JPS6141391B2 - - Google Patents

Info

Publication number
JPS6141391B2
JPS6141391B2 JP57138837A JP13883782A JPS6141391B2 JP S6141391 B2 JPS6141391 B2 JP S6141391B2 JP 57138837 A JP57138837 A JP 57138837A JP 13883782 A JP13883782 A JP 13883782A JP S6141391 B2 JPS6141391 B2 JP S6141391B2
Authority
JP
Japan
Prior art keywords
ice
auger
cooling cylinder
wall
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57138837A
Other languages
Japanese (ja)
Other versions
JPS5929961A (en
Inventor
Nobuyuki Yoshida
Masahiro Kobayashi
Naryuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57138837A priority Critical patent/JPS5929961A/en
Priority to US06/418,192 priority patent/US4467622A/en
Publication of JPS5929961A publication Critical patent/JPS5929961A/en
Publication of JPS6141391B2 publication Critical patent/JPS6141391B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 発明の分野 本発明はオーガー式製氷機に関し、特に、上部
軸受の外周に形成される氷圧縮通路の改良構成に
関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of the Invention The present invention relates to an auger ice maker, and more particularly to an improved structure of an ice compression passage formed on the outer periphery of an upper bearing.

(ロ) 従来技術とその問題点 従来、この種の製氷機において、氷の圧縮度を
高くする圧縮通路を形成したとき冷却円筒内にお
いて削取された氷に含まれる空気を圧縮通路から
排出することがほとんどできず空気の一部が徐々
に冷却円筒の内部に蓄積していき、空気量が増加
するのに伴なつて蒸発温度が低下していき遂には
過冷却運転となつて製氷運転を続行できなくなる
欠点を奏していた。
(b) Prior art and its problems Conventionally, in this type of ice maker, when a compression passage is formed to increase the degree of compression of ice, the air contained in the ice scraped in the cooling cylinder is discharged from the compression passage. As the amount of air increases, the evaporation temperature decreases until the ice making operation becomes supercooled. He was playing a flaw that made it impossible to continue.

(ハ) 本発明の目的 冷却円筒内において削取された氷の中に含まれ
る空気を氷圧縮機能を損なわずに冷却円筒外に排
出し、過冷却運転を防止して安定した製氷運転を
行なうようにする。
(c) Objective of the present invention To discharge the air contained in the ice scraped inside the cooling cylinder to the outside of the cooling cylinder without impairing the ice compression function, thereby preventing overcooling operation and performing stable ice-making operation. Do it like this.

