JPS6151154A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6151154A
JPS6151154A JP17355884A JP17355884A JPS6151154A JP S6151154 A JPS6151154 A JP S6151154A JP 17355884 A JP17355884 A JP 17355884A JP 17355884 A JP17355884 A JP 17355884A JP S6151154 A JPS6151154 A JP S6151154A
Authority
JP
Japan
Prior art keywords
wavelength
atoms
photoconductive layer
light
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17355884A
Other languages
Japanese (ja)
Inventor
Katsumi Suzuki
克己 鈴木
Takeshi Ueno
毅 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17355884A priority Critical patent/JPS6151154A/en
Publication of JPS6151154A publication Critical patent/JPS6151154A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve the photosensitivity to coherent light of a long wavelength and to prevent the generation of interference fringes by constituting a photoconductive layer of hydrogenated amorphous silicon incorporated with a specific atomic ratio of hydrogen atoms into silicon atoms. CONSTITUTION:The photoconductive layer 2 consisting of the hydrogenerated amorphous silicon which is obtd. by incorporating the hydrogen atoms into the silicon atoms, used as a base body, at <=10atom% by with respect to the silicon atoms and has 1.55-1.66eV optical band gap and <=10<7>OMEGAcm bright resistance to light irradiation of 10<15>/cm<2> photons at 780nm wavelength is formed on a conductive substrate 1 consisting of aluminum, etc. by which the intended electrophotographic sensitive body is obtd. The resultant electrophotographic sensitive body has substantial photosensitivity even with the coherent light near 800nm wavelength and obviates the generation of the interference fringes occurring in the reflection of incident light on the surface of the substrate 1.

Description

【発明の詳細な説明】 [発明の技術分野] [発明の技術的背景とその問題点コ 従来、電子71貞感光体としてはSc 、 Se −T
O系、”ZnO系、Cd S系、有UN 光導電体(0
゜P、C)などが用いられていた。ところがCdS系の
ものは人体に有害であるという理由でその使用が禁止さ
れている地域もある。3c 、 3e −TO系のもの
は感度及び長寿命という点で電子写真プロセスに適して
はいるが、結晶化温度が60″CPi麿と低(しかも電
子写真感光体を漏えたa置の内部雰囲気は通常45℃を
越えるので徐々に微結易化が進んも特性の劣化を生じた
り、ビッカース硬度が40程度であるのでクリーニング
ブレードなどとの機械的接触により陥没などの損(口を
受は易いという間煽があった。一方ZnO系や有傭光尋
電体は樹脂に分散させて心電性基体上へ塗布して製造J
るので、製造が蓉易で無公害である反面耐湿性が悪く寿
命が短いという問題があった。
[Detailed Description of the Invention] [Technical Field of the Invention] [Technical Background of the Invention and Problems Thereto Conventionally, Sc, Se-T photoreceptors have been used as electronic 71 photoreceptors.
O-based, ZnO-based, Cd S-based, UN photoconductor (0
゜P, C) etc. were used. However, in some areas, the use of CdS-based substances is prohibited because they are harmful to the human body. 3c, 3e -TO type products are suitable for electrophotographic processes in terms of sensitivity and long life, but their crystallization temperature is as low as 60" CPi (in addition, the internal atmosphere at position A where leakage from the electrophotographic photoreceptor is Normally, the temperature exceeds 45°C, so even though it gradually becomes easier to form fine particles, its properties deteriorate, and the Vickers hardness is around 40, so mechanical contact with cleaning blades etc. can cause damage such as caving (easily damaged). On the other hand, ZnO-based and non-containing dielectric materials are manufactured by dispersing them in resin and coating them on electrocardiographic substrates.
Therefore, although it is easy to manufacture and non-polluting, it has poor moisture resistance and a short lifespan.

このため釘年においては上述の欠点を解消することので
きるアモルファスシリコンが電子写真感光体の材料とし
人注目されている。このアモルファスシリコンを利用し
た電子写真感光体(以下a−8i悪感光とも称する)は
、800nmの長波長にまで分光感度を有する、ビッカ
ース硬度が1000と硬くその寿命は複写枚数に換算す
ると100万枚に及ぶ、導電性基体上に成膜するときそ
の基体温度が200〜250℃と高いので少なくとも1
00℃以下の使用雰囲気下では結晶化は起こらず特性劣
化を生じにくい、その材料は木質的に無害である、など
の多くの長所を備えている。
For this reason, in recent years, amorphous silicon, which can overcome the above-mentioned drawbacks, has been attracting attention as a material for electrophotographic photoreceptors. The electrophotographic photoreceptor (hereinafter also referred to as A-8I photoreceptor) using this amorphous silicon has spectral sensitivity up to a long wavelength of 800 nm, has a Vickers hardness of 1000, and has a lifespan of 1 million copies. When forming a film on a conductive substrate, the substrate temperature is as high as 200 to 250°C, so at least 1
It has many advantages such as crystallization does not occur in the operating atmosphere of 00° C. or lower, and property deterioration is unlikely to occur, and the material is harmless in terms of wood quality.

