezing to obtain the freezing effect of the freezer and the cooling effect of the driver's cabin. A device has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記従来装置では上流側に冷凍用蒸
発器を設け、下流側に冷房用蒸発器を設け、かつ
これら両蒸発器を直接接続しているので、冷凍作
用と冷房作用を両立させることが困難であつた。
すなわち、冷凍作用に適した比較的低温の蒸発温
度が得られるように蒸発圧力を設定すると、冷房
用蒸発器における蒸発圧力が低くなりすぎ、冷房
用蒸発器における霜付(フロスト)が問題にな
る。そこで、冷凍用蒸発器出口において冷媒がか
なり蒸発を終えるように膨張弁を設計すると、冷
房用蒸発器に流入する冷媒のかなりの割合が既に
ガス冷媒になつているので、冷房用蒸発器では顕
熱による冷却作用しか得られず、冷却能力が非常
に小さくなつてしまい、冷房不足が生じるという
問題点がある。
However, in the conventional device described above, a freezing evaporator is provided on the upstream side, a cooling evaporator is provided on the downstream side, and these evaporators are directly connected, making it difficult to achieve both freezing and cooling effects. It was hot.
In other words, if the evaporation pressure is set to obtain a relatively low evaporation temperature suitable for refrigeration, the evaporation pressure in the cooling evaporator will become too low, causing a problem of frosting in the cooling evaporator. . Therefore, if the expansion valve is designed so that a considerable amount of the refrigerant has finished evaporating at the outlet of the cooling evaporator, a large proportion of the refrigerant flowing into the cooling evaporator has already become gas refrigerant, so it is not noticeable in the cooling evaporator. There is a problem that only the cooling effect due to heat can be obtained, and the cooling capacity is very small, resulting in insufficient cooling.

本発明は上記点に鑑み、冷凍作用と冷房作用を
良好に両立させることを目的とする。
In view of the above points, it is an object of the present invention to satisfactorily achieve both freezing and cooling effects.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、 (a) 運転室内を冷却する冷房用蒸発器と、 (b) この冷房用蒸発器へ送風を行なう冷房用送風
機と、 (c) 前記冷房用蒸発器の出口側に直列接続され冷
媒の蒸発圧力を調整する蒸発圧力調整弁と、 (d) この蒸発圧力調整弁の出口側に直列接続され
る被冷凍物を収納する冷凍庫内を冷却する冷凍
用蒸発器と、 (e) この冷凍用蒸発器へ送風を行なう冷凍用送風
機と、 (f) 少なくとも前記冷房用蒸発器の入口側に設置
され、前記冷凍用蒸発器の出口における冷媒の
スーパヒートを調節するための感温筒を前記冷
凍用蒸発器の出口側に設置した自動膨脹弁と、 (g) 前記冷房・冷凍用蒸発器、蒸発圧力調整弁お
よび自動膨張弁とともに冷凍サイクルを形成す
る圧縮機および凝縮器とを備えるという技術的
手段を採用する。
In order to achieve the above object, the present invention includes: (a) a cooling evaporator that cools the inside of a driver's cabin; (b) a cooling blower that blows air to the cooling evaporator; and (c) a (d) an evaporation pressure adjustment valve connected in series to the outlet side to adjust the evaporation pressure of the refrigerant, and (d) a refrigeration evaporator connected in series to the outlet side of the evaporation pressure adjustment valve to cool the inside of a freezer that stores objects to be frozen. (e) A refrigeration blower for blowing air to the refrigeration evaporator; (f) A refrigeration blower installed at least on the inlet side of the refrigeration evaporator to adjust superheat of the refrigerant at the outlet of the refrigeration evaporator. (g) a compressor and condenser forming a refrigeration cycle together with the cooling/refrigeration evaporator, evaporation pressure adjustment valve, and automatic expansion valve; Adopt the technical means of providing a vessel.

〔作 用〕[Effect]

上記技術的手段によれば、蒸発圧力調整弁の作
用によつて、上流側の冷房用蒸発器における蒸発
圧力を冷房作用に適した比較的高めの圧力に設定
し、一方下流側の冷凍用蒸発器における蒸発圧力
は冷凍作用に適した低めの圧力に設定できる。そ
のため、冷房用蒸発器と冷凍用蒸発器においてそ
れぞれ冷房、冷凍に適した冷媒蒸発温度を独立に
得ることができる。
According to the above technical means, by the action of the evaporation pressure regulating valve, the evaporation pressure in the upstream cooling evaporator is set to a relatively high pressure suitable for cooling action, while the downstream cooling evaporator The evaporation pressure in the vessel can be set to a low pressure suitable for refrigeration. Therefore, refrigerant evaporation temperatures suitable for cooling and freezing can be independently obtained in the cooling evaporator and freezing evaporator, respectively.

〔実施例〕〔Example〕

以下本発明の一実施例を図に基いて説明する。
第1図は本発明装置の一実施例の冷凍サイクルの
系統図で、1は冷媒の圧縮を行なう圧縮機であ
り、この圧縮機1により高温高圧となつたガス状
の冷媒は凝縮器2に送られ、この凝縮器2内で凝
縮器用送風機2aより送られてきた空気に放熱し
て液化する。そしてさらに凝縮器2により液化し
た冷媒はレシーバ3に送られ、レシーバ3内でま
だ液化していないガス状の冷媒を分離する。4は
ドライヤでレシーバー3の出口側に配設されてお
り、冷媒中に混入した水分を除去するものであ
る。このドライヤ4で水分を除去された液冷媒は
自動膨脹弁5を通過する際に断熱膨脹し、低温、
低圧となり、冷凍車の運転室内に配置された冷房
用蒸発器6へ送られる。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of a refrigeration cycle of an embodiment of the device of the present invention, where 1 is a compressor that compresses refrigerant, and the gaseous refrigerant that has become high temperature and high pressure by this compressor 1 is sent to a condenser 2. In the condenser 2, heat is radiated to the air sent from the condenser blower 2a, and the air is liquefied. Further, the refrigerant liquefied by the condenser 2 is sent to the receiver 3, where the gaseous refrigerant that has not yet been liquefied is separated. A dryer 4 is disposed on the outlet side of the receiver 3 and is used to remove moisture mixed into the refrigerant. The liquid refrigerant from which water has been removed in the dryer 4 expands adiabatically when passing through the automatic expansion valve 5, and becomes low temperature.
The pressure becomes low and is sent to the cooling evaporator 6 located in the driver's cab of the refrigerated vehicle.

