JPS6151231B2 - - Google Patents

Info

Publication number
JPS6151231B2
JPS6151231B2 JP57127176A JP12717682A JPS6151231B2 JP S6151231 B2 JPS6151231 B2 JP S6151231B2 JP 57127176 A JP57127176 A JP 57127176A JP 12717682 A JP12717682 A JP 12717682A JP S6151231 B2 JPS6151231 B2 JP S6151231B2
Authority
JP
Japan
Prior art keywords
auger
ice
cylinder
freezing cylinder
compression passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57127176A
Other languages
Japanese (ja)
Other versions
JPS5918363A (en
Inventor
Naryuki Takahashi
Nobuyuki Yoshida
Masahiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57127176A priority Critical patent/JPS5918363A/en
Publication of JPS5918363A publication Critical patent/JPS5918363A/en
Publication of JPS6151231B2 publication Critical patent/JPS6151231B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 発明の分野 本発明は冷凍円筒の内面に成長した氷をオーガ
ーによつて削り取つて圧縮通路に移送し、ここで
圧縮して硬質の氷片を連続的に作るオーガー式製
氷機に関し、特に冷凍円筒の内面構造に関するも
のである。
[Detailed Description of the Invention] (a) Field of the Invention The present invention scrapes off ice that has grown on the inner surface of a freezing cylinder using an auger and transfers it to a compression passage, where it is compressed to continuously form hard ice pieces. This paper relates to an auger-type ice maker manufactured in Japan, and in particular relates to the inner structure of the freezing cylinder.

(ロ) 従来技術とその問題点 冷凍円筒の内面は非常に寸法精度が要求される
ためにホーニング加工によつて冷凍円筒内面の仕
上げを行なつているのが一般的である。しかし、
ホーニング加工を行なつた円筒の内面には円筒内
部に配置されるオーガーの軸方向に交差する網目
状の仕上げ目が形成されることを避けられない。
(b) Prior art and its problems Since the inner surface of a freezing cylinder requires extremely high dimensional accuracy, the inner surface of the freezing cylinder is generally finished by honing. but,
It is inevitable that the inner surface of the honed cylinder will have a mesh-like finish that intersects with the axial direction of the auger disposed inside the cylinder.

この様な、網目状の仕上げ目は氷の移動方向に
対しても交差状となるため、この仕上げ目が抵抗
となり氷の移動が円滑に行なわれなくなるばかり
か、仕上げ目に氷が詰まつて異常音を発生した
り、過大負荷となつて製氷困難に陥る事があつ
た。
These mesh-like finishing lines also intersect with the direction of movement of the ice, so these finishing lines create resistance and prevent the smooth movement of ice, and also cause ice to become clogged in the finishing lines. There have been cases where abnormal noises have been generated and overload has occurred, making it difficult to make ice.

更に、オーガーによつて削り取られた氷は冷凍
円筒の内面を滑つて回転しながら上方へ移動され
て圧縮通路に進入し、ここでほとんどの水分が除
去されて硬質の氷が連続的に形成されていく。特
に、圧縮通路の手前ではオーガーによるところの
氷の上昇力に比較して氷の回転力が勝り、氷がオ
ーガーと共に同期回転してしまい、圧縮通路にス
ムーズに氷が進入しなくなり、氷が圧縮通路の入
口近傍に詰まつていき、ここでも異常音を発生し
たり、過大負荷となつて製氷を続行できなくなる
事があつた。
Furthermore, the ice scraped by the auger slides and rotates on the inner surface of the freezing cylinder and is moved upwards into the compression passage, where most of the water is removed and hard ice is continuously formed. To go. In particular, in front of the compression passage, the rotating force of the ice exceeds the lifting force of the ice caused by the auger, causing the ice to rotate synchronously with the auger, making it impossible for ice to enter the compression passage smoothly, causing the ice to compress. It became clogged near the entrance of the passageway, causing abnormal noises and overloading, making it impossible to continue making ice.

(ハ) 本発明の目的 本発明は移送中の氷詰まり及び氷とオーガーと
の同期回転を防止することによつて、異常音の発
生及び過大負荷の防止と、圧縮通路への氷移動の
円滑化を図り、以つて安定した製氷動作を行なう
ように改良された冷凍円筒を提供する。
(c) Purpose of the present invention The present invention prevents abnormal noise and overload by preventing ice clogging and synchronized rotation of the ice and auger during transfer, and smoothing the movement of ice into the compression passage. To provide a freezing cylinder which is improved so as to achieve stable ice making operation.