ところで5iHa又はSi 2 Hs等の原料ガスを低
温グロー放電分解して作られる通常の水素化アモルファ
スシリコン(以下単にa−3i;)lとも称する)は暗
中での比抵抗が1010Ωcn+と小さい1〔め、暗中
での直流のコロナ帯電時に充分な表面電位を得ることが
できないという問題があった。
By the way, ordinary hydrogenated amorphous silicon (hereinafter also simply referred to as a-3i), which is produced by low-temperature glow discharge decomposition of raw material gas such as 5iHa or Si 2 Hs, has a specific resistance in the dark of 1010 Ωcn+, which is as small as 1. However, there was a problem in that a sufficient surface potential could not be obtained during direct current corona charging in the dark.

この問題は真性のa−8iについても同様である。This problem also applies to true a-8i.

そこでこの点を改良するため、大別すれば従来数に承り
2つの手段が採用されている。先ず、a−+、    
 3 i膜中にO,C、N等のバンドギャップ増大要素
と周期律表のIII A 1M原子とを微mだけドーピ
ングして高抵抗の真性のa−3i悪感光を得ることであ
る。しかしながらこの手段を採用した場合には11H3
中での高紙IA化を図ることができる反面光感度が低下
づるという新たな問題を生じてしまう。
Therefore, in order to improve this point, two methods have been adopted, which correspond to the conventional number. First, a-+,
3i film is doped with bandgap increasing elements such as O, C, N, etc. and III A 1M atoms of the periodic table by a minute amount to obtain high-resistance intrinsic a-3i photosensitive light. However, if this method is adopted, 11H3
Although it is possible to achieve a high paper IA inside, a new problem arises in that the photosensitivity decreases.

次の手段としては、アルミドラム等の導電性基体表面に
、1[[A族又はvA族原子を10゛3原子%程度ドー
ピングしたP型又はN型のa−3iから成る電防d:人
阻止h4と、a−3i;l−1から成る光導電性層と、
C,0、N等の原子を含むa−8iから成る表面層とを
順次積層して3層構造とすることである。この手段を採
用したものは、暗中での直流コロナ放電時に4〜5oo
vの表面電位を得ることができ、しかも光感度は従来の
a−3i;Hで4r11成された光導電性層のみから成
るものと同様に良好で、従来から提供されている通常の
複写改などに用いる電子写真感光体としての要求を満足
することができる。
The next method is to coat the surface of a conductive substrate, such as an aluminum drum, with an electrical protection shield consisting of P-type or N-type a-3i doped with about 10゛3 atomic percent of A or vA group atoms. a photoconductive layer consisting of a blocking h4 and a-3i; l-1;
A three-layer structure is obtained by sequentially laminating a surface layer made of a-8i containing atoms such as C, 0, and N. When this method is adopted, a DC corona discharge of 4 to 5 oo
It is possible to obtain a surface potential of V, and the photosensitivity is as good as that of a conventional photoconductive layer made of a-3i; It can satisfy the requirements for an electrophotographic photoreceptor used in, for example.

一方前記a −3i r3光体(a−3i:Hがら成る
光導電性層を備えるものをも包含する)はし′−ザを光
源とする装置例えば半導体レーザプリンタなどへの応用
が進められているが、これは半導体レーザはその発光波
長が780nmと長波長であることから、充分な分光感
度を有しない従来の電子写真感光体に比べそれは800
nm近傍まで分光感度を有しているからである。
On the other hand, the application of the a-3i r3 light material (including those provided with a photoconductive layer consisting of a-3i:H) to devices such as semiconductor laser printers that use the a-3i laser as a light source is progressing. However, this is because semiconductor lasers have a long emission wavelength of 780 nm, which is 800 nm compared to conventional electrophotographic photoreceptors, which do not have sufficient spectral sensitivity.
This is because it has a spectral sensitivity up to around nm.

しかしながら、前述の3層構造の電子写真感光体のa−
3i;)−1から成る光導電性層は800nmまで分光
@度を有するもののその感度のピーク波長は650nm
であり、実際には800nmは感度曲線の裾に相当し8
000111に対しては充分な光感度を有してはいない
。また半導体レーザについては発光波長が780nmと
いうものの実際には製造上のバラツキにより発光波長が
790nmやaoonmと誤差を生じている。さらに従
来のa−3i;)−1から成る光導電性層はレーザ光を
充分に吸収することができないので、入射光は一旦η電
性基体表面に到達してから反射し、入射して来たレーザ
光と干渉して形成画像上では干渉縞を生ずることになる
。したがって種々の長所を有するa−3i悪感光であっ
ても、発光波長が800nm程度に及ぶ可干渉光を光源
とするレーザプリンタなどに使用した場合には形成画像
が不鮮明になるという問題があった、これらの問題の解
決策としてa−8i:Hから成る光導電ii11iYi
中へGeDλ子をドーピングし、光学的バンドギ1rツ
ブをさらに狭めて800nmの分光波長にも充分4i感
度をもたせる工夫が従来なされてはいるが、Qc原子を
ドーピングすると暗中での比抵抗がさらに小さくなり充
分な表面電位を得られなくなり、その解決策としては未
だ不十分であった。
However, the a-
Although the photoconductive layer consisting of 3i;)-1 has spectral sensitivity up to 800 nm, its peak sensitivity wavelength is 650 nm.
In reality, 800 nm corresponds to the tail of the sensitivity curve, and 800 nm corresponds to the tail of the sensitivity curve.
It does not have sufficient photosensitivity for 000111. Further, although the emission wavelength of a semiconductor laser is 780 nm, in reality, due to manufacturing variations, the emission wavelength may vary to 790 nm or aeonm. Furthermore, since the conventional photoconductive layer consisting of a-3i;)-1 cannot sufficiently absorb laser light, the incident light once reaches the surface of the η-conducting substrate and then is reflected. This will cause interference fringes on the formed image due to interference with the laser beam. Therefore, even though the a-3i illumination light has various advantages, when used in a laser printer or the like that uses coherent light with an emission wavelength of about 800 nm as a light source, there is a problem that the formed image becomes unclear. , as a solution to these problems, photoconductive ii11iYi composed of a-8i:H
Conventionally, efforts have been made to dope GeD λ atoms into the optical band to further narrow the optical bandgap 1r tube to provide sufficient 4i sensitivity even at a spectral wavelength of 800 nm, but doping with Qc atoms further reduces the specific resistance in the dark. Therefore, it became impossible to obtain a sufficient surface potential, and the solution to this problem was still insufficient.