そして冷媒はこの冷房用蒸発器6内で冷房用送
風器7より送られてくる空気と熱交換し、空気か
ら液冷媒が蒸発するための気化熱を奪い、蒸発圧
力調整弁8により決められた第1蒸発圧力(例え
ば1.9Kg/cm2G)のもとに蒸発し、この際に冷媒の
蒸発による気化熱を奪われて冷却された空気は電
動モータにより駆動される冷房用送風機7により
図示しない運転室へ送られ運転室内の冷房を行な
う。
The refrigerant then exchanges heat with the air sent from the cooling blower 7 in the cooling evaporator 6, removes the heat of vaporization for the liquid refrigerant from the air, and has a pressure determined by the evaporation pressure regulating valve 8. The air is evaporated under the first evaporation pressure (for example, 1.9 Kg/cm 2 G), and at this time, the heat of vaporization due to evaporation of the refrigerant is removed and the air is cooled by the cooling blower 7 driven by the electric motor. The air conditioner is sent to the driver's cabin to cool the inside of the driver's cabin.

冷房用蒸発器6で熱交換した冷媒は蒸発圧力調
整弁8へ送られ、ここで再び断熱膨張して蒸発圧
力を冷房用蒸発器6内の第1蒸発圧力より低い第
2蒸発圧力(例えば0.5Kg/cm2G)まで下げられそ
の後冷凍用蒸発器9内へ送られる。
The refrigerant that has undergone heat exchange in the cooling evaporator 6 is sent to the evaporation pressure regulating valve 8, where it is adiabatically expanded again and the evaporation pressure is changed to a second evaporation pressure lower than the first evaporation pressure (for example, 0.5 kg/cm 2 G) and then sent into the freezing evaporator 9.

冷凍用蒸発器9へ送られた冷媒は電動モータに
より駆動される冷凍用送風機10より送られてく
る図示しない冷凍庫内の空気と再び熱交換し、空
気より冷房用蒸発器6で残こされた液冷媒が蒸発
するための気化熱を奪い、蒸発圧力調整弁8によ
り断熱膨張された第2蒸発圧力のもとに蒸発す
る。この際に冷媒の蒸発による気化熱を奪われて
冷却された空気は冷凍用送風機10により冷凍庫
内へ送り出され、冷凍庫内の冷凍を行なう。
The refrigerant sent to the refrigeration evaporator 9 exchanges heat again with the air in the freezer (not shown) sent from the refrigeration blower 10 driven by an electric motor, and is left behind in the cooling evaporator 6 from the air. The liquid refrigerant takes away the heat of vaporization for evaporation, and evaporates under the second evaporation pressure adiabatically expanded by the evaporation pressure regulating valve 8. At this time, the air that has been cooled by being deprived of the heat of vaporization due to the evaporation of the refrigerant is sent into the freezer by the freezing blower 10, thereby freezing the interior of the freezer.

ここで、冷房用蒸発器6および冷凍用蒸発器9
へ送られる液冷媒の流量は、後述する感温筒18
が冷凍用蒸発器9の出口に設けられた自動膨脹弁
5によつて、冷凍用蒸発器9のスーパヒート量が
自動膨脹弁5に設定されたスーパヒート量となる
よう自動調整されることによつて制御され、例え
ば運転室内および冷凍庫内のクールダウンととも
に冷房用蒸発器6および冷凍用蒸発器9の熱負荷
が軽くなれば、自動膨脹弁5の絞り量は次第に増
加して液冷媒量を減少させその際冷房用蒸発器6
の蒸発圧力が蒸発圧力調整弁8の設定圧以下に降
下しようとすれば蒸発圧力調整弁8の絞り量が増
加して冷房用蒸発器6の蒸発圧力を蒸発圧力調整
弁8の設定値に保持し、一方冷凍用蒸発器9の蒸
発圧力は蒸発圧力調整弁8の絞り量が増加するこ
とによつて低下して冷凍用蒸発器9が格納される
冷凍庫内の空気温度に見合つた蒸発圧力となり、
冷凍用蒸発器9内にて自動膨張弁5にて送られた
液冷媒の全てを蒸発する。
Here, the cooling evaporator 6 and the freezing evaporator 9
The flow rate of the liquid refrigerant sent to the temperature sensing cylinder 18, which will be described later, is
is automatically adjusted by the automatic expansion valve 5 provided at the outlet of the freezing evaporator 9 so that the superheat amount of the freezing evaporator 9 becomes the superheat amount set in the automatic expansion valve 5. If the cooling evaporator 6 and the freezing evaporator 9 are controlled to cool down, for example, and the heat load on the cooling evaporator 6 and the freezing evaporator 9 is reduced, the throttle amount of the automatic expansion valve 5 will gradually increase to reduce the amount of liquid refrigerant. At that time, the cooling evaporator 6
If the evaporation pressure of the cooling evaporator 6 attempts to drop below the set pressure of the evaporation pressure adjustment valve 8, the throttling amount of the evaporation pressure adjustment valve 8 increases to maintain the evaporation pressure of the cooling evaporator 6 at the set value of the evaporation pressure adjustment valve 8. On the other hand, the evaporation pressure of the refrigeration evaporator 9 decreases as the throttling amount of the evaporation pressure adjustment valve 8 increases, and becomes an evaporation pressure commensurate with the air temperature in the freezer where the refrigeration evaporator 9 is stored. ,
All of the liquid refrigerant sent by the automatic expansion valve 5 is evaporated in the refrigeration evaporator 9.

そして冷凍用蒸発器9内で完全に気化された冷
媒は再び圧縮機1へ送られ冷凍サイクルを終了す
る。
The refrigerant completely vaporized in the refrigeration evaporator 9 is sent to the compressor 1 again to complete the refrigeration cycle.