(ニ) 本発明の要点 少なくともオーガーに対応する冷凍円筒の上部
内面にオーガーの軸方向と平行に溝部及び仕上げ
目を形成して圧縮通路への氷の移動をスムーズに
行なわしめる。
(d) Key Points of the Invention At least, a groove and a finishing line are formed on the upper inner surface of the freezing cylinder corresponding to the auger in parallel to the axial direction of the auger to allow ice to move smoothly to the compression passage.

(ホ) 本発明の実施例 第1図は本発明を実施するオーガー式製氷機を
縦断面して内部構造を示しており、上下に二分割
される中空のケーシング1内部に、該ケーシング
1の外壁上面に載置されるモーターカバー2に収
納されるモーター(図示せず)の下部軸3を突出
し、その先端部を第1の螺旋歯車4に形成する。
そして、ケーシング1の底壁と上壁間に回転可能
に支持した第1の歯車軸5の上部には前記螺旋歯
車4と噛み合つてモーターの回転が伝達される第
2の螺旋歯車6を固定し、下部には第1の小歯車
7を固定する。前記第1の歯車軸5から離間して
ケーシング1の底壁と上壁間には第2の歯車軸8
を回転可能に支持し、この歯車軸8の上部には第
2の小歯車9を固定し、下部には第1の小歯車7
に噛み合う中歯車10を固定する。更に第2の小
歯車9に最終的に噛み合う大歯車11の歯車軸、
即ち出力軸12は該軸12の下部に圧入した上ハ
ウジング13Aとケーシング1の底壁に圧入した
下ハウジング13B及び両者間に介在するころ部
13Cによつて構成される下円筒ころ軸受13
と、出力軸12の上部に圧入した下ハウジング1
4Bとケーシング1の上壁に圧入した上ハウジン
グ14A及び両者間に介在するころ部14Cによ
つて構成される上円筒ころ軸受14に支持され
る。そして、この出力軸12は上円筒ころ軸受1
4の上方においてオイルシール15を施された後
にケーシング1を貫通して上方に突出する。この
ように突出した出力軸12はケーシング1と一体
に形成した低い壁16とこの低い壁16の外側に
漏水受溝17を形成する如く、やはりケーシング
1と一体に形成した高い壁18によつて包囲され
る。而して、出力軸12には先端が漏水受溝17
に臨むように傘状の水切り部材19を嵌着し、該
水切り部材19を伝わつて漏水受溝17に落下し
た漏水は高い壁18を切欠くか或るいは穴をあけ
るかして受溝17と連通する外方に低い排水通路
20に導かれて外部に排水され、ケーシング1内
部への漏水進入を防止する。而して、ケーシング
1の高い壁18上に載置され、該高い壁18にボ
ルト21にて固定される中空の支持台22内方に
位置する出力軸12の上端には軸方向に多数の縦
溝23を形成する。
(e) Embodiments of the present invention Figure 1 shows the internal structure of an auger ice maker according to the present invention in longitudinal section. A lower shaft 3 of a motor (not shown) housed in a motor cover 2 placed on the upper surface of the outer wall is protruded, and its tip is formed into a first helical gear 4 .
A second helical gear 6 that meshes with the helical gear 4 and transmits the rotation of the motor is fixed to the upper part of the first gear shaft 5 rotatably supported between the bottom wall and the top wall of the casing 1. A first small gear 7 is fixed to the lower part. A second gear shaft 8 is spaced apart from the first gear shaft 5 and between the bottom wall and the top wall of the casing 1.
A second small gear 9 is fixed to the upper part of this gear shaft 8, and a first small gear 7 is fixed to the lower part of this gear shaft 8.
The central gear 10 that meshes with is fixed. Furthermore, the gear shaft of the large gear 11 that finally meshes with the second small gear 9,
That is, the output shaft 12 has a lower cylindrical roller bearing 13 formed by an upper housing 13A press-fitted into the lower part of the shaft 12, a lower housing 13B press-fitted into the bottom wall of the casing 1, and a roller portion 13C interposed between the two.
and the lower housing 1 press-fitted into the upper part of the output shaft 12.
4B, an upper housing 14A press-fitted into the upper wall of the casing 1, and a roller portion 14C interposed between the two. This output shaft 12 has an upper cylindrical roller bearing 1
After being provided with an oil seal 15 above the casing 4, it penetrates the casing 1 and protrudes upward. The output shaft 12 that protrudes in this way is formed by a low wall 16 that is formed integrally with the casing 1 and a high wall 18 that is also formed integrally with the casing 1 so that a water leakage groove 17 is formed on the outside of this low wall 16. Be surrounded. Therefore, the tip of the output shaft 12 has a water leak receiving groove 17.
An umbrella-shaped draining member 19 is fitted so as to face the draining member 19, and leakage water that has passed through the draining member 19 and fallen into the water receiving groove 17 is removed by cutting out or drilling a hole in the high wall 18. The water is led to an outwardly low drainage passage 20 communicating with the casing 1 and drained to the outside, thereby preventing water from leaking into the inside of the casing 1. The output shaft 12 is placed on the high wall 18 of the casing 1 and is fixed to the high wall 18 with bolts 21 at the upper end of the output shaft 12 located inside the hollow support 22. A vertical groove 23 is formed.

