JPS6151022B2 - - Google Patents

Info

Publication number
JPS6151022B2
JPS6151022B2 JP4475884A JP4475884A JPS6151022B2 JP S6151022 B2 JPS6151022 B2 JP S6151022B2 JP 4475884 A JP4475884 A JP 4475884A JP 4475884 A JP4475884 A JP 4475884A JP S6151022 B2 JPS6151022 B2 JP S6151022B2
Authority
JP
Japan
Prior art keywords
slag
amount
less
welding
spots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4475884A
Other languages
Japanese (ja)
Other versions
JPS60215740A (en
Inventor
Yoshihiro Minaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4475884A priority Critical patent/JPS60215740A/en
Publication of JPS60215740A publication Critical patent/JPS60215740A/en
Publication of JPS6151022B2 publication Critical patent/JPS6151022B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はFe―Ni系合金、特に溶接性の良好な
Fe―Ni系合金に関する。 従来公知のFe―Ni系合金のうちの一部は、封
着材料として電子管、トランジスタ、集積回路、
整流器等の導入線部分および電極と容器の接続部
の接合部分に用いられている。この材料は、これ
と組み合わせるガラス、セラミツクス、プラスチ
ツクス等と膨張係数が広い温度範囲で近似である
こと、これらガラス等との密着性がよいことおよ
び機械的又は電気的特性が要求される。 この封着材料は近年エレクトロニクス、ニユー
セラミツクス工業の進歩により、パイプ状で使用
されることが多くなつてきた。この用途に供する
パイプは、コスト的に薄板フープを冷間圧延法で
製造し、これを円筒状にロール成形しその突き合
わせ部をTIG又はプラズマアーク等の溶接法で連
続溶接する方法で製造され、一般にはさらに小径
化又は高品質化するため、引き抜き加工してセミ
シームレスパイプとされることが多い。 従来のFe―Ni系封着合金は、溶接時溶融池上
にスラグが発生し、これが次第に大きく成長する
現象が発生することが多かつた。このスラグは溶
接時のアークを乱してビード形状を不整にし、ま
たこのスラグがある程度の大きさになるとビード
上に取り残される(以下この凝固ビード上のスラ
グをスラグスポツトと記す。)このスラグスツト
が発生した部分は他の部分に比してビードが厚く
なつて外観を悪くし、またこの厚くなることによ
りセンターシユリンケージ等の溶接欠陥を発生し
易い。さらにこのスラグスポツト発生部は肉厚が
大きいため、引き抜き時応力集中を受けて引き抜
き割れを発生し易い。本発明は、溶接時のスラグ
スポツトの発生を防止したFe―Ni系封着材料を
提供することを目的とする。 本発明は、重量でC0.1%以下、Si0.3%以下、
Mn0.5〜1.5%、Ni40〜55%、Al0.01%以下、
Ca0.004〜0.020%を含み、残部Feおよび不可避
不純物からなり、該材料中の非金属介在物のう
ち、硝酸に不溶解のAl2O3の量を重量で15PPM以
下としたことを特徴とする溶接性の良好なFe―
Ni系封着材料である。 Fe―Ni系封着材料の溶接によるスラグスポツ
トの組成を調べたところ、Al2O3がほとんどであ
り、溶接前の材料を検鏡の結果非常に微細な
Al2O3介在物がみられ、これは該材料の溶解時、
脱酸剤として添加したAlによつて生成されたも
のであり、微細のため溶湯から浮上分離すること
ができず、凝固材中に残留したものであることが
判つた。したがつてこの凝固材中のAl2O3が、溶
解時の溶湯深さに比し十分浅い溶接時の溶融池で
は容易に浮上分離し、これが凝集し次第に生長し
てスラグスポツトとなると思われる。ただし非金
属介在物でもSiO2系、SiO2―MnO系のものは浮
上しない。これは溶融金属とAl2O3系介在物の境
界における相間表面エネルギが他の型の介在物に
比し最も大きく、したがつてAl2O3介在物は溶融
池中でも特に容易に凝集浮上するためと考えられ
る。 前記のように該材料中のAl2O3は微細でJIS―
G0555による「鋼中の非金属介在物の顕微鏡試験
法」では捕えられない。そこで被検材を硝酸で溶
解して不溶解の抽出物中のAl2O3を分析する
Al2O3の分析法を案出し、この分析値とスラグス
ポツトの発生の関係を調べた。 図は、従来のFe―50%Ni系封着剤について、
その全酸素量とAl2O3量に対し、この材料を使用
して、外径10mm、板厚0.8mmの溶接パイプを溶接
造管した場合のスラグスポツト発生状況を示す。
この図で、〇印はスラグスポツトが発生しないも
の、×印はスラグスポツトが発生するものであ
る。この図からスラグスポツトの発生は、全酸素
量にはほゞ無関係で、硝酸に不溶解のAl2O3量に
関係し、Al2O3量約15PPM以上で発生することが
判る。したがつてスラグスポツトの発生を防止し
て溶接性を良くするには材料中の硝酸に不溶解の
Al2O3量を少なくすれば良いと推定される。 本発明者らはFe―Ni系封着材料の硝酸に不溶
解のAl2O3量を少なくし、スラグスポツト発生を
防止する目的で種々実験を行つた。その結果Ca
を0.004〜0.020%添加する方法がAl2O3量を減少
させ、スラグスポツトの発生を防止するのに有効
であることを見い出した。 以下本発明を実施例を用いて説明する。表1に
従来材料3種、本発明材料10種および比較材料5
種の化学成分を示す。
The present invention focuses on Fe-Ni alloys, especially those with good weldability.
Regarding Fe-Ni alloys. Some of the conventionally known Fe-Ni alloys are used as sealing materials for electron tubes, transistors, integrated circuits,
It is used for the lead-in wires of rectifiers and the joints between electrodes and containers. This material is required to have an expansion coefficient similar to that of glass, ceramics, plastics, etc. with which it is combined over a wide temperature range, to have good adhesion to these glasses, etc., and to have mechanical or electrical properties. Due to recent advances in the electronics and new ceramics industries, this sealing material is increasingly being used in the form of pipes. The pipes used for this purpose are manufactured by cold rolling a thin hoop, roll-forming it into a cylindrical shape, and continuously welding the butted portions using TIG or plasma arc welding methods to reduce the cost. Generally, in order to further reduce the diameter or improve the quality, semi-seamless pipes are often made by drawing processing. With conventional Fe--Ni sealing alloys, slag is often generated on the molten pool during welding, and this slag gradually grows larger. This slag disturbs the arc during welding, making the bead shape irregular, and when this slag reaches a certain size, it is left