[発明の目的] ゛  木ブを明は上記事情に鑑みてなされたものでその
目的とするところは、波長が800nrR近傍の可干渉
光にも充分な光TA度を有し、しかも導電性基体表面で
の入射光の反射に起因する干渉縞の発生防止に?Iちす
ることができる電子写真感光体を提供することである。
[Purpose of the invention] ゛ The invention was developed in view of the above circumstances, and its purpose is to provide a material that has a sufficient optical TA degree even for coherent light with a wavelength of around 800nrR, and that also has a conductive substrate. To prevent interference fringes caused by reflection of incident light on the surface? An object of the present invention is to provide an electrophotographic photoreceptor that can be used in various ways.

[発明の概要] 上述の問題点を考察すると、従来のa−3i;1(から
成る光導電性層の分光感度が780nm程度で充分でな
いのは、a−3i:Hの光学バンドギャップが1.68
〜1.γOe■であるため波長が780nmの可干渉光
に対して充分な光キャリアを発生することができないか
らであり、ざらに従来のものは波長が780nmの可干
渉光の照射を受けるとその光が導電性基体まで到達して
しまうため、この導電性基体の近傍で発生した光キャリ
アが表面電位と中和する前にa−3i:)−1中に捕捉
されてしまい光感度としては何ら寄与しなくなるからで
あると考えられる。また干渉縞が現われるのは上述の如
(780nllの波長の光を充分に吸収することができ
ないことに起因するものと考えられる。
[Summary of the Invention] Considering the above-mentioned problems, the reason why the spectral sensitivity of the conventional photoconductive layer consisting of a-3i;1 is insufficient at around 780 nm is because the optical band gap of a-3i: .68
~1. This is because γOe■ cannot generate sufficient optical carriers for coherent light with a wavelength of 780 nm, and roughly speaking, when the conventional type is irradiated with coherent light with a wavelength of 780 nm, the light is Since it reaches the conductive substrate, the photocarriers generated near the conductive substrate are captured in a-3i:)-1 before being neutralized with the surface potential and do not contribute to photosensitivity. This is thought to be because it disappears. Furthermore, the appearance of interference fringes is considered to be due to the inability to sufficiently absorb light with a wavelength of 780 nll as described above.

そこで斯かる目的を達成するために本発明の電子写真感
光体は、シリコン原子を母体にし、このシリコン原子に
対し10原子%以下の水素原子を含む水素化アモルファ
スシリコンで光導電性層を形成することにより、光学的
バンドギャップを狭めると共にシリコン原子同士の結合
を増大させてトラップ密度を減少するようにしたもので
ある。
In order to achieve such an object, the electrophotographic photoreceptor of the present invention has a photoconductive layer formed of hydrogenated amorphous silicon that uses silicon atoms as a matrix and contains 10 atomic percent or less of hydrogen atoms relative to the silicon atoms. This narrows the optical bandgap and increases the bonding between silicon atoms, thereby reducing the trap density.

’   [R1171゜□6、 以下本発明の実施例について説明する。’   [R1171゜□6, Examples of the present invention will be described below.

第1図は本発明に係る電子写真感光体の第1の実施例を
示す概略断面図である。この電子写真感光体は、アルミ
ドラムなどの導電性基体1の表面に、シリコン原子を母
体にし、このシリコン原子に対し10原子%以下の水素
原子を含む水素化アモルファスシリ=1ンが成膜されて
成る光導電性層2が設けられ構成されている。
FIG. 1 is a schematic sectional view showing a first embodiment of an electrophotographic photoreceptor according to the present invention. In this electrophotographic photoreceptor, a film of hydrogenated amorphous silica is formed on the surface of a conductive substrate 1, such as an aluminum drum, using silicon atoms as a matrix and containing 10 atomic percent or less of hydrogen atoms relative to the silicon atoms. A photoconductive layer 2 is provided and constructed.