(ホ) 本発明の実施例 第1図は本発明を実施するオーガー式製氷機を
縦断面して内部構造を示しており、上下に二分割
される中空のケーシング1内部に、該ケーシング
1の外壁上面に載置されるモーターカバー2に収
納されるモーター(図示せず)の下部軸3を突出
し、その先端部を第1の螺旋歯車4に形成する。
そして、ケーシング1の底壁と上壁間に回転可能
に支持した第1の歯車軸5の上部には前記螺旋歯
車4と噛み合つてモーターの回転が伝達される第
2の螺旋歯車6を固定し、下部には第1の小歯車
7を固定する。前記第1の歯車軸5から離間して
ケーシング1の底壁と上壁間には第2の歯車軸8
を回転可能に支持し、この歯車軸8の上部には第
2の小歯車9を固定し、下部には第1の小歯車7
に噛み合う中歯車10を固定する。更に、第2の
小歯車9に最終的に噛み合う大歯車11の歯車
軸、即ち、出力軸12は該軸12の下部に圧入し
た上ハウジング13Aとケーシング1の底壁に圧
入した下ハウジング13B及び両者間に介在する
ころ部13Cによつて構成される下円筒ころ軸受
13と、出力軸12の上部に圧入した下ハウジン
グ14Bとケーシング1の上壁に圧入した上ハウ
ジング14A及び両者間に介在するころ部14C
によつて構成される上円筒ころ軸受14に支持さ
れる。そして、この出力軸12は上円筒ころ軸受
14の上方においてオイルシール15を施された
後にケーシング1を貫通して上方に突出する。こ
のように突出した出力軸12はケーシング1と一
体に形成した低い壁16とこの低い壁16の外側
に漏水受溝17を形成する如く、やはりケーシン
グ1と一体に形成した高い壁18によつて包囲さ
れる。而して、出力軸12には先端が漏水受溝1
7に臨むように傘状の水切り部材19を嵌着し、
該水切り部材19を伝わつて漏水受溝17に落下
した漏水は高い壁18を切欠くか或るいは穴をあ
けるかして受溝17と連通する外方に低い排水通
路20に導かれて外部に排水され、ケーシング1
内部への漏水進入を防止する。而して、ケーシン
グ1の高い壁18上に載置され、該高い壁18に
ボルト21にて固定される中空の支持台22内方
に位置する出力軸12の上端には軸方向に多数の
縦溝23を形成する。
(e) Embodiments of the present invention Figure 1 shows the internal structure of an auger ice maker according to the present invention in longitudinal section. A lower shaft 3 of a motor (not shown) housed in a motor cover 2 placed on the upper surface of the outer wall is protruded, and its tip is formed into a first helical gear 4 .
A second helical gear 6 that meshes with the helical gear 4 and transmits the rotation of the motor is fixed to the upper part of the first gear shaft 5 rotatably supported between the bottom wall and the top wall of the casing 1. A first small gear 7 is fixed to the lower part. A second gear shaft 8 is spaced apart from the first gear shaft 5 and between the bottom wall and the top wall of the casing 1.
A second small gear 9 is fixed to the upper part of this gear shaft 8, and a first small gear 7 is fixed to the lower part of this gear shaft 8.
The central gear 10 that meshes with is fixed. Further, the gear shaft of the large gear 11 that finally meshes with the second small gear 9, that is, the output shaft 12, has an upper housing 13A press-fitted into the lower part of the shaft 12, a lower housing 13B press-fitted into the bottom wall of the casing 1, and a lower housing 13B press-fitted into the bottom wall of the casing 1. A lower cylindrical roller bearing 13 composed of a roller portion 13C interposed between the two, a lower housing 14B press-fitted into the upper part of the output shaft 12, an upper housing 14A press-fitted into the upper wall of the casing 1, and an upper housing 14A interposed between the two. Roller part 14C
The upper cylindrical roller bearing 14 is supported by an upper cylindrical roller bearing 14. The output shaft 12 is provided with an oil seal 15 above the upper cylindrical roller bearing 14, and then penetrates the casing 1 and projects upward. The output shaft 12 that protrudes in this way is formed by a low wall 16 that is formed integrally with the casing 1 and a high wall 18 that is also formed integrally with the casing 1 so that a water leakage groove 17 is formed on the outside of this low wall 16. Be surrounded. Therefore, the tip of the output shaft 12 has a water leak receiving groove 1.
Fit the umbrella-shaped draining member 19 so as to face 7,
Leakage water that has passed through the draining member 19 and fallen into the leakage receiving groove 17 is guided to the outside by a low drainage passage 20 that communicates with the receiving groove 17 by cutting out or making a hole in the high wall 18. casing 1
Prevents water from entering the interior. The output shaft 12 is placed on the high wall 18 of the casing 1 and is fixed to the high wall 18 with bolts 21 at the upper end of the output shaft 12 located inside the hollow support base 22. A vertical groove 23 is formed.

一方、支持台22には外面に断熱壁24にて被
われた冷凍系の蒸発管25を巻回した冷却円筒2
6が挿入され、下端にOリング27を介在させて
両者はボルト28によつて結合される。これによ
つて、支持台22上に直立した冷却円筒26の内
部にはオーガー29が回転可能に配置され、オー
ガー29の下部軸29Aの下端には前記出力軸1
2と同様に軸方向に多数の縦溝30を形成してい
る。そして、前記出力軸12とオーガー29の下
部軸29Aの対向する面の間には冷却円筒26内
にオーガー29を配置した際の上下方向の寸法誤
差を吸収するためにスペーサー31を配置した
後、出力軸12とオーガー29の下部軸29Aは
支持台22の内方において相互の縦溝23及び3
0に合致するスプライン継手32によつて連結さ
れ、スプライン継手32は支持台22に圧入され
たすべり軸受33に外面を支持されるとともに出
力軸12に嵌着したワツシヤー34によつて下方
向への抜けを防止される。また、冷却円筒26内
下部には支持台22上に支持したメカニカルシー
ル35が施されて水封され、更に、シスターン
(図示せず)内の水は冷却円筒26の下部に接続
された給水管36を介して冷却円筒26の所定レ
ベルまで給水される。
On the other hand, on the support stand 22, there is a cooling cylinder 2 around which an evaporation tube 25 of the refrigeration system is wrapped, the outer surface of which is covered with a heat insulating wall 24.
6 is inserted, and the two are connected by a bolt 28 with an O-ring 27 interposed at the lower end. As a result, the auger 29 is rotatably arranged inside the cooling cylinder 26 that stands upright on the support stand 22, and the lower end of the lower shaft 29A of the auger 29 is connected to the output shaft 1.
2, a large number of vertical grooves 30 are formed in the axial direction. A spacer 31 is placed between the opposing surfaces of the output shaft 12 and the lower shaft 29A of the auger 29 in order to absorb vertical dimensional errors when the auger 29 is placed inside the cooling cylinder 26. The output shaft 12 and the lower shaft 29A of the auger 29 are arranged in mutual longitudinal grooves 23 and 3 inside the support base 22.
The spline joint 32 is connected by a spline joint 32 that matches the angle 0, and the spline joint 32 is supported on its outer surface by a sliding bearing 33 press-fitted into the support base 22, and is rotated downward by a washer 34 fitted to the output shaft 12. Prevents it from coming off. In addition, a mechanical seal 35 supported on the support stand 22 is applied to the lower part of the cooling cylinder 26 to seal water, and the water in the cistern (not shown) is connected to a water supply pipe connected to the lower part of the cooling cylinder 26. 36 to a predetermined level of the cooling cylinder 26.

