JP5030483B2 - Submerged arc welding method - Google Patents

Submerged arc welding method Download PDF

Info

Publication number
JP5030483B2
JP5030483B2 JP2006169999A JP2006169999A JP5030483B2 JP 5030483 B2 JP5030483 B2 JP 5030483B2 JP 2006169999 A JP2006169999 A JP 2006169999A JP 2006169999 A JP2006169999 A JP 2006169999A JP 5030483 B2 JP5030483 B2 JP 5030483B2
Authority
JP
Japan
Prior art keywords
welding
weld metal
mass
flux
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006169999A
Other languages
Japanese (ja)
Other versions
JP2008000761A (en
Inventor
修一 阪口
直哉 早川
泰光 清都
雅弘 青木
薫 長谷
繁樹 西山
圭人 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd filed Critical JFE Steel Corp
Priority to JP2006169999A priority Critical patent/JP5030483B2/en
Publication of JP2008000761A publication Critical patent/JP2008000761A/en
Application granted granted Critical
Publication of JP5030483B2 publication Critical patent/JP5030483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、ラインパイプや造船等の分野で用いられる厚鋼板の接合に好適なサブマージアーク溶接方法に関し、詳しくは優れた靭性を有する溶接金属が得られるサブマージアーク溶接方法に関するものである。
なお様々な溶接技術で使用される溶接用ワイヤは、ソリッドワイヤとフラックスコアドワイヤに大別される。ソリッドワイヤは、鋼材を伸線した線材からなる溶接用ワイヤであり、溶接用ワイヤの表面にめっきを施したり、あるいは潤滑剤を塗布したものもある。フラックスコアドワイヤは、鋼製の外殻の内側に溶接用フラックスを充填した溶接用ワイヤである。
The present invention relates to a submerged arc welding method suitable for joining thick steel plates used in fields such as line pipes and shipbuilding, and more particularly to a submerged arc welding method capable of obtaining a weld metal having excellent toughness.
Note that welding wires used in various welding techniques are roughly classified into solid wires and flux-cored wires. The solid wire is a welding wire made of a wire obtained by drawing a steel material, and there is a wire in which the surface of the welding wire is plated or a lubricant is applied. The flux cored wire is a welding wire in which a welding flux is filled inside a steel outer shell.

本発明では、溶接用ワイヤとしてソリッドワイヤを使用する。   In the present invention, a solid wire is used as the welding wire.

厚鋼板を能率良く接合することが可能なサブマージアーク溶接方法は、ラインパイプ,造船,建築の分野で広く採用されている。これらの分野では、母材となる厚鋼板のみならず厚鋼板の接合部に形成される溶接金属の特性(たとえば強度,靭性等)が重視される。厚鋼板については、鋼材の溶製工程における成分および圧延工程における圧下条件を適宜調整することによって、所定の特性を有する厚鋼板を得ることができる。一方、溶接金属については、溶接用ワイヤや溶接用フラックスの成分がその特性に多大な影響を及ぼすことが知られている。   Submerged arc welding methods capable of efficiently joining thick steel plates are widely used in the fields of line pipes, shipbuilding, and construction. In these fields, not only the thick steel plate as a base material but also the characteristics (for example, strength, toughness, etc.) of the weld metal formed at the junction of the thick steel plates are emphasized. About a thick steel plate, the thick steel plate which has a predetermined characteristic can be obtained by adjusting suitably the component in the melting process of steel materials, and the rolling condition in a rolling process. On the other hand, it is known that the components of the welding wire and the welding flux have a great influence on the characteristics of the weld metal.

サブマージアーク溶接に限らず、590MPa以下の強度を有する鋼板を接合する場合は、母材(すなわち鋼板)と同等の靭性を有する溶接金属を得るために、Bを溶接金属に添加する技術が種々検討されている。たとえば、溶接用ワイヤとしてソリッドワイヤを用いるガスシールドアーク溶接にて、Bを添加した溶接用ワイヤを使用する技術が開示されている(特許文献1参照)。つまり、ガスシールドアーク溶接では溶接用フラックスを使用せず、溶接用ワイヤを介して溶接金属にBを添加する。   When joining steel plates with a strength of 590 MPa or less, not just submerged arc welding, various techniques for adding B to the weld metal are studied in order to obtain a weld metal having the same toughness as the base metal (ie, steel plate). Has been. For example, a technique of using a welding wire added with B in gas shielded arc welding using a solid wire as a welding wire is disclosed (see Patent Document 1). That is, in gas shielded arc welding, B is added to the weld metal via the welding wire without using the welding flux.