第2図に上記光導電性層2を成膜するための成膜装置を
示す。
FIG. 2 shows a film forming apparatus for forming the photoconductive layer 2 described above.

図中11はベースで、このベース11の上面には反応容
器12が設置されている。ざらに、上記反応容器12内
には円筒状の対向電極兼用ガス噴出管13が設けられて
いる。
In the figure, 11 is a base, and a reaction container 12 is installed on the upper surface of this base 11. Roughly speaking, a cylindrical gas ejection pipe 13 which also serves as a counter electrode is provided within the reaction vessel 12 .

また、上記ベース11上にはモータ14を駆動源とする
m車機構16を介して所定の速度で回転するターンテー
ブル17が設けられ、このターンテーブル17上には受
台18を介して加熱ヒータ19およびこの加熱ヒータ1
9に外嵌される状態でアルミドラム等の導電性基体1が
戟買されるように構成されている。
Further, a turntable 17 is provided on the base 11 and rotates at a predetermined speed via an m-wheel mechanism 16 using a motor 14 as a driving source. 19 and this heater 1
The conductive substrate 1, such as an aluminum drum, is rotated while being fitted onto the outer surface of the conductive substrate 9.

また、上記対向電極兼用ガス噴出管13には高周波電源
などの放電生起用電[2)が接続された状態となってい
る。
Further, a discharge generating power [2] such as a high frequency power source is connected to the gas ejection pipe 13 which also serves as a counter electrode.

また、上記対向電極兼用ガス噴出管13のガス通路13
aの下端側にはバルブ22を備えたガス尋人管23が接
続されいる。さらに反応容器12内にはターンテーブル
17に穿たれた排気口17a、17bおにびベース11
に穿たれたガス排気口11aを介して拡散ポンプ、回転
ポンプ等を備えた高真空排気系(図示しない)が接続さ
れているとともにメカニカルブースターポンプ24A。
Further, the gas passage 13 of the gas ejection pipe 13 that also serves as the counter electrode
A gas gas pipe 23 equipped with a valve 22 is connected to the lower end side of a. Further, in the reaction vessel 12, exhaust ports 17a and 17b are provided in the turntable 17, and a rice base 11 is provided.
A high vacuum evacuation system (not shown) equipped with a diffusion pump, a rotary pump, etc. is connected through a gas exhaust port 11a bored in the 24A, and a mechanical booster pump 24A.

回転ポンプ24B等を備えた大流m排気系25が接続さ
れている。
A large-flow exhaust system 25 equipped with a rotary pump 24B and the like is connected.

さらに、大流m排気系25の排気系路中にはバルブ26
が設けられその下流側には金網27を備えた活性種捕捉
用のダストトラップ28が設けられている。尚、対向電
極兼用ガス噴出管13は絶縁体29を介して電気的に絶
縁されている。
Further, a valve 26 is provided in the exhaust line of the large flow m exhaust system 25.
A dust trap 28 equipped with a wire mesh 27 for trapping active species is provided on the downstream side thereof. Note that the gas ejection tube 13 which also serves as a counter electrode is electrically insulated via an insulator 29.

次に第2図に示す成膜装置を利用した眞記光導電性層2
の成膜実験例について説明する。先ず拡散ポンプ及び回
転ポンプ等を備えた図示なき高真空排気系を用いて反応
容器12内を10″II torr程度の真空に引く。
Next, the photoconductive layer 2 using the film forming apparatus shown in FIG.
An example of a film formation experiment will be described. First, the inside of the reaction vessel 12 is evacuated to about 10'' II torr using a high vacuum evacuation system (not shown) equipped with a diffusion pump, a rotary pump, and the like.

このとき加熱ヒータ19にて導電性基体1を350℃ま
で昇温しておく。次いでバルブ22を開いてSi Ha
ガスを反応容器12内に尋入りると共に排気系を図示な
き高真空排気系からメカニカルブースタポンプ24A及
び回転ポンプ2/IBを備えた大流量排気系25に切換
え、前記バルブ26を聞く。このとき図示なきマスフロ
ーコン1−ローラにJ:す5iHaガスの流mを300
SCCMに設定し、かつ前記バルブ26のW4rilF
にJ:り反応容器12内の圧力を1.2torrに設定
する。
At this time, the temperature of the conductive substrate 1 is raised to 350° C. using the heater 19. Then, open the valve 22 to
While gas is introduced into the reaction vessel 12, the exhaust system is switched from a high vacuum exhaust system (not shown) to a high flow rate exhaust system 25 equipped with a mechanical booster pump 24A and a rotary pump 2/IB, and the valve 26 is checked. At this time, a flow of J:5iHa gas of 300 m is applied to the mass flow controller 1-roller (not shown).
SCCM and W4rilF of the valve 26
The pressure inside the reaction vessel 12 is set to 1.2 torr.

この状態で前記13.56 M HZの放電生起用電源
2)を介して300Wのパワーを前記対向電極兼用がス
噴出管13に印加し光導電性FI2の成膜を開始する。
In this state, a power of 300 W is applied to the gas ejection tube 13 which also serves as the counter electrode via the 13.56 MHz discharge generation power supply 2) to start forming the photoconductive FI2.