11は除霜通路で、圧縮機1から吐出された高
温高圧の冷媒を直接冷凍用蒸発器9へ導びき、冷
凍用蒸発器9に付着した霜を溶かすものである。
12はこの除霜通路11に設置され、除霜通路1
1の開閉を行なう除霜弁で例えば電磁弁よりなる
ものである。13は冷凍サイクル中の冷凍用蒸発
器9と圧縮機1の間に配設されたアキユームレー
タで、主に除霜時において冷凍用蒸発器9で冷却
されて液化した冷媒を液状のまま圧縮機1へ導入
されるのを防止するものである。
Reference numeral 11 denotes a defrosting passage, which leads the high-temperature, high-pressure refrigerant discharged from the compressor 1 directly to the freezing evaporator 9 to melt the frost attached to the freezing evaporator 9.
12 is installed in this defrosting passage 11, and the defrosting passage 1
The defrosting valve is a defrosting valve that opens and closes 1, and is made of, for example, a solenoid valve. 13 is an accumulator installed between the refrigeration evaporator 9 and the compressor 1 in the refrigeration cycle, which compresses the refrigerant that has been cooled and liquefied in the refrigeration evaporator 9 while remaining in liquid form, mainly during defrosting. This prevents it from being introduced into the machine 1.

14はバイパス通路で、ドライヤ4で水分を除
去された液冷媒を自動膨張弁5、冷房用蒸発器
6、蒸発圧力調整弁8円をバイパスして直接冷凍
用蒸発器9へ導入するものであり、運転室の冷房
が不要な時使われる。15,16は冷媒の流れを
このバイパス通路14および冷房用蒸発器6のい
ずれか一方へ切り換える切り換え手段をなす第
1、第2開閉弁(例えば電磁弁よりなる)で、お
のおのバイパス通路14および冷凍サイクルの自
動膨張弁5の入口側に設置されている。17はバ
イパス通路14の第1開閉弁15出口側に配設さ
れた自動膨張弁で、バイパス通路14を通つてき
た液冷媒を断熱膨張させるものである。18,1
9はそれぞれ自動膨張弁5,17の感温筒で、冷
凍用蒸発器9の出口に設置してある。
Reference numeral 14 denotes a bypass passage that directly introduces the liquid refrigerant from which water has been removed in the dryer 4 into the freezing evaporator 9 by bypassing the automatic expansion valve 5, the cooling evaporator 6, and the evaporation pressure regulating valve 8. , used when cooling the driver's cabin is not required. Reference numerals 15 and 16 indicate first and second on-off valves (for example, electromagnetic valves) that serve as switching means for switching the flow of refrigerant to either the bypass passage 14 or the cooling evaporator 6; It is installed on the inlet side of the automatic expansion valve 5 of the cycle. Reference numeral 17 denotes an automatic expansion valve disposed on the exit side of the first on-off valve 15 of the bypass passage 14, which adiabatically expands the liquid refrigerant passing through the bypass passage 14. 18,1
Reference numerals 9 denote temperature-sensitive cylinders of the automatic expansion valves 5 and 17, respectively, which are installed at the outlet of the refrigeration evaporator 9.

ここで、自動膨張弁5は、前述したごとく冷凍
用蒸発器9の出口における冷媒のスーパーヒート
を調節するものであるから、冷凍用蒸発器9の出
口冷媒圧力を導入し、この導入圧力と感温筒18
内の圧力とに応じて弁開度を制御する、いわゆる
外均式の膨張弁である。
Here, the automatic expansion valve 5 is used to adjust the superheat of the refrigerant at the outlet of the refrigeration evaporator 9 as described above, so it introduces the refrigerant pressure at the outlet of the refrigeration evaporator 9, and adjusts the introduced pressure and the Hot cylinder 18
This is a so-called external equalization type expansion valve that controls the valve opening depending on the internal pressure.

次に上記構成よりなる冷凍車用冷房・冷凍装置
の電気回路を第2図に基いて説明する。
Next, the electric circuit of the cooling/refrigeration system for a refrigerated vehicle having the above structure will be explained based on FIG. 2.

第2図において20は例えば車載バツテリー等
の直流電源で、一方の端子(例えば負端子)は車
体側にアースされている。21はヒユーズ、22
は冷凍スイツチである。23は冷凍用サーモスタ
ツトで冷凍庫内に配設され、冷凍庫内の温度が設
定温度以上であるときのみ通電するものである。
24は冷凍用リレーで、励磁コイル24aと、こ
の励磁コイル24aが励磁されたときのみ閉じる
常開接点24b,24cよりなる。25は除霜用
スイツチ、26は整流器である。1aは圧縮機1
へ例えば冷凍車走行用エンジン等からの駆動力の
伝達を断続するマグネツトクラツチである。27
は冷房スイツチ、29は冷房用蒸発器6の吹出し
口付近に設置された冷房用サーモスタツトで、運
転室内の温度が設定温度以上のときのみ通電する
ものである。28は冷房用リレーで、励磁コイル
28aとこの励磁コイル28aが励磁したときの
み閉じる常開接点28bおよび励磁コイル28a
が励磁したときのみ開く常閉接点28cよりな
る。
In FIG. 2, reference numeral 20 denotes a DC power source such as an on-board battery, and one terminal (for example, a negative terminal) is grounded to the vehicle body side. 21 is fuse, 22
is a frozen switch. Reference numeral 23 denotes a freezing thermostat, which is disposed inside the freezer and is energized only when the temperature inside the freezer is above a set temperature.
Reference numeral 24 denotes a refrigeration relay, which includes an excitation coil 24a and normally open contacts 24b and 24c that close only when the excitation coil 24a is excited. 25 is a defrosting switch, and 26 is a rectifier. 1a is compressor 1
This is a magnetic clutch that connects and disconnects the transmission of driving force from, for example, an engine for driving a refrigerated vehicle. 27
29 is a cooling switch, and 29 is a cooling thermostat installed near the outlet of the cooling evaporator 6, which is energized only when the temperature in the operating room is above a set temperature. 28 is a cooling relay, which includes an excitation coil 28a, a normally open contact 28b that closes only when the excitation coil 28a is excited, and an excitation coil 28a.
It consists of a normally closed contact 28c that opens only when energized.

次に上記構成における冷房・冷凍装置の作動を
説明する。上記構成よりなる装置は切り換え手段
をなす開閉弁15,16の開閉によつて冷房・冷
凍運転、冷凍運転および冷房運転の3通りの運転
が可能である。
Next, the operation of the cooling/refrigeration system having the above configuration will be explained. The apparatus constructed as described above can be operated in three ways: cooling/freezing operation, freezing operation, and cooling operation, by opening and closing the on-off valves 15 and 16, which constitute switching means.