しかし、溶接用ワイヤにBを添加するためには、鋼材の溶製工程にてBを添加した後、圧延工程から伸線工程を経て溶接用ワイヤを製造しなければならない。Bは凝固割れを生じさせる元素であり、造塊工程における割れを除去して、圧延,伸線を行なう必要がある。その結果、溶接用ワイヤの歩留りが低下する。
そこで溶接用フラックスを使用するサブマージアーク溶接では、Bを添加した溶接用フラックスを使用する技術が開示されている(特許文献2参照)。つまり溶接用ワイヤにBを添加せず、溶接用フラックスを介して溶接金属にBを添加する。
However, in order to add B to the welding wire, after adding B in the steel melting process, the welding wire must be manufactured through a rolling process and a wire drawing process. B is an element that causes solidification cracking, and it is necessary to remove the crack in the ingot-making process and perform rolling and wire drawing. As a result, the yield of the welding wire is reduced.
Therefore, in submerged arc welding using a welding flux, a technique using a welding flux added with B is disclosed (see Patent Document 2). That is, B is not added to the welding wire, but B is added to the weld metal via the welding flux.

しかし溶接の施工の際には溶接電圧や溶接電流が変動し易いので、溶接用フラックスの溶融量を一定に維持するのは困難である。つまり、溶接金属のB含有量が変化し、溶接金属に所定の靭性を付与し難い。しかもB含有量が過剰に上昇した場合には、溶接金属に割れが生じる惧れがある。
特開平11-90678号公報 特開昭59-110493号公報
However, since welding voltage and welding current are likely to fluctuate during welding, it is difficult to maintain a constant amount of welding flux. That is, the B content of the weld metal changes and it is difficult to impart a predetermined toughness to the weld metal. And when B content rises excessively, there exists a possibility that a crack may arise in a weld metal.
JP 11-90678 A JP 59-110493 A

本発明は上記のような問題を解消し、靭性に優れた溶接金属を安定して得られるサブマージアーク溶接方法を提供することを目的とする。   An object of this invention is to provide the submerged arc welding method which eliminates the above problems and can obtain the weld metal excellent in toughness stably.

本発明者は、溶接用ワイヤや溶接用フラックスから溶接金属に添加されるB量と溶接電圧の変動との関係について詳細に検討した。その結果、溶接電圧が高くなると、
(a) 溶接用ワイヤから溶接金属に添加されるB量が減少する、
(b) 溶接用フラックスから溶接金属に添加されるB量が増加する
という現象を見出した。つまり、溶接用ワイヤと溶接用フラックスの両方から溶接金属にBを添加することによって、溶接電圧が低電圧から高電圧までの間で変動しても溶接金属に添加されるB量の変化を補完できるので、溶接金属のB含有量を一定に維持できる。
The present inventor has examined in detail the relationship between the amount of B added to the weld metal from the welding wire or welding flux and the fluctuation of the welding voltage. As a result, when the welding voltage increases,
(a) The amount of B added from the welding wire to the weld metal decreases.
(b) The phenomenon that the amount of B added to the weld metal from the welding flux increases was found. In other words, by adding B to the weld metal from both the welding wire and the welding flux, even if the welding voltage fluctuates between a low voltage and a high voltage, the amount of B added to the weld metal is compensated. Therefore, the B content of the weld metal can be kept constant.