そして2時間後、前記放電生起用電源2)     ′
をOFF、バルブ22を閉じて5iHaガスの供給を+
Lめ、メカニカルブースタポンプ24A及び回転ポンプ
24Bによって゛再度反応容器12内を10″41.O
rrの真空に引き直し、加熱ヒータ19をOF F に
二して導電性基体1が100℃以下に冷えるのを待ち、
その後反応容器12の真空を破って電子写真感光体を大
気中へ取出す。
After 2 hours, the discharge generation power source 2)'
OFF, close valve 22 and supply 5iHa gas.
L second, the inside of the reaction vessel 12 is pumped to 10"41.O again by the mechanical booster pump 24A and the rotary pump 24B.
rr vacuum, turn off the heater 19 and wait for the conductive substrate 1 to cool down to 100°C or less,
Thereafter, the vacuum in the reaction vessel 12 is broken and the electrophotographic photoreceptor is taken out into the atmosphere.

このようにして形成された電子写真感光体の光導電性層
の膜厚は18μmであった。そしてこの電子写真感光体
に−6,5KVのコロナ帯電を行ったところ一200V
の表面電位を得ることができた。また白色タングステン
光を2.Oj: ux前照射た場合0,1y ux −
secの高感度を示し、発光波長が780rvのレーザ
光に対しても0.2CII12 /ergの高感度を得
ることができた。
The photoconductive layer of the electrophotographic photoreceptor thus formed had a thickness of 18 μm. When this electrophotographic photoreceptor was corona charged at -6.5KV, it turned out to be -200V.
We were able to obtain a surface potential of . In addition, 2. white tungsten light. Oj: 0,1y ux − in case of ux pre-irradiation
It exhibited a high sensitivity of 0.2 CII12/erg even to a laser beam with an emission wavelength of 780 rv.

一方上記の如く成膜された光導電性層の水素原子含有量
、光学的バンドギャップ及び明抵抗を測定するため、上
述と同一の成膜条件でコーニング7059ガラス及びネ
サガラス上に水素化アモルファスシリコンを成膜して測
定した結果、水素原子の含有世はシリコン原子に対して
3原子%、光学的バンドギャップは1.62eV 、明
抵抗は波長が78on’     1117”1015
光子、/CllI2 (7)光照射に対しテ107Ωc
mrあった。
On the other hand, in order to measure the hydrogen atom content, optical bandgap, and bright resistance of the photoconductive layer deposited as described above, hydrogenated amorphous silicon was deposited on Corning 7059 glass and Nesa glass under the same deposition conditions as described above. As a result of forming and measuring the film, the hydrogen atom content was 3 atomic % with respect to silicon atoms, the optical band gap was 1.62 eV, and the bright resistance had a wavelength of 78 on'1117"1015
Photon, /CllI2 (7) Te107Ωc for light irradiation
There was mr.

以上のような電子写真感光体を半導体レーザブリンクに
使用すると、その感光体は従来のものに比べ光学的バン
ドギャップが狭められシリコン原子同士゛の結合も増大
される結果トラップ密度も減少されるので、780nm
の波長の光に対して充分な分光感度を有するど共に導電
性吊体1表面での反射をも防止することができ、干渉縞
のない鮮明な画像を形成づることができた。
When the electrophotographic photoreceptor described above is used for semiconductor laser blinking, the optical bandgap of the photoreceptor is narrowed compared to conventional ones, and the bonding between silicon atoms is increased, resulting in a reduction in trap density. ,780nm
In addition to having sufficient spectral sensitivity to light of a wavelength of , it was also possible to prevent reflection on the surface of the conductive hanging body 1, and a clear image without interference fringes could be formed.

第3図は本発明に係る電子写真感光体の第2の実施例を
示づ゛概略断面図である。この電子写真感光体は、アル
ミドラムなどの導電性基体30表面に、この尋電性阜体
30からの電荷の注入を阻止づる電荷注入阻止層31と
、シリコン原子を母体にしこのシリコン原子に対し10
原子%以下の水素原子を含む水素化アモルファスシリコ
ンから成る光導電性層32と、この光導電性層32の電
荷保持能の向上とその表面の保護とを目的とした表面り
肖33とが順次積1)2iされて組成されている。
FIG. 3 is a schematic sectional view showing a second embodiment of the electrophotographic photoreceptor according to the present invention. This electrophotographic photoreceptor has a charge injection blocking layer 31 on the surface of a conductive substrate 30 such as an aluminum drum, which prevents the injection of charges from the conductive substrate 30, and a charge injection blocking layer 31 that prevents the injection of charges from the conductive substrate 30, and a layer 31 that prevents the injection of charges from the conductive substrate 30. 10
A photoconductive layer 32 made of hydrogenated amorphous silicon containing atomic percent or less of hydrogen atoms, and a surface texture 33 for the purpose of improving the charge retention ability of this photoconductive layer 32 and protecting its surface are sequentially formed. The product 1) is composed of 2i.

次に第2図に示ず成膜装置を利用して第3図に示ツ雷子
写真感光体の各層を成膜する実験例についてμ2明する
Next, an experimental example in which each layer of the photoreceptor shown in FIG. 3 was formed using a film forming apparatus not shown in FIG. 2 will be explained.