一方、支持台22には外面に断熱壁24にて被
われた冷凍系の蒸発管25を巻回した冷凍円筒2
6が挿入され、下端にOリング27を介在させて
両者はボルト28によつて結合される。これによ
つて、支持台22上に直立した冷凍円筒26の内
部にはオーガー29が回転可能に配置され、オー
ガー29の下部軸29Aの下端には前記出力軸1
2と同様に軸方向に多数の縦溝30を形成してい
る。そして、前記出力軸12とオーガー29の下
部軸29Aの対向する面の間には冷凍円筒26内
にオーガー29を配置した際の上下方向の寸法誤
差を吸収するためにスペーサー31を配置した
後、出力軸12とオーガー29の下部軸29Aは
支持台22の内方において相互の縦溝23及び3
0に合致するスプライン継手32によつて連結さ
れ、スプライン継手32は支持台22に圧入され
たすべり軸受33に外面を支持されるとともに出
力軸12に嵌着したワツシヤー34によつて下方
向への抜けを防止される。また、冷凍円筒26内
下部には支持台22上に支持したメカニカルシー
ル35が施されて水封され、更に、シスターン
(図示せず)内の水は冷凍円筒26の下部に接続
された給水管36を介して冷凍円筒26の所定レ
ベルまで給水される。
On the other hand, on the support stand 22 is a refrigeration cylinder 2 around which an evaporation tube 25 of the refrigeration system is wrapped, the outer surface of which is covered with a heat insulating wall 24.
6 is inserted, and the two are connected by a bolt 28 with an O-ring 27 interposed at the lower end. As a result, the auger 29 is rotatably arranged inside the freezing cylinder 26 standing upright on the support stand 22, and the lower end of the lower shaft 29A of the auger 29 is connected to the output shaft 1.
2, a large number of vertical grooves 30 are formed in the axial direction. A spacer 31 is placed between the opposing surfaces of the output shaft 12 and the lower shaft 29A of the auger 29 in order to absorb vertical dimensional errors when the auger 29 is placed inside the freezing cylinder 26. The output shaft 12 and the lower shaft 29A of the auger 29 are arranged in mutual longitudinal grooves 23 and 3 inside the support base 22.
The outer surface of the spline joint 32 is supported by a sliding bearing 33 press-fitted into the support base 22, and the washer 34 fitted to the output shaft 12 allows the spline joint 32 to be Prevents it from coming off. In addition, a mechanical seal 35 supported on the support stand 22 is applied to the lower part of the freezing cylinder 26 to seal water, and the water in the cistern (not shown) is connected to a water supply pipe connected to the lower part of the freezing cylinder 26. 36 to a predetermined level of the freezing cylinder 26.