behind on the bead (hereinafter, this slag on the solidified bead is referred to as a slag spot). The bead in the area where the welding occurs is thicker than in other areas, resulting in a poor appearance, and this thickening also tends to cause welding defects such as center syringe. Furthermore, since the wall thickness of the slag spot generating portion is large, it is susceptible to stress concentration during pull-out and is susceptible to pull-out cracks. An object of the present invention is to provide a Fe--Ni sealing material that prevents the occurrence of slag spots during welding. The present invention has C0.1% or less, Si0.3% or less by weight,
Mn0.5~1.5%, Ni40~55%, Al0.01% or less,
The material is characterized by containing 0.004 to 0.020% Ca, with the balance consisting of Fe and unavoidable impurities, and among the nonmetallic inclusions in the material, the amount of Al 2 O 3 insoluble in nitric acid is 15 PPM or less by weight. Fe has good weldability.
It is a Ni-based sealing material. When we investigated the composition of slag spots caused by welding Fe-Ni sealing materials, we found that most of them were Al 2 O 3 , and microscopic examination of the material before welding revealed very fine particles.
Al 2 O 3 inclusions are observed, which are caused by the melting of the material.
It was found that the particles were generated by Al added as a deoxidizing agent, and because they were too fine to float and separate from the molten metal, they remained in the solidified material. Therefore, it is thought that Al 2 O 3 in this solidified material easily floats up and separates in the molten pool during welding, which is sufficiently shallow compared to the depth of the molten metal during melting, and this aggregates and gradually grows to form slag spots. . However, even among non-metallic inclusions, SiO 2- based and SiO 2 -MnO-based inclusions do not float. This is because the interphase surface energy at the boundary between the molten metal and Al 2 O 3 inclusions is the largest compared to other types of inclusions, and therefore Al 2 O 3 inclusions coagulate and float particularly easily even in the molten pool. It is thought that this is because of this. As mentioned above, Al 2 O 3 in the material is fine and JIS-
It cannot be detected by G0555 "Microscopic examination method for non-metallic inclusions in steel". Therefore, the material to be tested is dissolved with nitric acid and the Al 2 O 3 in the undissolved extract is analyzed.
We devised an analytical method for Al 2 O 3 and investigated the relationship between this analytical value and the occurrence of slag spots. The figure shows the conventional Fe-50%Ni sealant.
The following shows the occurrence of slag spots when a welded pipe with an outer diameter of 10 mm and a plate thickness of 0.8 mm is welded using this material with respect to the total oxygen content and Al 2 O 3 content.
In this figure, ◯ marks indicate that no slag spots occur, and × marks indicate that slag spots occur. This figure shows that the occurrence of slag spots is almost unrelated to the total amount of oxygen, but is related to the amount of Al 2 O 3 that is insoluble in nitric acid, and occurs when the amount of Al 2 O 3 is about 15 PPM or more. Therefore, in order to prevent the occurrence of slag spots and improve weldability, it is necessary to use materials that are insoluble in nitric acid.
It is estimated that the amount of Al 2 O 3 should be reduced. The present inventors conducted various experiments with the aim of reducing the amount of Al 2 O 3 that is insoluble in nitric acid in the Fe--Ni sealing material and preventing the occurrence of slag spots. As a result Ca
It has been found that adding 0.004 to 0.020% of Al 2 O 3 is effective in reducing the amount of Al 2 O 3 and preventing the occurrence of slag spots. The present invention will be explained below using examples. Table 1 shows 3 conventional materials, 10 inventive materials, and 5 comparative materials.
Indicates the chemical composition of the seeds.