電荷注入阻止層31は、導電性基体30の温度を230
℃にし、5il−1aガスを200SCCM、02ガス
を2SCCM、B2 H6ガスを5iHaガスに対し流
m比で10′4だけ反応容器12に導入し、その反応容
器12内の圧力を1,0tOrrにすると共に印加高周
波電力を100WにしてP型のa −3i02 :H,
B膜を1μ成膜して作った。
The charge injection blocking layer 31 lowers the temperature of the conductive substrate 30 by 230°C.
℃, 200SCCM of 5il-1a gas, 2SCCM of 02 gas, and 10'4 flow m ratio of B2 H6 gas to 5iHa gas were introduced into the reaction vessel 12, and the pressure inside the reaction vessel 12 was set to 1.0 tOrr. At the same time, the applied high-frequency power was set to 100 W, and the P-type a-3i02 :H,
A film B was formed to a thickness of 1 μm.

光導電性層32は、その後導電性基体30温度を380
°Cに上昇し、3iト14ガスだけを3003 CCM
反応容器12内に導入して圧力を1.2tOrrとし、
次いで高周波電力300Wを印加することにより水素化
アモルファスシリコン(a−3i:H)股を18μm成
股し工作った。
The photoconductive layer 32 then increases the temperature of the conductive substrate 30 to 380°C.
°C and 3i to 14 gas only 3003 CCM
introduced into the reaction vessel 12 and set the pressure to 1.2 tOrr,
Next, by applying high frequency power of 300 W, a hydrogenated amorphous silicon (a-3i:H) crotch was formed to have a thickness of 18 μm.

表面層33は、その後導電性基体30瀧度を230℃ま
で下降させ、3iト14ガスを15080 CM 。
The surface layer 33 is then formed by lowering the temperature of the conductive substrate 30 to 230° C. and applying 3i to 14 gas to 15080 CM.

NH3ガスを508 CCMだけ反応容器12内に導入
してその圧力を1.0tOrr’とし、次いで高周波電
力100Wヲ印加することによりa−8iN;HIII
Jを1μm成IIシ)して作った。
A-8iN;
It was made by forming J with a thickness of 1 μm.

以上のようにして各層を成膜した後、高周波電力の印加
をOFFにすると共に各種ガスの導入を市め、反応容器
12内を10°4tOI’r程度の真空に引込直した後
、導電性基体30渇度が100℃以下になるのを侍って
本電子写真感光体を取出した。
After forming each layer as described above, the application of high-frequency power is turned off, the introduction of various gases is started, and the inside of the reaction vessel 12 is re-drawn to a vacuum of about 10°4tOI'r. The present electrophotographic photoreceptor was taken out after waiting for the temperature of the substrate 30 to become 100° C. or less.

このようにして製作された電子写真感光体に一トロ、5
K Vのコロナ帯電を行ったところ+400■の表面電
位を4!することができた。また白色タングステン光を
2.02t+x照射した場合半減露光量で0.0711
11X −seCの高感度を示し、780nmのレーザ
光に対しても0.23cm 2 /ergの高感度であ
った。
The electrophotographic photoreceptor produced in this way received one toro, 5
When corona charging of KV was performed, the surface potential of +400■ was 4! We were able to. In addition, when irradiating white tungsten light at 2.02t+x, the half-reduced exposure amount is 0.0711.
It exhibited a high sensitivity of 11X-seC, and also had a high sensitivity of 0.23 cm 2 /erg to a 780 nm laser beam.

一方上述のり0く成膜された光導電性層32の水素原子
含有賞、光学的バンドギャップ、及び明抵抗を測定づる
ため、上述と同一の成膜条件でコーニング7059ガラ
ス及びネサガラス上に水素化アモルファスシリコンを成
膜して測定した結果、水素原子の含有ム1はシリコン原
子に対して0.09原子96、光学的バンドギルツブは
1,59cV、明抵抗は波1u /A 780nm ′
clQIs光子/ cm2の光照!にJ ニ対して10
6Ωamであった。
On the other hand, in order to measure the hydrogen atom content, optical band gap, and bright resistance of the photoconductive layer 32 deposited as described above, hydrogen was applied to Corning 7059 glass and Nesa glass under the same deposition conditions as described above. As a result of forming and measuring an amorphous silicon film, the hydrogen atom content is 0.09 atoms 96 per silicon atom, the optical band resistance is 1,59 cV, and the bright resistance is 1 u/A 780 nm'
clQIs photon/cm2 light! ni J ni 10
It was 6Ωam.

以上のような電子写真感光体を半導体レーザブリンクに
使用すると、その感光体は従来のものに比べ光学的バン
ドギャップが狭められシリコン原子同士の結合も増大さ
れる結果1−ラップ密度も減少されるので、7&Onm
の波長の光に対して充分な分光感度を有すると共に導電
性基体30表面での反射をも防止することができ、干渉
縞のない鮮明な画像を形成することができた。
When the electrophotographic photoreceptor described above is used in a semiconductor laser blink, the optical band gap of the photoreceptor is narrowed compared to conventional ones, and the bonding between silicon atoms is increased, resulting in a reduction in 1-wrap density. So, 7&Onm
It had sufficient spectral sensitivity to light with a wavelength of , and was also able to prevent reflection on the surface of the conductive substrate 30, making it possible to form a clear image without interference fringes.