しかも特許文献1に開示されているような、所定のB量を全て溶接用ワイヤから溶接金属に添加する技術に比べて、溶接用ワイヤのB含有量を低減できるので、溶接用ワイヤの製造過程における割れの発生が抑制され、溶接用ワイヤの歩留りが向上する。
また特許文献2に開示されているような、所定のB量を全て溶接用フラックスから溶接金属に添加する技術に比べて、溶接用フラックスのB含有量を低減できるので、溶接用フラックスの溶融量の変化に起因する溶接金属のB含有量の変化が抑制される。
Moreover, since the B content of the welding wire can be reduced as compared with the technique of adding all of the predetermined B amount from the welding wire to the weld metal as disclosed in Patent Document 1, the manufacturing process of the welding wire The occurrence of cracks in is suppressed, and the yield of the welding wire is improved.
Moreover, since the B content of the welding flux can be reduced as compared with the technique of adding all of the predetermined B amount from the welding flux to the weld metal as disclosed in Patent Document 2, the melting amount of the welding flux The change in the B content of the weld metal due to the change in the thickness is suppressed.

本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、B23を0.12〜1質量%含有する溶融型フラックスと、Bを10〜160質量ppm含有する溶接用ワイヤとを用いるサブマージアーク溶接方法において、溶融型フラックス中のB含有量(質量%)を[B]F ,溶接用ワイヤ中のB含有量(質量%)を[B] W したとき、[B]W /[B]F の値が0.04〜0.40の範囲内であるサブマージアーク溶接方法である。
The present invention has been made based on these findings.
That is, the present invention provides a melt flux containing B 2 O 3 0. 12 ~1 wt%, in submerged arc welding method using a welding wire containing 10-160 ppm by weight B, in melt flux When the B content (% by mass) is [B] F and the B content (% by mass) in the welding wire is [B] W , the value of [B] W / [B] F is 0.04 to 0.40. This is a submerged arc welding method that is within range.

本発明においては、溶融型フラックスはB23を含有する溶融型フラックスを使用し、溶接用ワイヤがBに加えて、Cを0.02〜0.16質量%,Siを0.1〜1.0質量%,Mnを0.5〜3.0質量%,Alを0.01〜0.1質量%,Tiを0.05〜0.3質量%,Moを0.1〜0.7質量%含有することが好ましい。その溶融型フラックスの塩基度は−0.5〜2.5であることが好ましい。 In the present invention, soluble Torugata flux using melt flux containing B 2 O 3, in addition to the welding wire B, C and from 0.02 to 0.16 mass%, 0.1-1.0 mass% of Si, Mn 0.5 to 3.0 mass%, Al 0.01 to 0.1 mass%, Ti 0.05 to 0.3 mass%, and Mo 0.1 to 0.7 mass%. The basicity of the molten flux is preferably -0.5 to 2.5.

本発明によれば、サブマージアーク溶接によって靭性に優れた溶接金属を安定して得ることができる。   According to the present invention, a weld metal having excellent toughness can be stably obtained by submerged arc welding.

まず、本発明で使用する溶融型フラックス(以下、溶接用フラックスという)の成分の限定理由を説明する。
[B]w /[B]F :0.04〜0.40
溶接用フラックス中のB23をBに換算した値を[B]F とし、溶接用ワイヤ中のBを[B]W -としたとき、[B]W /[B]F の値が0.04未満であれば、溶接用ワイヤからの添加量が少ないので溶接電圧の増大に伴いB量が増加する傾向が顕著になる。一方、[B]W /[B]F の値が0.40を超えると、逆に溶接用フラックスからの添加量が過小となり溶接電圧の増加に伴いB量が減少する傾向が現われる。したがって、[B]W /[B]F の値は0.04〜0.40とする。とりわけ溶接電圧の変化等に伴うB量の変化を少なくするためには0.05〜0.30の範囲内とすることが好ましい。
First, soluble Torugata flux used in the present invention (hereinafter, referred to as welding flux) explaining the reasons for limiting the components of.
[B] w / [B] F : 0.04 to 0.40
When B 2 O 3 in the welding flux is converted to B, [B] F, and B in the welding wire is [B] W −, the value of [B] W / [B] F is If it is less than 0.04, since the amount of addition from the welding wire is small, the tendency for the amount of B to increase as the welding voltage increases becomes prominent. On the other hand, when the value of [B] W / [B] F exceeds 0.40, the amount added from the welding flux is excessively decreased, and the B amount tends to decrease as the welding voltage increases. Therefore, the value of [B] W / [B] F is set to 0.04 to 0.40. In particular, in order to reduce the change in the amount of B accompanying the change in the welding voltage or the like, it is preferable to be in the range of 0.05 to 0.30.