まず、冷凍庫の冷凍のみを行なう場合は、冷房
スイツチ27を切つたままにしておき、冷凍スイ
ツチ22のみ入れる。
First, when only freezing is performed in the freezer, the air conditioner switch 27 is left turned off, and only the freezing switch 22 is turned on.

この時冷凍用サーモスタツト23が冷凍庫内の
温度を感知して、設定温度(例えば−10℃)以上
であれば電源20からの電圧は冷凍用リレー24
に加わり励磁コイル24aが励磁されて常開接点
24b,24cを閉じる。常開接点24cが閉じ
ると電源からの電圧は除霜用スイツチ25に加え
られ、除霜不要時で除霜用スイツチ25が冷凍用
送風機10側を閉じているときは冷凍用送風機1
0に電流が流れ、冷凍用送風機10が回転を始め
る。また常開接点24bが閉じると凝縮器用送風
機2aおよび圧縮機1へ駆動力を伝えるマグネツ
トクラツチ1aに電流が流れ、凝縮器用送風機2
aおよび圧縮機1の運転が開始される。
At this time, the refrigeration thermostat 23 senses the temperature inside the freezer, and if the temperature is higher than the set temperature (for example -10°C), the voltage from the power supply 20 is switched to the refrigeration relay 24.
The excitation coil 24a is excited to close the normally open contacts 24b and 24c. When the normally open contact 24c closes, the voltage from the power supply is applied to the defrosting switch 25, and when defrosting is not required and the defrosting switch 25 closes the refrigeration blower 10 side, the refrigeration blower 1
0, and the refrigerating blower 10 starts rotating. Furthermore, when the normally open contact 24b closes, a current flows through the magnetic clutch 1a that transmits the driving force to the condenser blower 2a and the compressor 1.
a and compressor 1 are started to operate.

また、電源20からの電圧は冷房用リレー28
の常閉接点28cへ伝わるが、冷房用スイツチ2
7が切つてあるため励磁コイル28aが励磁され
ていないのでこの常閉接点28cを介して第1開
閉弁15に電流が流れ、第1開閉弁は開状態とな
る。
In addition, the voltage from the power supply 20 is applied to the cooling relay 28.
It is transmitted to the normally closed contact 28c of the air conditioner switch 2.
7 is turned off, the excitation coil 28a is not excited, so current flows to the first on-off valve 15 via this normally closed contact 28c, and the first on-off valve becomes open.

この状態では第1開閉弁15のみ開き、第2開
閉弁16は閉じているので、圧縮機1から吐出さ
れた冷媒は凝縮器2、レシーバ3、ドライヤ4を
経た後全量バイパス通路14へ流れ込み、自動膨
張弁17で断熱膨張した後冷凍用蒸発器9へ導入
され、ここで熱交換し、冷凍庫の冷却を行ない、
その後再び圧縮機1へ戻る。
In this state, only the first on-off valve 15 is open and the second on-off valve 16 is closed, so the refrigerant discharged from the compressor 1 passes through the condenser 2, receiver 3, and dryer 4, and then flows into the bypass passage 14 in its entirety. After being adiabatically expanded by the automatic expansion valve 17, it is introduced into the freezing evaporator 9, where it exchanges heat and cools the freezer.
After that, it returns to the compressor 1 again.

この場合には冷媒は冷房用蒸発器6には全く流
れないので、冬季等運転室の冷房が不要な時に冷
房用蒸発器6に不必要な冷媒が流れ込み、この冷
房用蒸発器6でたとえ小量でも熱交換して運転室
内を冷却し、乗員に不快感を与えるという事態の
発生を防ぐことができる。
In this case, the refrigerant does not flow into the cooling evaporator 6 at all, so unnecessary refrigerant flows into the cooling evaporator 6 when there is no need to cool the driver's cabin, such as in winter, and even if the cooling evaporator 6 is It is possible to cool the inside of the driver's cabin by exchanging heat even if the amount of heat is reduced, thereby preventing the occurrence of a situation that would cause discomfort to the occupants.

また、圧縮機1、凝縮器2はもともと冷房用と
冷凍用の両蒸発器6,9での十分な熱交換が可能
なだけの容量を持つように設計してあり、この圧
縮機1から送り出された冷媒が直接冷凍用蒸発器
9だけへ導入されることになるので、冷凍庫内を
冷却する冷凍能力を大幅に上昇させることがで
き、冷凍庫内の急速冷凍が可能となる。
Additionally, the compressor 1 and condenser 2 are originally designed to have a capacity sufficient to allow sufficient heat exchange between the evaporators 6 and 9 for cooling and freezing. Since the refrigerant is directly introduced only into the freezing evaporator 9, the refrigeration capacity for cooling the inside of the freezer can be significantly increased, and rapid freezing inside the freezer becomes possible.

そして冷凍庫内の温度が冷凍用サーモスタツト
23の設定温度以上から設定温度値まで下がれば
冷凍用サーモスタツト23が切れて第1開閉弁1
5が閉じ、またそれまで運転されていた冷凍用送
風機10、凝縮器用送風機2aおよび圧縮機1は
運転を停止する。
When the temperature inside the freezer falls from above the set temperature of the freezing thermostat 23 to the set temperature value, the freezing thermostat 23 is turned off and the first on-off valve 1 is turned off.
5 is closed, and the refrigeration blower 10, condenser blower 2a, and compressor 1 that have been operating until then stop operating.

次に、運転室内の冷房と冷凍庫内の冷凍の両方
を同時に行なうときは、冷房スイツチ27および
冷凍スイツチ22の両方を入れる。
Next, when cooling the driver's cabin and freezing the freezer at the same time, both the cooling switch 27 and freezing switch 22 are turned on.

この時運転室内の温度が所定温度(例えば25
℃)以上であれば冷房用サーモスタツト29が閉
じ、冷房用リレー28の励磁コイル28aが励磁
し、常閉接点28cが開き、常開接点28bが閉
じる。
At this time, the temperature inside the driver's compartment is set to a predetermined temperature (for example, 25
C), the cooling thermostat 29 closes, the excitation coil 28a of the cooling relay 28 is excited, the normally closed contact 28c opens, and the normally open contact 28b closes.