一方、オーガー29の上部軸29Bは冷凍円筒
26内に挿入された上部軸受37に支持され、上
部軸受37の周りには該軸受37の外面から所定
の間隔をおいて突出するリブ38と冷凍円筒26
の内面26Aにて区画される複数の氷圧縮通路3
9がオーガー29の軸方向と同方向に形成され、
氷圧縮通路39の延長上に臨んで上部軸受37と
一体に氷折部40が形成される。そして、上部軸
受37は冷凍円筒26の外面に挿入されるL字型
の氷案内管41とともにボルト42によつて冷凍
円筒26に共締め結合される。更に、案内管41
の内部には氷圧縮通路39から連続的に上昇し、
氷折部40にて所定形状に折られた氷片を放出口
41Aに向けて移動させるアジテーター43を前
記オーガー29の上部軸29Bの端部に螺着して
回転可能に配置している。
On the other hand, the upper shaft 29B of the auger 29 is supported by an upper bearing 37 inserted into the freezing cylinder 26, and around the upper bearing 37 are ribs 38 protruding from the outer surface of the bearing 37 at a predetermined interval. 26
A plurality of ice compression passages 3 divided by the inner surface 26A of
9 is formed in the same direction as the axial direction of the auger 29,
An ice breaking section 40 is formed integrally with the upper bearing 37 facing an extension of the ice compression passage 39. The upper bearing 37 and the L-shaped ice guide tube 41 inserted into the outer surface of the freezing cylinder 26 are jointly fastened to the freezing cylinder 26 by bolts 42 . Furthermore, the guide tube 41
Inside the ice condensation passage 39 rises continuously,
An agitator 43 for moving ice pieces broken into a predetermined shape by the ice breaking section 40 toward the outlet 41A is screwed onto the end of the upper shaft 29B of the auger 29 and is rotatably arranged.

而して、冷凍円筒26の内面26Aには第2図
にも詳図する如く、オーガー29の軸方向と平行
に凹溝44が所定の間隔を存して複数個形成され
る。凹溝44は少なくともオーガー29の上部に
対応し圧縮通路39に至る冷凍円筒26の上部内
面26Aに形成されていればよいが、この溝44
をシエーパーにて一本ずつ切削するのには比較的
作業時間を必要とするため、比較的時間を必要と
しない引き抜き加工によつて、図示する如く冷凍
円筒26の全長に亘つて形成してもよい。
As shown in detail in FIG. 2, a plurality of grooves 44 are formed on the inner surface 26A of the freezing cylinder 26 at predetermined intervals in parallel to the axial direction of the auger 29. The groove 44 may be formed at least on the upper inner surface 26A of the freezing cylinder 26 corresponding to the upper part of the auger 29 and reaching the compression passage 39;
Since it takes a relatively long time to cut the frozen cylinder 26 one by one with a shaper, it is possible to form the entire length of the frozen cylinder 26 as shown in the figure by drawing, which does not require a relatively long time. good.

そして、前記凹溝44の具体的寸法を参考まで
に表示すると、開口巾(1.5mm)、深さ(0.5mm)
程度で十分に効果を発揮した。
For reference, the specific dimensions of the groove 44 are as follows: opening width (1.5 mm), depth (0.5 mm).
It was sufficiently effective.

更に、各凹溝44間にはやはりオーガー29の
軸方向と平行した多数の仕上げ目45を形成す
る。この仕上げ目45を製作する1つの手段とし
て、多孔質の柔軟性樹脂材料、例えば多孔質のナ
イロンに研摩剤を付着した研摩材を使用し、該研
摩材を冷凍円筒26に挿入してオーガー29の軸
方向に移動して冷凍円筒26の内面26Aを研摩
することによつて仕上げ目45は形成される。そ
して研摩材の移動回数によつて冷凍円筒26の内
面26Aを6S(6ミクロン)以下の表面粗さに
仕上げることによつて十分に効果を発揮した。
Further, a large number of finishing lines 45 are formed between each groove 44 in parallel with the axial direction of the auger 29. One means of producing this finish 45 is to use an abrasive material in which an abrasive agent is attached to a porous flexible resin material, such as porous nylon, and insert the abrasive material into the freezing cylinder 26 to form the auger 29. The finishing marks 45 are formed by polishing the inner surface 26A of the freezing cylinder 26 by moving in the axial direction. By changing the number of times the abrasive was moved, the inner surface 26A of the freezing cylinder 26 was finished to a surface roughness of 6S (6 microns) or less, and the effect was sufficiently exhibited.

なお、前記溝形状は凹溝44に限定されるもの
ではなく第3図に詳図する如く、V型溝46であ
つてもよい。
Note that the groove shape is not limited to the concave groove 44, but may be a V-shaped groove 46 as shown in detail in FIG.