一方、オーガー29の上部回転軸29Bは冷却
円筒26内に挿入された上部軸受37に支持され
る。上部軸受37の外周には複数の氷圧縮通路3
8が形成され、第2図にも詳図する如く、上部軸
受37の周面39から半径方向に等間隔に突出
し、下端を削取氷の侵入を円滑に行なわしめるよ
うにテーパー状に形成した計6個の圧縮リブ40
を形成し、軸受周面39の上部には氷折部41が
形成され、これらは上部軸受37と一体形成され
ている。更に、軸受周面39は下部を傾斜し、こ
れと連続した上部を平行に形成している。
On the other hand, the upper rotating shaft 29B of the auger 29 is supported by an upper bearing 37 inserted into the cooling cylinder 26. A plurality of ice compression passages 3 are provided on the outer periphery of the upper bearing 37.
8, which protrude from the circumferential surface 39 of the upper bearing 37 at equal intervals in the radial direction, and the lower end is tapered to allow smooth penetration of scraped ice. Total of 6 compression ribs 40
An ice break section 41 is formed at the upper part of the bearing circumferential surface 39, and these are formed integrally with the upper bearing 37. Further, the bearing circumferential surface 39 has a lower part inclined and a continuous upper part parallel to the lower part.

そして、上部軸受37はオーガー29の上部回
転軸29Aに挿入され、冷却円筒26の外面に挿
入したL字型氷案内管42とともにボルト43に
よつて冷却円筒26に結合される。これによつ
て、圧縮リブ40の外面は冷却円筒26の内壁2
6Aに当接し、該円筒26の内壁26A、相隣る
圧縮リブ40及び軸受周面39にて区画される6
個の氷圧縮通路38が形成される。更に、案内管
42の内部には放出口42Aに向けてチツプアイ
スを移動させるアジテーター44をオーガー29
の上部回転軸29Bの端部に螺着して回転可能に
配置している。
The upper bearing 37 is inserted into the upper rotating shaft 29A of the auger 29 and coupled to the cooling cylinder 26 by bolts 43 together with an L-shaped ice guide tube 42 inserted into the outer surface of the cooling cylinder 26. Thereby, the outer surface of the compression rib 40 is connected to the inner wall 2 of the cooling cylinder 26.
6A and is defined by the inner wall 26A of the cylinder 26, the adjacent compression ribs 40, and the bearing circumferential surface 39.
ice compression passages 38 are formed. Furthermore, an agitator 44 is installed inside the guide tube 42 to move the chip ice toward the discharge port 42A.
It is screwed onto the end of the upper rotating shaft 29B and is rotatably arranged.