従つて、この状態では第1開閉弁15へは電流
が流れず第2開閉弁16に電流が流れて第1開閉
弁15は閉じ、第2開閉弁16のみが開かれるの
で、圧縮機1から吐出された冷媒は凝縮器2で液
化し、次にレシーバ3、ドライヤ4を経た後自動
膨張弁5側へ全量が流れ、この自動膨張弁5で断
熱膨張し、その後冷房用蒸発器6で蒸発圧力が蒸
発圧力調整弁8にてその設定圧に推持された第1
蒸発圧力で液冷媒の一部を蒸発し、その際運転室
内の空気から気化熱を奪つて運転室の冷房を行な
う。さらにその後冷房用蒸発器6で液冷媒の一部
を蒸発した湿り蒸気は蒸発圧力調整弁8の絞り作
用にて断熱膨張され冷凍用蒸発器9で冷房用蒸発
器より低い第2蒸発圧力で、残りの液冷媒全てを
蒸発し、その際冷凍庫内の空気から気化熱を奪つ
て冷凍庫内の冷凍を行ない、その後再び圧縮機1
へ戻る。
Therefore, in this state, current does not flow to the first on-off valve 15, but current flows to the second on-off valve 16, which closes the first on-off valve 15 and opens only the second on-off valve 16. The discharged refrigerant is liquefied in the condenser 2, then passes through the receiver 3 and dryer 4, and then flows to the automatic expansion valve 5, where it expands adiabatically, and then evaporates in the cooling evaporator 6. The first pressure is maintained at the set pressure by the evaporation pressure regulating valve 8.
A portion of the liquid refrigerant is evaporated by the evaporation pressure, and at this time, the heat of vaporization is removed from the air in the driver's cabin to cool the driver's cabin. Furthermore, after that, the wet vapor that has partially evaporated the liquid refrigerant in the cooling evaporator 6 is adiabatically expanded by the throttling action of the evaporation pressure regulating valve 8, and then in the freezing evaporator 9 at a second evaporation pressure lower than that of the cooling evaporator. All the remaining liquid refrigerant is evaporated, and at that time, the heat of vaporization is taken from the air inside the freezer to freeze the inside of the freezer, and then the compressor 1 is turned on again.
Return to

上記のごとくして冷房冷凍の同時運転が行われ
るのがあるが、その場合、冷房用蒸発器6におけ
る冷媒の蒸発圧力は、蒸発圧力調整弁8によつて
第1蒸発圧力(例えば2.1Kg/cm2G、これは冷媒R
12の場合蒸発温度0℃に相当)に制御され、冷
房作用に適した冷却温度が得られるとともに、蒸
発器6における霜付が防止される。一方、冷凍用
蒸発器9における蒸発圧力は蒸発圧力調整弁8の
減圧作用により上記の第1蒸発圧力より更に低い
第2蒸発圧力(例えば0.5Kg/cm2G、これは冷媒R
12の場合蒸発温度−20℃に相当)となり、冷凍
作用に適した低温の冷却温度が得られる。
Simultaneous operation of cooling and freezing is sometimes performed as described above, but in that case, the evaporation pressure of the refrigerant in the cooling evaporator 6 is controlled by the evaporation pressure regulating valve 8 to the first evaporation pressure (for example, 2.1 Kg/ cm 2 G, this is the refrigerant R
In the case of 12, the evaporation temperature is controlled to 0° C.), and a cooling temperature suitable for the cooling action is obtained, and frost formation in the evaporator 6 is prevented. On the other hand, the evaporation pressure in the refrigeration evaporator 9 is set to a second evaporation pressure (for example, 0.5 Kg/cm 2 G, which is equal to the refrigerant R
In the case of 12, the evaporation temperature corresponds to -20°C), and a low cooling temperature suitable for refrigeration can be obtained.

ここで、自動膨張弁5の作用を第5図に基づい
て具体的に述べると、自動膨張弁5は外均式膨張
弁として周知のものであつて、高圧液冷媒が流入
する冷媒入口部51と冷房用蒸発器6の入口側に
連通する冷媒出口部52との間に弁体53を配置
し、その弁体53はピン54を介してダイヤフラ
ム55の変位に応答して弁開度が変動し、それに
より冷媒流量を調節する。ダイヤフラム55の上
側の室56には、冷凍用蒸発器9の出口側冷媒温
度を感知する感温筒18内のガス圧力Pfが加わ
り、一方ダイヤフラム55の下側の室57には、
圧力取出管58を介して冷凍用蒸発器9の出口冷
媒圧力Peが加わり、更にコイルスプリング59
の押圧力Psがダイヤフラム55の下側面に加わ
る。それ故、冷凍サイクルの作動が安定している
時には、Pf=Pe+Psの関係が成り立つような位
置にダイヤフラム55および弁体53が移動し、
弁体53はそのときの開度で静止し、冷媒流量を
一定に保つ。
Here, the function of the automatic expansion valve 5 will be specifically described based on FIG. A valve body 53 is disposed between the refrigerant outlet portion 52 communicating with the inlet side of the cooling evaporator 6, and the valve opening degree of the valve body 53 changes in response to the displacement of the diaphragm 55 via a pin 54. and thereby adjust the refrigerant flow rate. The gas pressure Pf in the thermosensor tube 18 that senses the refrigerant temperature on the outlet side of the refrigeration evaporator 9 is applied to the chamber 56 above the diaphragm 55, while the chamber 57 below the diaphragm 55 is
The outlet refrigerant pressure Pe of the refrigeration evaporator 9 is applied via the pressure take-off pipe 58, and the coil spring 59
A pressing force Ps is applied to the lower surface of the diaphragm 55. Therefore, when the operation of the refrigeration cycle is stable, the diaphragm 55 and the valve body 53 move to a position where the relationship Pf=Pe+Ps holds.
The valve body 53 remains stationary at the opening degree at that time, keeping the refrigerant flow rate constant.

ところで、冷凍用蒸発器9出口における冷媒の
スーパーヒート(過熱度)は冷媒温度および冷媒
圧力により決定されるから、蒸発器出口の冷媒温
度に応じた圧力Pfおよび冷媒圧力Peに応じて膨
張弁開度を制御することにより、自動膨張弁5は
冷凍用蒸発器9出口の冷媒のスーパーヒートを所
定値に制御することができ、冷凍用蒸発器9の冷
却能力を有効に発揮させることができる。
By the way, since the superheat (degree of superheating) of the refrigerant at the outlet of the freezing evaporator 9 is determined by the refrigerant temperature and refrigerant pressure, the expansion valve is opened according to the pressure Pf and the refrigerant pressure Pe at the evaporator outlet. By controlling the temperature, the automatic expansion valve 5 can control the superheat of the refrigerant at the outlet of the freezing evaporator 9 to a predetermined value, and the cooling capacity of the freezing evaporator 9 can be effectively exhibited.