【表】【table】

【表】 A、No.1〜4およびaは42ニツケル、B、No.5
〜8,b,dおよびeは50ニツケル、C、No.9,
10およびcは52ニツケルと呼ばれる材料である。
比較材料のa,bおよびcはCaの添加量が少な
く本発明からはずれるもの、d,eはCaのかわ
りにMgを加えた1例を示す。 これらの材料は溶解鋳造したものを分塊した後
熱間圧延をして4mm厚みの板を作つた。それぞれ
の板材より20gの試料を採取して、硝酸による非
金属介在物の抽出分離を行い、残渣のAl2O3量を
分析した。さらにそれぞれの板の表面研摩したも
のについて、TIG溶接でビードオンプレート溶接
を行い、ビード100mm長さあたりに発生したスラ
グスポツトの面積を測定し、それをビード体積で
除して、スラグスポツト発生量として求めた。こ
の時の溶接条件は次の通りである。 TIG溶接:電流125Amp 速度1m/min アーク長2.0mm シールドガスAr―6/min 試験片:4mm×30mm×300mm 溶接方法:ビードオンプレート この結果を表2に示す。 この表からCaを0.004wt%以上添加した本発明
材料は硝酸に未溶解のAl2O3量が13PPM以下に減
少し、スラグスポツトが発生しないことが判る。
しかしCaの添加量の少ない比較材料a,b,c
はスラグスポツト発生を防止できず効果が十分で
なく、0.004%以上が必要である。逆にCaの添加
量が多くなりすぎると材料の特性を悪くするので
0.020%以下とすることが必要であることが別の
実験で確かめられている。但し溶解材料中のAl
が多いと、Ca添加だけではAl2O3量を減少させる
ことはできないので材料の溶解でのAl脱酸剤の
添加は0.01%以下とし、できるだけ最小限にとど
め、硝酸で非金属介在物を抽出分離した中の
Al2O3量も15PPM以下になるようにする必要があ
る。 次に本発明の合金について、その他の元素の範
囲限定理由を述べる。 Cは0.1%を超えると耐高温割れ性が低下し、
溶接部の靭性も劣下するので、含有量は0.1%以
下とした。 Mnは脱酸剤であると共に、熱間加工性および
耐溶接高温割れ性を改善するため、0.5%以上必
要であるが、1.5%を越えると熱膨張係数が大き
くなり、封着材料としての特性が失われるので
0.5〜1.5%とする。 Siは脱酸剤として重要であるが、耐溶接高温割
れ性を害する影響が大きいので、上限を0.3%と
する。添加の適正量はMn,Al,Caの複合脱酸が
行われるので、これらの総合効果により決定され
る。 NiはFe―Ni系封着材料にて使用される通常の
範囲である40〜55%が添加される。ただし本発明
のスラグスポツト防止効果のみに限ればNiのも
つと広い範囲で効果がある。 以上に述べたごとく、本発明のFe―Ni系封着
材料は溶接ビード上にスラグスポツトを発生し、
アーク特性を害し、ビードを不整にする従来型材
料に比し、Caを0.004〜0.020%添加し、鋼中の硝
酸に不溶解のAl2O3量を15PPM以下にすることに
よつて、スラグスポツトをなくし、良好な溶接ビ
ードが得られ、材料の後工程の加工性も向上せし
める優れたものである。
[Table] A, No. 1 to 4 and a are 42 nickel, B, No. 5
~8, b, d and e are 50 nickel, C, No.9,
10 and c are materials called nickel 52.
Comparative materials a, b, and c have a small amount of Ca added and are outside the scope of the present invention, and d and e show an example in which Mg was added instead of Ca. These materials were melted and cast, bloomed, and then hot rolled to produce plates with a thickness of 4 mm. A 20 g sample was taken from each plate, nonmetallic inclusions were extracted and separated using nitric acid, and the amount of Al 2 O 3 in the residue was analyzed. Furthermore, bead-on-plate welding is performed using TIG welding on each surface-polished plate, and the area of slag spots generated per 100 mm length of the bead is measured and divided by the bead volume to determine the amount of slag spots generated. I asked for it as. The welding conditions at this time were as follows. TIG welding: Current 125Amp Speed 1m/min Arc length 2.0mm Shielding gas Ar-6/min Test piece: 4mm x 30mm x 300mm Welding method: Bead-on plate The results are shown in Table 2. From this table, it can be seen that in the material of the present invention to which 0.004 wt% or more of Ca is added, the amount of Al 2 O 3 undissolved in nitric acid is reduced to 13 PPM or less, and no slag spots occur.