さらに上述のグロー放電分解法により成膜条件を種々変
えて実験を行った結果、約800nmの波長の光に対し
て充分な分光感度を有すると共にsTi性基体表面での
反射をも防止でき干渉縞のない鮮明な画像を形成するこ
とができるための水素化アモルファスシリコン(a−8
i:H)の組成や性質の臨界領域をみいだすことができ
た。即ち、グロー放電分解法の場合には成膜時の導電性
基体温度が重要な因子となり、導電性基体温度を250
℃に設定して水素化アモルファスシリコンを成膜しく 
  、、8−おLf 6 、!J :lア□、〜□=0
含有ff110原子%、光学的バンドギャップ1.66
eV 。
Furthermore, as a result of experiments using the above-mentioned glow discharge decomposition method with various film-forming conditions, it was found that it had sufficient spectral sensitivity to light with a wavelength of approximately 800 nm, and was also able to prevent reflections on the surface of the sTi substrate, resulting in interference fringes. Hydrogenated amorphous silicon (A-8
We were able to find a critical region for the composition and properties of i:H). That is, in the case of the glow discharge decomposition method, the temperature of the conductive substrate during film formation is an important factor;
℃ to deposit hydrogenated amorphous silicon.
,,8-O Lf 6,! J: lA□, ~□=0
Contains ff110 at%, optical band gap 1.66
eV.

780nmの波長で1015光子/c+e2の光照射に
対する明抵抗107Ωamがその上限を成し、導電性基
体温度を450″Cに設定して水素化7モルフ?スシリ
コンを成膜したとぎにおけるシリコン原子に対する水素
原子含@ξj 0.01原子%、光学的パッドギャップ
1.55eV、 780nmの波長で1015光子/ 
cm2の光照射に対する11抵抗105ΩCmがその下
限を成す。
A bright resistance of 107 Ωam against light irradiation of 1015 photons/c+e2 at a wavelength of 780 nm forms the upper limit, and the resistance to silicon atoms after forming a film of hydrogenated 7-morph silicon with the conductive substrate temperature set at 450''C. Contains hydrogen atoms @ξj 0.01 at%, optical pad gap 1.55 eV, 1015 photons/at a wavelength of 780 nm
The lower limit is 11 resistance 105 ΩCm for light irradiation of cm2.

尚、W>電性基体の温度を450℃以上に設定して成膜
した場合には暗抵抗が小さくなり、電荷注入阻止層を右
する構造にしても充分な表面電位を得ることができなか
った。
In addition, when the film is formed with the temperature of the conductive substrate set to W>450°C or higher, the dark resistance becomes small, and even if the structure includes a charge injection blocking layer, it is not possible to obtain a sufficient surface potential. Ta.

尚、以上の実験例はグロー放電分解法を利用した説明で
あるが、水素化アモルファスシリコンによる光導電性層
の形成はスパッタリングによっても可能である。このス
パッタリングについては既に公知であるからその詳細な
説明は省略するが、この手段によってもシリコン原子を
母体にしこのシリコン原子に対して水素原子を10原子
%以下含む水素化アモルファスシリコンにて光導電性層
を形成することができ、同様に光学的バンドギャップが
1.5511iV以上1.66e■以下で、かツ180
nIllの波長で1015光子/ cm2の光照射に対
して明抵抗が107ΩcmLX下の性質を獲得すること
ができ、その結果この水素化アモルファスシリコンから
成る光S電性居を有する電子写真感光体は、780nm
の波長の光に対して充分な分光感度を有すると共に、入
射光の導電性基体表面での反射を防止することができ干
渉縞のな鮮明な画像の形成に寄与することができる。
Although the above experimental example was explained using a glow discharge decomposition method, it is also possible to form a photoconductive layer of hydrogenated amorphous silicon by sputtering. Since this sputtering is already known, a detailed explanation thereof will be omitted, but this method can also be used to produce photoconductive properties using hydrogenated amorphous silicon, which is made of silicon atoms and contains 10 at % or less of hydrogen atoms based on the silicon atoms. Similarly, the optical band gap is 1.5511 iV or more and 1.66 e■ or less, and 180
The electrophotographic photoreceptor made of hydrogenated amorphous silicon and having a photo-S-electroconductivity can have a bright resistance of less than 107 ΩcmLX for light irradiation of 1015 photons/cm2 at a wavelength of nIll. 780nm
It has sufficient spectral sensitivity to light with a wavelength of , and can prevent reflection of incident light on the surface of the conductive substrate, contributing to the formation of clear images free of interference fringes.

以上の説明は一例であり本発明の要旨の範囲内において
種々の変形実施が可能であることは言うまでもない。ま
た本発明の電子写真感光体は半導体レーザプリンタにの
み適用されるものではなく、複写機やファクシミリなど
の種々の電子写真装置に適用することができる。
It goes without saying that the above description is an example, and that various modifications can be made within the scope of the gist of the present invention. Further, the electrophotographic photoreceptor of the present invention can be applied not only to semiconductor laser printers, but also to various electrophotographic devices such as copying machines and facsimile machines.