而して、軸受周面39には圧縮通路38の中に
おいて該通路38と略平行した溝45が形成さ
れ、該溝45の上端は圧縮通路38の外部と連通
している。そして、溝45は6個の圧縮通路38
のうち1つおきに3個所の軸受周面39に形成さ
れている。(第3図に断面図を示す。) 次に、以上の構成に基づいてチツプアイスの製
造動作及び空気排出動作を説明する。製氷運転が
開始すると蒸発管25に冷媒が流れて冷却円筒2
6を冷却し、冷却円筒26の所定レベルに供給さ
れている水は該冷却円筒26の内壁26Aに徐々
に氷結していく。一方、モーターの回転は第1の
螺旋歯車4から第2の螺旋歯車6に伝達され、こ
の回転は第2の螺旋歯車6と同軸の第1の小歯車
7を介して中歯車10に伝達され、更に、この回
転は第2の小歯車9を介して大歯車11に伝達さ
れる。そして、大歯車11の回転は1分間に略10
数回転程度まで減速され、この回転は出力軸12
を介して最終的にオーガー29に伝達される。
A groove 45 substantially parallel to the compression passage 38 is formed in the bearing circumferential surface 39 in the compression passage 38, and the upper end of the groove 45 communicates with the outside of the compression passage 38. The groove 45 has six compression passages 38.
They are formed at every other three locations on the bearing circumferential surface 39. (A sectional view is shown in FIG. 3.) Next, the chip ice manufacturing operation and air evacuation operation will be explained based on the above configuration. When the ice-making operation starts, refrigerant flows into the evaporator tube 25 and cools the cooling cylinder 2.
6, and the water supplied to a predetermined level of the cooling cylinder 26 gradually freezes on the inner wall 26A of the cooling cylinder 26. On the other hand, the rotation of the motor is transmitted from the first helical gear 4 to the second helical gear 6, and this rotation is transmitted to the intermediate gear 10 via the first small gear 7 coaxial with the second helical gear 6. Furthermore, this rotation is transmitted to the large gear 11 via the second small gear 9. The rotation of the large gear 11 is approximately 10 times per minute.
The speed is reduced to several rotations, and this rotation is caused by the output shaft 12.
It is finally transmitted to the auger 29 via.

而して、冷却円筒26の内壁26Aに成長した
氷はオーガー29によつて削取され上方に移送さ
れていき氷圧縮通路38に侵入し、ここで徐々に
水分を除去されて硬質化していき圧縮通路38は
ほとんど水分を含まない氷によつて満たされる。
しかし、圧縮通路38内における氷相互の摩擦抵
抗によつて溝45の特に内方部分には氷が到達せ
ず、この部分が空胴となる。従つて、削取氷に含
まれる空気泡はこの溝45の内部に逃げ、圧縮通
路38を上昇する氷の移動に伴なつて溝45の内
部を上昇していき、上端から圧縮通路38の外へ
排出される。
The ice that has grown on the inner wall 26A of the cooling cylinder 26 is scraped off by the auger 29 and transported upwards, entering the ice compression passage 38, where water is gradually removed and the ice becomes hard. The compression passage 38 is filled with ice containing almost no water.
However, due to the frictional resistance between the ice in the compression passage 38, the ice does not reach the inner part of the groove 45, and this part becomes a cavity. Therefore, the air bubbles contained in the shaved ice escape into the groove 45, and as the ice moves up the compression passage 38, it ascends inside the groove 45, and flows from the upper end to the outside of the compression passage 38. is discharged to.

なお、上記実施例による溝数は3個所の軸受周
面39に形成して良好な空気排出効果が得られた
が、この効果を逸脱しない範囲において溝数を増
減できる事は勿論である。
In the above embodiment, the number of grooves was formed at three locations on the bearing circumferential surface 39 to obtain a good air exhaust effect, but it is of course possible to increase or decrease the number of grooves within a range that does not deviate from this effect.

また、本発明の他の実施例として第4図に示す
如く、圧縮リブ40に上記同様の溝46を形成し
ても良好な結果が得られた。
Further, as shown in FIG. 4 as another embodiment of the present invention, good results were obtained by forming grooves 46 similar to those described above in the compression ribs 40.

(ヘ) 本発明の効果 本発明は氷圧縮通路を形成する軸受周面若しく
は圧縮リブに圧縮通路と略平行し上端が通路外と
連通した溝を形成することにより、削取氷に含ま
れる空気泡を前記溝から確実に排出できるため冷
却円筒内における過冷却を防止し、安定した製氷
運転を挙行することができる。
(f) Effects of the present invention The present invention is capable of removing air contained in shaved ice by forming a groove on the bearing peripheral surface or compression rib that forms the ice compression passage, which is approximately parallel to the compression passage and whose upper end communicates with the outside of the passage. Since bubbles can be reliably discharged from the groove, overcooling within the cooling cylinder can be prevented and stable ice-making operation can be performed.