However, comparative materials a, b, and c with a small amount of Ca added
Since it cannot prevent the occurrence of slag spots and is not sufficiently effective, 0.004% or more is required. On the other hand, if the amount of Ca added is too large, the properties of the material will deteriorate.
It has been confirmed in another experiment that it is necessary to keep the content to 0.020% or less. However, Al in the melted material
If the amount of Al 2 O 3 is large, it is not possible to reduce the amount of Al 2 O 3 by adding Ca alone. Therefore, the addition of Al deoxidizing agent during dissolution of the material should be kept to a minimum of 0.01% or less, and non-metallic inclusions should be removed with nitric acid. The extracted and separated contents
The amount of Al 2 O 3 also needs to be 15 PPM or less. Next, the reason for limiting the range of other elements regarding the alloy of the present invention will be described. When C exceeds 0.1%, hot cracking resistance decreases,
Since the toughness of the welded part also deteriorates, the content was set to 0.1% or less. Mn is a deoxidizing agent and also improves hot workability and weld hot cracking resistance, so 0.5% or more is required. However, if it exceeds 1.5%, the coefficient of thermal expansion increases and the properties as a sealing material is lost, so
0.5-1.5%. Although Si is important as a deoxidizing agent, it has a large effect of impairing weld hot cracking resistance, so the upper limit is set at 0.3%. Since composite deoxidation of Mn, Al, and Ca is performed, the appropriate amount of addition is determined by the overall effect of these. Ni is added in an amount of 40 to 55%, which is the usual range used in Fe--Ni sealing materials. However, if the effect of the present invention is limited to preventing slag spots, Ni is effective over a wide range of areas. As mentioned above, the Fe-Ni sealing material of the present invention generates slag spots on the weld bead,
Compared to conventional materials that impair arc characteristics and cause irregular beads , slag This is an excellent method that eliminates spots, provides a good weld bead, and improves the workability of the material in subsequent processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe―50%Ni系の肉厚0.8m/m、外径
10m/mの溶接パイプを造管した時にビード上に
発生するスラグスポツトの有無と合金中の全酸素
量および硝酸に未溶解のAl2O3介在物量の関係を
示すグラフである。
Figure 1 shows Fe-50%Ni wall thickness 0.8m/m, outer diameter
It is a graph showing the relationship between the presence or absence of slag spots generated on the bead when a 10 m/m welded pipe is formed, the total amount of oxygen in the alloy, and the amount of Al 2 O 3 inclusions undissolved in nitric acid.