次に、以上の構成に基づき動作を説明する。製
氷運転が開始すると蒸発管25に冷媒が流れて冷
凍円筒26を冷却し、冷凍円筒26の所定レベル
に供給されている水は該冷凍円筒26の内面26
Aに除々に氷結していく。一方、モーターの回転
は第1の螺旋歯車4から第2の螺旋歯車6に伝達
され、この回転は第2の螺旋歯車6と同軸の第1
の小歯車7を介して中歯車10に伝達され、更
に、この回転は第2の小歯車9を介して大歯車1
1に伝達される。そして、大歯車11の回転は1
分間に略10数回転程度まで減速され、この回転は
出力軸12を介して最終的にオーガー29に伝達
される。
Next, the operation will be explained based on the above configuration. When the ice-making operation starts, refrigerant flows through the evaporation tube 25 to cool the freezing cylinder 26, and the water supplied to a predetermined level of the freezing cylinder 26 flows through the inner surface 26 of the freezing cylinder 26.
It gradually freezes to A. On the other hand, the rotation of the motor is transmitted from the first helical gear 4 to the second helical gear 6, and this rotation is transmitted to the first helical gear 6 coaxial with the second helical gear 6.
This rotation is further transmitted to the large gear 10 via the second small gear 9.
1. Then, the rotation of the large gear 11 is 1
The rotation speed is reduced to about 10 rotations per minute, and this rotation is finally transmitted to the auger 29 via the output shaft 12.

而して、オーガー29によつて削り取られた冷
凍円筒26の内面26Aに凍結した氷は前記凹溝
44と仕上げ目45の作用により、オーガー29
の軸方向と平行して冷凍円筒26の内部をスムー
ズに上昇する。そして、圧縮通路39の手前にお
いて、オーガー29と共に同期回転する傾向にあ
る比較的水分量の少ない氷は凹溝44にひつかか
り、オーガー29との同期回転を完全に阻止さ
れ、オーガー29による上昇力のみ付与されてス
ムーズに圧縮通路39に進入する。この圧縮通路
39ではほとんどの水分が除去されて硬質化し、
圧縮通路39から出るときに氷折部40にて所定
寸法に折られた硬質の氷片を連続的に放出する。
The ice frozen on the inner surface 26A of the freezing cylinder 26 scraped off by the auger 29 is removed by the auger 29 by the action of the grooves 44 and the finishing lines 45.
The refrigeration cylinder 26 smoothly rises in parallel with the axial direction of the refrigeration cylinder 26. In front of the compression passage 39, ice with a relatively low water content that tends to rotate synchronously with the auger 29 gets stuck in the groove 44 and is completely prevented from rotating synchronously with the auger 29, causing the upward force of the auger 29 to be prevented. is applied and smoothly enters the compression passage 39. In this compression passage 39, most of the moisture is removed and the material becomes hard.
When coming out of the compression passage 39, hard ice pieces that are broken into a predetermined size by an ice breaking section 40 are continuously released.

(ヘ) 本発明の効果 冷凍円筒内面に形成せる本発明の溝部と仕上げ
目の構成は、オーガーによつて削り取られた氷が
圧縮通路に向けて上昇する途中における氷詰まり
及びオーガーとの同期回転を確実に防止できるた
め、異常音の発生を皆無にできるとともに過大負
荷を減少し、以つて、氷は圧縮通路に向けてスム
ーズに上昇し、常時、安定した製氷を挙行するこ
とができる。
(f) Effects of the present invention The structure of the grooves and finishing lines of the present invention formed on the inner surface of the freezing cylinder prevents ice from clogging while the ice scraped by the auger ascends toward the compression passage, and from synchronous rotation with the auger. Since this can be reliably prevented, abnormal noises can be completely eliminated, excessive loads can be reduced, and the ice can rise smoothly toward the compression passage, allowing stable ice making to be carried out at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のオーガー式製氷機の縦断面
図、第2図は冷凍円筒の一部を破断して本発明の
一実施例を開示する冷凍円筒の斜視図、第3図は
同じく本発明の他の実施例を開示する冷凍円筒の
斜視図である。 26……冷凍円筒、26A……冷凍円筒内面、
29……オーガー、44,46……溝部、45…
…仕上げ目。
FIG. 1 is a longitudinal cross-sectional view of an auger-type ice maker according to the present invention, FIG. 2 is a perspective view of a freezing cylinder with a portion of the freezing cylinder cut away to disclose an embodiment of the present invention, and FIG. FIG. 7 is a perspective view of a freezing cylinder disclosing another embodiment of the invention. 26...Frozen cylinder, 26A...Frozen cylinder inner surface,
29... Auger, 44, 46... Groove, 45...
...Finishing.