なお、この際において、運転室の室温のみが所
定温度以下になり、冷凍庫内の温度が依然所定温
度以上であるときは、冷房用サーモスタツト29
が切れ、第2開閉弁16への通電が止まり、第2
開閉弁16は閉じることになるが一方冷房用リレ
ー28の励磁コイル28も励磁しなくなるので、
常閉接点28cが閉じそれにより第1開閉弁15
への通電が開始され、第1開閉弁15が開くこと
になる。従つてこの場合には運転室内の冷房が停
止され、バイパス通路14が開かれて、冷凍庫内
の冷凍のみを有効に行なうことができる。逆に冷
凍庫内の温度のみが所定温度以下に下がり運転室
内が依然所定温度以上であるときは、冷凍用サー
モスタツト23が切れ、冷凍用送風機10の運転
を停止し、冷凍庫内の強制熱交換を停止させる。
At this time, if only the room temperature in the driver's cabin falls below the predetermined temperature and the temperature inside the freezer is still above the predetermined temperature, the cooling thermostat 29
is turned off, the power supply to the second on-off valve 16 is stopped, and the second on-off valve 16 is turned off.
The on-off valve 16 will be closed, but the excitation coil 28 of the cooling relay 28 will also no longer be energized.
The normally closed contact 28c closes and the first on-off valve 15
energization is started, and the first on-off valve 15 is opened. Therefore, in this case, the cooling in the driver's cabin is stopped, the bypass passage 14 is opened, and only the freezing in the freezer can be effectively performed. Conversely, if only the temperature inside the freezer falls below the predetermined temperature and the inside of the operating room is still above the predetermined temperature, the refrigeration thermostat 23 is turned off, the operation of the refrigeration blower 10 is stopped, and the forced heat exchange inside the freezer is started. make it stop.

なお、このように運転室内、冷凍庫内のいずれ
か一方の温度が設定温度以下に下がり、いずれか
一方のサーモスタツト23,29が切れた場合で
あつても、他方のサーモスタツト23,29が通
電していればマグネツトクラツチ1aおよび凝縮
器用送風機2aには電流が流れるため、圧縮機1
aおよび凝縮器用送風機2aが止まつてしまうと
いう不具合は生じない。
In addition, even if the temperature in either the operator's compartment or the freezer falls below the set temperature and one of the thermostats 23, 29 is turned off, the other thermostat 23, 29 will not turn on. If so, current will flow through the magnetic clutch 1a and the condenser blower 2a, so the compressor 1
There is no problem that the condenser blower 2a and the condenser blower 2a stop.

また、冷凍用蒸発器9周辺に付着した霜を除却
する必要が生じたときは、除霜スイツチ25がそ
の状態を感知して除霜弁12側に通電し、除霜通
路11を開く。この際冷媒は凝縮器2側には自動
膨張弁5,17等種々の流路抵抗が設けられてい
るために、凝縮器2側へは流れず、ほぼ全量が除
霜通路11に流れこんで直接冷凍用蒸発器9へ導
入され、冷凍用蒸発器9の除霜が行なわれること
になる。なお、この際には冷凍用送風機10は停
止するので、圧縮機1から吐出された高温、高圧
の冷媒が冷凍用蒸発器9内に流れ込んでも、ただ
ちに冷凍庫内の温度が上昇することはない。
Further, when it becomes necessary to remove frost adhering to the vicinity of the freezing evaporator 9, the defrosting switch 25 senses the state and energizes the defrosting valve 12 to open the defrosting passage 11. At this time, the refrigerant does not flow to the condenser 2 side because various flow path resistances such as automatic expansion valves 5 and 17 are provided on the condenser 2 side, and almost the entire amount flows into the defrosting passage 11. It is directly introduced into the freezing evaporator 9, and the freezing evaporator 9 is defrosted. Note that at this time, the refrigeration blower 10 is stopped, so even if the high-temperature, high-pressure refrigerant discharged from the compressor 1 flows into the refrigeration evaporator 9, the temperature inside the freezer does not rise immediately.

次に運転室の冷房のみを行なう場合は、冷房ス
イツチ27のみ入れ、冷凍スイツチ22を切る。
Next, if only the driver's cabin is to be cooled, only the cooling switch 27 is turned on and the freezing switch 22 is turned off.

この場合でも冷房用リレー28の励磁コイル2
8aが励磁して常開接点28bが閉じておれば、
凝縮器用送風機2aおよびマグネツトクラツチ1
aに通電され、凝縮器用送風機2aおよび圧縮機
1は運転をしているが、冷凍用送風機10の運転
は停止される。
Even in this case, the excitation coil 2 of the cooling relay 28
If 8a is energized and the normally open contact 28b is closed,
Condenser blower 2a and magnetic clutch 1
A is energized, and the condenser blower 2a and the compressor 1 are operating, but the operation of the refrigeration blower 10 is stopped.

従つてこの状態では冷凍用蒸発器9での熱交換
が時押えられ、逆に冷房用蒸発器6での熱交換量
が増加することになる。
Therefore, in this state, heat exchange in the freezing evaporator 9 is suppressed, and conversely, the amount of heat exchange in the cooling evaporator 6 increases.

そして、運転室内の温度が所定温度以下に下が
つたときは冷房用サーモスタツト29が切れて圧
縮機1および凝縮器用送風機2aの運転を停止す
る。しかし冷房用蒸発器6はしばらくは冷い状態
のままであるため冷房用送風機7は冷房用サーモ
スタツト29が切れても運転を続けるようにして
おく。
When the temperature in the operating room falls below a predetermined temperature, the cooling thermostat 29 is turned off and the operation of the compressor 1 and condenser blower 2a is stopped. However, since the cooling evaporator 6 remains cold for a while, the cooling blower 7 is made to continue operating even if the cooling thermostat 29 is turned off.