[発明の効果] 以上の説明から明らかな如く、本発明の電子写真感光体
は、シリコン原子を母体にしこのシリコン原子に対し水
素原子を10原子%以下含む水素化アモルファスシリコ
ンにて光導電性層を形成したので、波長が800nm近
傍の可干渉光にも充分な光感度を有し、しも導電性基体
表面での入射光の反射に起因する干渉縞の発生防止に寄
与することができる等の効果右する。
[Effects of the Invention] As is clear from the above description, the electrophotographic photoreceptor of the present invention has a photoconductive layer made of hydrogenated amorphous silicon that has silicon atoms as its matrix and contains 10 at % or less of hydrogen atoms relative to the silicon atoms. Since it has been formed, it has sufficient photosensitivity to coherent light with a wavelength of around 800 nm, and can also contribute to preventing the generation of interference fringes caused by reflection of incident light on the surface of the conductive substrate. The effect is right.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電子写真感光体の第1の実施例を
示す概略断面図、第2図はグロー放電分解法による成膜
装置の概略断面図、第3図は本発明に係る電子写真感光
体の第2の実施例を示す概略断面図である。 2・・・・・・光導電性層、 32・・・・・・光導fG性層。 −5ζ−1・
FIG. 1 is a schematic cross-sectional view showing a first embodiment of an electrophotographic photoreceptor according to the present invention, FIG. 2 is a schematic cross-sectional view of a film forming apparatus using a glow discharge decomposition method, and FIG. FIG. 2 is a schematic cross-sectional view showing a second example of a photographic photoreceptor. 2...Photoconductive layer, 32...Photoconducting fG layer. −5ζ−1・

Claims (3)

【特許請求の範囲】[Claims] (1)シリコン原子を母体にし、水素原子を該シリコン
原子に対して10原子%以下含む水素化アモルファスシ
リコンから成る光導電性層を有することを特徴とする電
子写真感光体。
(1) An electrophotographic photoreceptor characterized by having a photoconductive layer made of hydrogenated amorphous silicon having silicon atoms as a matrix and containing hydrogen atoms in an amount of 10 atomic % or less based on the silicon atoms.
(2)水素化アモルファスシリコンは、光学的バンドキ
ャップが1.55eV以上1.66eV以下のものであ
る特許請求の範囲第1項に記載の電子写真感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the hydrogenated amorphous silicon has an optical band gap of 1.55 eV or more and 1.66 eV or less.
(3)水素化アモルファスシリコンは、波長が780n
mで10^1^5光子/cm^2の光照射に対して明抵
抗が10^7Ωcm以下のものである特許請求の範囲第
1項又は第2項記載の電子写真感光体。
(3) Hydrogenated amorphous silicon has a wavelength of 780n
The electrophotographic photoreceptor according to claim 1 or 2, which has a bright resistance of 10^7 Ωcm or less when irradiated with light of 10^1^5 photons/cm^2 in m.
JP17355884A 1984-08-20 1984-08-20 Electrophotographic sensitive body Pending JPS6151154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17355884A JPS6151154A (en) 1984-08-20 1984-08-20 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17355884A JPS6151154A (en) 1984-08-20 1984-08-20 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6151154A true JPS6151154A (en) 1986-03-13

Family

ID=15962772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17355884A Pending JPS6151154A (en) 1984-08-20 1984-08-20 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6151154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762229A2 (en) * 1995-08-21 1997-03-12 Canon Kabushiki Kaisha Image-forming apparatus and image-forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762229A2 (en) * 1995-08-21 1997-03-12 Canon Kabushiki Kaisha Image-forming apparatus and image-forming method
EP0762229A3 (en) * 1995-08-21 2000-10-04 Canon Kabushiki Kaisha Image-forming apparatus and image-forming method

Similar Documents

Publication Publication Date Title
JPH0415938B2 (en)
JP2003027246A (en) Plasma treatment method, semiconductor device manufacturing method, and semiconductor device
JPS649623B2 (en)
JPH0792611B2 (en) Heterogeneous electrophotographic imaging member consisting of amorphous silicon and silicon oxide
JP4562163B2 (en) Method for producing electrophotographic photosensitive member and electrophotographic photosensitive member
JPS62115457A (en) Electrophotographic sensitive body
US4769303A (en) Electrophotographic photosensitive member
JPS6151154A (en) Electrophotographic sensitive body
JPH0782240B2 (en) Electrophotographic photoreceptor
JPS6183544A (en) Electrophotographic sensitive body
JPS62201457A (en) Electrophotographic sensitive body
JPS5984254A (en) Photosensitive body
JPH0740138B2 (en) Electrophotographic photoreceptor
JPH0810332B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH0310940B2 (en)
JPS625255A (en) Photosensitive body
JPS60235150A (en) Photosensitive body
JPH0233145B2 (en) DENSHISHASHIN KANKOTAI
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JP3210935B2 (en) Light receiving member
JPS61160752A (en) Electrophotographic sensitive body
KR910003982B1 (en) Electrophotographic photoreceptor
JPS5880646A (en) Electrophotographic receptor
JPH0582573B2 (en)
JPS6361261A (en) Electrophotographic sensitive body