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍円筒の内部に回転可能に配置したオーガ
ーによつて、円筒内面に成長した氷を削り取つて
上方に移送し、これを圧縮通路で圧縮して硬質の
氷片を連続的に作るオーガー式製氷機において、
少なくとも前記オーガーと圧縮通路に対応する前
記冷凍円筒の上部内面に所定の間隔を存してオー
ガーの軸方向と平行した複数の溝部を形成し、該
溝部間の冷却円筒内面には溝と平行に多数の仕上
げ目を形成した事を特徴とするオーガー式製氷
機。
1. An auger type that uses an auger rotatably placed inside a freezing cylinder to scrape off ice that has grown on the inside of the cylinder, transports it upward, and compresses it in a compression passage to continuously create hard ice pieces. In the ice machine,
A plurality of grooves parallel to the axial direction of the auger are formed at predetermined intervals on the upper inner surface of the freezing cylinder corresponding to at least the auger and the compression passage, and the inner surface of the cooling cylinder between the grooves is parallel to the grooves. An auger-type ice maker characterized by the formation of numerous finishing marks.
JP57127176A 1982-07-20 1982-07-20 Auger type ice machine Granted JPS5918363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127176A JPS5918363A (en) 1982-07-20 1982-07-20 Auger type ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127176A JPS5918363A (en) 1982-07-20 1982-07-20 Auger type ice machine

Publications (2)

Publication Number Publication Date
JPS5918363A JPS5918363A (en) 1984-01-30
JPS6151231B2 true JPS6151231B2 (en) 1986-11-07

Family

ID=14953547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127176A Granted JPS5918363A (en) 1982-07-20 1982-07-20 Auger type ice machine

Country Status (1)

Country Link
JP (1) JPS5918363A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6691529B2 (en) 2001-10-12 2004-02-17 Hoshizaki Electric Co., Ltd. Auger type ice-making machine
JP2003207240A (en) * 2002-01-15 2003-07-25 Nakajou:Kk Auger type ice maker
JPWO2004046625A1 (en) 2002-11-19 2006-03-16 ホシザキ電機株式会社 Auger ice machine
JP2006220369A (en) * 2005-02-10 2006-08-24 Hoshizaki Electric Co Ltd Method of manufacturing ice making cylinder used in auger type ice making machine
JP2021025752A (en) * 2019-08-09 2021-02-22 ホシザキ株式会社 Ice making machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126556A (en) * 1977-04-13 1978-11-04 Hoshizaki Electric Co Ltd Auger-type ice-making machine
JPS54101537A (en) * 1978-01-09 1979-08-10 King Seeley Thermos Co Ice extruder
JPS5780161A (en) * 1980-10-31 1982-05-19 Intercont Ziegra Eismasch Grain ice maker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126556A (en) * 1977-04-13 1978-11-04 Hoshizaki Electric Co Ltd Auger-type ice-making machine
JPS54101537A (en) * 1978-01-09 1979-08-10 King Seeley Thermos Co Ice extruder
JPS5780161A (en) * 1980-10-31 1982-05-19 Intercont Ziegra Eismasch Grain ice maker

Also Published As

Publication number Publication date
JPS5918363A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
US4497184A (en) Auger-type ice making apparatus for producing high quality ice
US4467622A (en) Auger-type icemaker
JPS6151231B2 (en)
US3494144A (en) Rotary drum flake ice maker
JPS6186670U (en)
US2788643A (en) Vertical frozen milk machine
KR200218038Y1 (en) A produce apparatus of pieces of ice
US3654770A (en) Ice maker construction
US3704599A (en) Compression means for flake ice water
US2735275A (en) Inyentor
US4549408A (en) Cube icemaker with rotary ice remover means
KR0178693B1 (en) Polygonal ice making apparatus
KR930000306Y1 (en) Apparatus for making shaved ice
US2490324A (en) Flake ice making machine
KR950003048Y1 (en) Ice-maker
JPS6141391B2 (en)
KR20170003707U (en) Snow ice maker
JPS63125762U (en)
US3162022A (en) Auger ice making machine
KR200480759Y1 (en) Snow ice maker
JPS6132306Y2 (en)
US5664434A (en) Auger and auger type ice making machine using the auger
JPS626452Y2 (en)
KR20030062201A (en) ice machine in auger type
JPS6128995Y2 (en)