運転室の冷房および冷凍庫の冷凍の両方が不用
な時は冷房スイツチ27、冷凍スイツチ22の両
方を切ればよいのであるが、上記構成よりなる装
置では凝縮器用送風機2aへの電気配線中に整流
器26が設けてあるので、スイツチ27,22を
切つた後に凝縮器用送風機2aが惰性で回り続
け、そのため凝縮器用送風機2aの駆動モータが
発電機として働くことがあつても、その起電力は
整流器26の作用によりマグネツトクラツチ1a
側へ伝わるということはなく、従つてマグネツト
クラツチ1aの切れを悪くすることはない。
When both the air conditioning of the driver's cabin and the freezing of the freezer are not needed, it is sufficient to turn off both the air conditioner switch 27 and the freezing switch 22. However, in the device configured as described above, the rectifier 26 is connected during the electrical wiring to the condenser blower 2a. Since the condenser blower 2a continues to rotate by inertia after the switches 27 and 22 are turned off, even if the drive motor of the condenser blower 2a works as a generator, the electromotive force is generated by the rectifier 26. Due to the action, the magnetic clutch 1a
There is no possibility that the force will be transmitted to the side, and therefore, the disconnection of the magnetic clutch 1a will not be impaired.

なお、上述した実施例ではバイパス通路14が
冷凍サイクルの自動膨張弁5入口側で分岐してい
たが第3図に示すようにバイパス通路14を冷凍
サイクルの自動膨張弁5出口側で分岐させるよう
にしても上述した作動効果は得られる。さらにこ
の第3図図示の実施例ではバイパス通路14中に
別の自動膨張弁17を設置する必要がなくなり、
従つて1つの自動膨張弁5で冷房用蒸発器6、冷
凍用蒸発器9の両方の冷媒の断熱膨張を受けもつ
ことができることになり大幅なコストダウンがで
きるという優れた効果も併せて持つことになる。
In the above embodiment, the bypass passage 14 was branched on the inlet side of the automatic expansion valve 5 of the refrigeration cycle, but as shown in FIG. Even so, the above-mentioned operating effect can be obtained. Furthermore, in the embodiment shown in FIG. 3, there is no need to install a separate automatic expansion valve 17 in the bypass passage 14.
Therefore, one automatic expansion valve 5 can handle adiabatic expansion of the refrigerant in both the cooling evaporator 6 and the freezing evaporator 9, which also has the excellent effect of significantly reducing costs. become.

また上述した実施例では冷媒の流れをバイパス
通路14および冷房用蒸発器6のいずれか一方へ
切り換える切り換え手段として第1、第2開閉弁
15,16の2つの弁を用いていたが、これはバ
イパス通路14の分岐点に3方弁を配設するよう
にしても同様の効果が得られることはいうまでも
ない。
Furthermore, in the embodiment described above, two valves, the first and second on-off valves 15 and 16, were used as switching means for switching the flow of refrigerant to either the bypass passage 14 or the cooling evaporator 6; It goes without saying that the same effect can be obtained by disposing a three-way valve at the branch point of the bypass passage 14.

また、上述した実施例においてバイパス通路1
4を廃止しても、従つて第1、第2の開閉弁1
5,16および自動膨張弁17も廃止しても、冷
凍車の運転室の冷房および冷凍庫の冷凍を行なう
ことが可能である。この際には冷房、冷凍は専ら
冷房用、冷凍用送風機7,10の運転の開始、停
止により制御する。この場合の電気回路は第4図
に示すように配線し、冷房用送風機7は冷房用の
スイツチ27、サーモスタツト29が閉じたとき
のみ運転を開始し、また冷凍用送風機10は冷凍
用のスイツチ22とサーモスタツト23が閉じた
ときのみ運転を開始するようにし、凝縮器用送風
機2aおよびマグネツトクラツチ1aは冷房用ま
たは冷凍用のスイツチ27,22およびサーモス
タツト29,23のいずれか一方が閉じれば運転
を開始するようにする。そしてこの場合にも冷房
用蒸発器6の入口側に設置した自動膨張弁5の感
温筒18は冷凍用蒸発器9の出口側に設置するよ
うにする。
Moreover, in the embodiment described above, the bypass passage 1
Even if 4 is abolished, the first and second on-off valves 1
Even if 5, 16 and the automatic expansion valve 17 are also eliminated, it is possible to cool the driver's cabin of the refrigerated vehicle and freeze the freezer. At this time, cooling and freezing are controlled exclusively by starting and stopping the operation of the cooling and freezing blowers 7 and 10. The electric circuit in this case is wired as shown in Fig. 4, and the cooling fan 7 starts operating only when the cooling switch 27 and thermostat 29 are closed, and the refrigeration fan 10 starts operating only when the cooling switch 27 and thermostat 29 are closed. 22 and thermostat 23 are closed, and the condenser blower 2a and magnetic clutch 1a are set to start operating only when either cooling or freezing switches 27, 22 and thermostats 29, 23 are closed. Start driving. Also in this case, the temperature-sensitive cylinder 18 of the automatic expansion valve 5 installed on the inlet side of the cooling evaporator 6 is installed on the outlet side of the freezing evaporator 9.

なお、この場合においては冷房不要時にも冷凍
を行なつていれば、極く微量ながら冷風が運転室
内に流入することになるが、このことは運転室の
空調に冷風暖風混合式の空調装置を用いている冷
凍車においては問題が生じない。
In this case, if refrigeration is performed even when cooling is not required, a very small amount of cold air will flow into the driver's cab, but this is because the air conditioner in the driver's cab is a mixture of cold and warm air. This problem does not occur in refrigerated trucks that use