また、氷圧縮通路における氷圧縮機能を損うこ
となく、しかも、圧縮通路を上昇する氷の移動に
よつて空気移動が助勢され一層確実に空気排出を
行なうことができるものである。
Further, the ice compression function in the ice compression passage is not impaired, and air movement is assisted by the movement of ice rising in the compression passage, so that air can be discharged more reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のオーガー式製氷機の縦断面
図、第2図は同じく上部軸受の斜視図、第3図は
第2図の横断面図、第4図は本発明の他の実施例
を示す上部軸受の横断面図である。 38……氷圧縮通路、39……軸受周面、40
……圧縮リブ、45,46……溝。
Fig. 1 is a longitudinal cross-sectional view of the auger ice maker of the present invention, Fig. 2 is a perspective view of the upper bearing, Fig. 3 is a cross-sectional view of Fig. 2, and Fig. 4 is another embodiment of the present invention. FIG. 3 is a cross-sectional view of the upper bearing. 38... Ice compression passage, 39... Bearing circumferential surface, 40
...Compression ribs, 45, 46...grooves.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却円筒の内壁に成長する氷を削取する削氷
用オーガーを冷却円筒内に回転可能に配置し、前
記オーガーの上部回転軸を支持するとともに周面
から半径方向に突出し軸方向に延びて円筒内壁に
当接する複数の圧縮リブを形成した上部軸受を固
定配置し、削取氷を相隣る圧縮リブと軸受周面と
冷却円筒内壁によつて区画される通路内で圧縮し
てチツプアイスを作るオーガー式製氷機におい
て、前記軸受周面若しくは圧縮リブには前記通路
内において該通路と略平行し上端が通路外と連通
した溝を形成した事を特徴とするオーガー式製氷
機。
1. An ice-shaving auger for scraping ice that grows on the inner wall of the cooling cylinder is rotatably arranged within the cooling cylinder, and an ice-shaving auger that supports the upper rotating shaft of the auger and protrudes radially from the circumferential surface and extends in the axial direction. An upper bearing formed with a plurality of compression ribs that abuts the inner wall of the cylinder is fixedly arranged, and the shaved ice is compressed in a passage defined by the adjacent compression ribs, the circumferential surface of the bearing, and the inner wall of the cooling cylinder to form chip ice. The auger type ice maker is characterized in that the bearing circumferential surface or the compression rib is provided with a groove within the passage that is substantially parallel to the passage and whose upper end communicates with the outside of the passage.
JP57138837A 1981-09-18 1982-08-09 Auger type ice machine Granted JPS5929961A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57138837A JPS5929961A (en) 1982-08-09 1982-08-09 Auger type ice machine
US06/418,192 US4467622A (en) 1981-09-18 1982-09-15 Auger-type icemaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138837A JPS5929961A (en) 1982-08-09 1982-08-09 Auger type ice machine

Publications (2)

Publication Number Publication Date
JPS5929961A JPS5929961A (en) 1984-02-17
JPS6141391B2 true JPS6141391B2 (en) 1986-09-13

Family

ID=15231365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138837A Granted JPS5929961A (en) 1981-09-18 1982-08-09 Auger type ice machine

Country Status (1)

Country Link
JP (1) JPS5929961A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174729A (en) * 2008-01-22 2009-08-06 Hoshizaki Electric Co Ltd Auger type ice making machine

Also Published As

Publication number Publication date
JPS5929961A (en) 1984-02-17

Similar Documents

Publication Publication Date Title
US4512160A (en) Machine for making ice flakes from sea water or fresh water
US4497184A (en) Auger-type ice making apparatus for producing high quality ice
US2080639A (en) Ice making machine
JPS6186670U (en)
US3494144A (en) Rotary drum flake ice maker
KR101552613B1 (en) Rotary drum type Ice machine for recovering discarded refrigerants
JPS6141391B2 (en)
US5606869A (en) Cylindrical ice cube maker
US3310958A (en) Salt water ice making machine
JPS6151231B2 (en)
US4549408A (en) Cube icemaker with rotary ice remover means
US2735275A (en) Inyentor
KR20120020884A (en) Ice making apparatus using rotational cutter
SU444926A1 (en) Device for cooling water and ice
JPH0212549Y2 (en)
US2691277A (en) Ice-making apparatus and method
US3309891A (en) Salt water ice making machine
WO2003004949A1 (en) Device and method for storing and regenerating a two-phase coolant fluid
KR200480759Y1 (en) Snow ice maker
JPS6132309Y2 (en)
JPS5937653Y2 (en) Auger ice maker
US3162022A (en) Auger ice making machine
US1844029A (en) Refrigerating machine
KR102342371B1 (en) Ice making module for vertical auger type ice maker
SU1013710A1 (en) Ice generator