Claims (1)

【特許請求の範囲】 1 重量で C 0.1%以下 Si 0.3%以下 Mn 0.5〜1.5% Ni 40〜55% Al 0.01%以下 Ca 0.004〜0.020% を含み、残部Feおよび不可避不純物からなり、
該材料中の非金属介在物のうち、硝酸に不溶解で
あるAl2O3の量を重量で15PPM以下としたことを
特徴とする溶接性の良好なFe―Ni系封着材料。
[Claims] 1 Contains by weight C 0.1% or less Si 0.3% or less Mn 0.5-1.5% Ni 40-55% Al 0.01% or less Ca 0.004-0.020%, the balance consisting of Fe and inevitable impurities,
A Fe--Ni sealing material with good weldability, characterized in that the amount of Al 2 O 3 , which is insoluble in nitric acid, among nonmetallic inclusions in the material is 15 PPM or less by weight.
JP4475884A 1984-03-08 1984-03-08 Fe-ni type seal bonding material with high weldability Granted JPS60215740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4475884A JPS60215740A (en) 1984-03-08 1984-03-08 Fe-ni type seal bonding material with high weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4475884A JPS60215740A (en) 1984-03-08 1984-03-08 Fe-ni type seal bonding material with high weldability

Publications (2)

Publication Number Publication Date
JPS60215740A JPS60215740A (en) 1985-10-29
JPS6151022B2 true JPS6151022B2 (en) 1986-11-07

Family

ID=12700326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4475884A Granted JPS60215740A (en) 1984-03-08 1984-03-08 Fe-ni type seal bonding material with high weldability

Country Status (1)

Country Link
JP (1) JPS60215740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188210U (en) * 1986-05-22 1987-11-30
JPH01131309U (en) * 1988-02-29 1989-09-06
JPH01137294U (en) * 1988-03-07 1989-09-20
JPH0414009Y2 (en) * 1987-05-06 1992-03-31
JPH04144502A (en) * 1990-10-04 1992-05-19 Ogura Kasei Kk Badge having soft structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188210U (en) * 1986-05-22 1987-11-30
JPH0414009Y2 (en) * 1987-05-06 1992-03-31
JPH01131309U (en) * 1988-02-29 1989-09-06
JPH01137294U (en) * 1988-03-07 1989-09-20
JPH04144502A (en) * 1990-10-04 1992-05-19 Ogura Kasei Kk Badge having soft structure

Also Published As

Publication number Publication date
JPS60215740A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
CA2204339C (en) Metal-core weld wire for welding galvanized steels
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
EP1435399B1 (en) A welding method for improving resistance to cold cracking
EP1995339B1 (en) Steel sheet for submerged arc welding
WO1998010888A1 (en) Welding material for stainless steels
US20020014478A1 (en) Metal cored wire for gas shielded arc welding having excellent zinc primer resistant performance and low temperature impact toughness
KR20170128603A (en) Flux cored wire and welding method for gas shield arc welding
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JPS62183994A (en) Wire for gas shielded arc welding of stainless steel
JPS6151022B2 (en)
JPS60261679A (en) Method of welding alloy containing nitrogen
US4430545A (en) Method for submerged-arc welding a very low carbon steel
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
JP5030483B2 (en) Submerged arc welding method
WO2017086169A1 (en) Duplex stainless steel material and duplex stainless steel tube
JP6247196B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP7256381B2 (en) Manufacturing method of killed steel
JP2584919B2 (en) Gas shielded arc welding wire for pipe
JP3342305B2 (en) Welding wire excellent in welding crack resistance and welding method using the same
JPS6045992B2 (en) Automatic welding wire used for welding spheroidal graphite cast iron
JPS6250233B2 (en)
JPH058084A (en) Wire for welding concentrated sulfuric acid resistant high-si austenitic stainless steel
JPS648692B2 (en)
JPH05200581A (en) Carbon dioxide shielded arc welding wire