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、冷房用蒸
発器6の下流に蒸発圧力調整弁8を介して冷凍用
蒸発器9を直列接続するとともに、冷房用蒸発器
6の入口部に設けた自動膨張弁5により冷凍用蒸
発器9の出口における冷媒のスーパーヒートを調
節するようにしているから、冷房用蒸発器6にお
ける冷却温度及び冷凍用蒸発器9における冷却温
度をそれぞれ冷房作用、冷凍作用に適した個々独
立の温度に設定でき、しかも、蒸発圧力調整弁8
の作用により冷房用蒸発器6の霜付も確実に防止
できる。
As explained above, according to the present invention, the refrigeration evaporator 9 is connected in series downstream of the cooling evaporator 6 via the evaporation pressure regulating valve 8, and an automatic Since the superheat of the refrigerant at the outlet of the freezing evaporator 9 is adjusted by the expansion valve 5, the cooling temperature in the cooling evaporator 6 and the cooling temperature in the freezing evaporator 9 can be adjusted to the cooling effect and the freezing effect, respectively. Suitable individual temperatures can be set, and the evaporation pressure adjustment valve 8
By this action, frost formation on the cooling evaporator 6 can be reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例をなす冷凍サイ
クルの系統図、第2図は第1図図示装置の電気配
線図、第3図は本発明装置の他の実施例をなす冷
凍サイクルの系統図、第4図は本発明装置の他の
実施例の電気配線図で、第5図は本発明装置の自
動膨張弁5の作用を説明するための概略構成図で
ある。 1……圧縮機、2……凝縮器、5……自動膨張
弁、6……冷房用蒸発器、7……冷房用送風機、
8……蒸発圧力調整弁、9……冷凍用蒸発器、1
0……冷凍用送風機、14……バイパス通路、1
5,16……切り換え手段をなす開閉弁、18,
19……感温筒。
Fig. 1 is a system diagram of a refrigeration cycle that constitutes one embodiment of the device of the present invention, Fig. 2 is an electrical wiring diagram of the device illustrated in Fig. 1, and Fig. 3 is a diagram of a refrigeration cycle that constitutes another embodiment of the device of the present invention. The system diagram, FIG. 4 is an electrical wiring diagram of another embodiment of the device of the present invention, and FIG. 5 is a schematic configuration diagram for explaining the operation of the automatic expansion valve 5 of the device of the present invention. 1... Compressor, 2... Condenser, 5... Automatic expansion valve, 6... Cooling evaporator, 7... Cooling blower,
8...Evaporation pressure adjustment valve, 9...Refrigerating evaporator, 1
0... Refrigeration blower, 14... Bypass passage, 1
5, 16... An on-off valve serving as a switching means, 18,
19...Temperature cylinder.

Claims (1)

【特許請求の範囲】 1 (a) 運転室内を冷却する冷房用蒸発器と、 (b) この冷房用蒸発器へ送風を行なう冷房用送風
機と、 (c) 前記冷房用蒸発器の出口側に直列接続され冷
媒の蒸発圧力を調整する蒸発圧力調整弁と、 (d) この蒸発圧力調整弁の出口側に直列接続され
被冷凍物を収納する冷凍庫内を冷却する冷凍用
蒸発器と、 (e) この冷凍用蒸発器へ送風を行なう冷凍用送風
機と、 (f) 少なくとも前記冷房用蒸発器の入口側に設置
され、前記冷凍用蒸発器の出口における冷媒の
スーパヒートを調節するための感温筒を前記冷
凍用蒸発器の出口側に設置した自動膨張弁と、 (g) 前記冷房・冷凍用蒸発器、蒸発圧力調整弁お
よび自動膨張弁とともに冷凍サイクルを形成す
る圧縮機および凝縮器とを備えることを特徴と
する冷凍車用冷房・冷凍装置。
[Scope of Claims] 1. (a) A cooling evaporator that cools the inside of the operating room; (b) A cooling blower that blows air to the cooling evaporator; (c) On the outlet side of the cooling evaporator. an evaporation pressure adjustment valve connected in series to adjust the evaporation pressure of the refrigerant; (d) a refrigeration evaporator connected in series to the outlet side of the evaporation pressure adjustment valve to cool the inside of a freezer storing objects to be frozen; ) A refrigeration blower that blows air to the refrigeration evaporator; (f) A temperature-sensitive cylinder installed at least on the inlet side of the refrigeration evaporator to adjust superheat of the refrigerant at the outlet of the refrigeration evaporator. (g) a compressor and a condenser that form a refrigeration cycle together with the cooling/refrigeration evaporator, evaporation pressure adjustment valve, and automatic expansion valve; A cooling/freezing device for a refrigerated vehicle, which is characterized by:
JP7585178A 1978-06-21 1978-06-21 Cooling and refrigeration device for refrigerator car Granted JPS553555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7585178A JPS553555A (en) 1978-06-21 1978-06-21 Cooling and refrigeration device for refrigerator car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7585178A JPS553555A (en) 1978-06-21 1978-06-21 Cooling and refrigeration device for refrigerator car

Publications (2)

Publication Number Publication Date
JPS553555A JPS553555A (en) 1980-01-11
JPS6151232B2 true JPS6151232B2 (en) 1986-11-07

Family

ID=13588125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7585178A Granted JPS553555A (en) 1978-06-21 1978-06-21 Cooling and refrigeration device for refrigerator car

Country Status (1)

Country Link
JP (1) JPS553555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230116A1 (en) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043861A (en) * 2009-11-25 2010-02-25 Denso Corp Refrigerating cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230116A1 (en) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus
JP2019206214A (en) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioning device

Also Published As

Publication number Publication date
JPS553555A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
JP4445264B2 (en) Automotive air conditioner heating / cooling cycle, air conditioner, and method for controlling the air conditioner
JP3538845B2 (en) Automotive air conditioners
JP2677966B2 (en) Heat pump type air conditioner for vehicles
US4516406A (en) Cooling system for motor vehicles
JP4120105B2 (en) Air conditioner
WO2019069666A1 (en) Air conditioning device
US20180319244A1 (en) Vehicle air conditioner
US20230219398A1 (en) Refrigeration cycle device
JP2001246930A (en) Heat pump device for vehicle
JPS6326830B2 (en)
JPS6155017B2 (en)
JPH09286225A (en) Air conditioner for vehicle
JPH1142933A (en) Air conditioner
JPS6151232B2 (en)
JPH06262936A (en) Air conditioner for automobile
JP3968921B2 (en) Vehicle cooling system
JPS6315513B2 (en)
JPS61150818A (en) Air conditioner for automobile
JPH0671855B2 (en) Package type rooftop vehicle cooling system
JP3336798B2 (en) Vehicle cooling system
JPH10315753A (en) Refrigerating and air-conditioning device
JP3831162B2 (en) Automotive air conditioner
JPS63192606A (en) Cooling/refrigerating device for vehicle
JPS5811370A (en) Air-cooling freezing refrigerator for car
JPH0124522Y2 (en)