23-:0.12〜1質量%
溶接用フラックスのB23-含有量が1質量%を超えると、溶接を施工する際に溶接用フラックスから溶接金属に添加されるB量が過剰に増加し、溶接金属に割れが生じる。一方、溶接用フラックスのB23-含有量が0.12質量%未満では、所定のB量の大部分を溶接用ワイヤに含有させなければならないので、溶接用ワイヤの素材となる鋼材の変形抵抗が増大し、溶接用歩留りが低下する。したがって、溶接用フラックスのB23-含有量は0.12〜1質量%の範囲内とする。好ましくは0.12〜0.8質量%である。
B 2 O 3-:. 0 12 ~1 wt%
When the content of B 2 O 3− in the welding flux exceeds 1% by mass, the amount of B added to the weld metal from the welding flux at the time of welding is excessively increased, and the weld metal is cracked. On the other hand, B 2 O 3- content of welding flux in 0.1 less than 12 wt%, since it must contain a large portion of the predetermined amount of B in the welding wire, the steel as the material of the welding wire Deformation resistance increases and welding yield decreases. Accordingly, B 2 O 3- content of welding flux is in the range of 0.12 to 1 wt%. Preferably from 0.12 to 0.8 wt%.

塩基度:−0.5〜2.5
ここで塩基度とは、下記の式で算出される値を指す。式中の[CaO],[CaF2],[SiO2],[TiO2],[Al2],[MnO],[MgO],[FeO]は、それぞれ溶接用フラックス中の各化合物のモル分率を表わす。
塩基度BLK=6.05[CaO]+6.05[CaF2]−6.31[SiO2]−4.97[TiO2
−0.2[Al2]+4.8[MnO]+4[MgO]+3.4[FeO]
溶接用フラックスの塩基度が−0.5未満では、Bによる溶接金属の靭性向上の効果が得られない。したがって、溶接用フラックスの塩基度は−0.5以上とする。一方、溶接用フラックスの塩基度が2.5を超えると、溶接の作業性が低下するばかりでなく、ビードの外観が損なわれる。そのため、溶接用フラックスの塩基度は−0.5〜2.5の範囲内が好ましい。
Basicity: -0.5 to 2.5
Here, basicity refers to a value calculated by the following formula. In the formula, [CaO], [CaF 2 ], [SiO 2 ], [TiO 2 ], [Al 2 O 3 ], [MnO], [MgO], and [FeO] are the respective compounds in the welding flux. Represents the mole fraction of.
Basicity B LK = 6.05 [CaO] +6.05 [CaF 2 ] −6.31 [SiO 2 ] −4.97 [TiO 2 ]
−0.2 [Al 2 O 3 ] +4.8 [MnO] +4 [MgO] +3.4 [FeO]
If the basicity of the welding flux is less than -0.5, the effect of improving the toughness of the weld metal by B cannot be obtained. Therefore, the basicity of the welding flux is set to −0.5 or more. On the other hand, when the basicity of the welding flux exceeds 2.5, not only the workability of welding is lowered, but also the appearance of the bead is impaired. Therefore, the basicity of the welding flux is preferably in the range of -0.5 to 2.5.

次に、本発明で使用する溶接用ワイヤの成分の限定理由を説明する。
B:10〜160質量ppm
溶接用ワイヤのB含有量が0.001質量%(=10質量ppm)未満では、所定のB量の大部分を溶接用フラックスに含有させなければならないので、溶接用フラックスの溶融量の変化に起因する溶接金属のB含有量の変化を抑制できない。一方、0.016質量%(=160質量ppm)を超えると、溶接金属に添加されるB量が増大して、溶接金属に割れが生じる。したがって、溶接用ワイヤのB含有量は10〜160質量ppmの範囲内とする。好ましくは10〜100質量ppm である。
Next, the reasons for limiting the components of the welding wire used in the present invention will be described.
B: 10-160 mass ppm
When the B content of the welding wire is less than 0.001 mass% (= 10 mass ppm), most of the predetermined B amount must be contained in the welding flux, which results from a change in the melting amount of the welding flux. The change in the B content of the weld metal cannot be suppressed. On the other hand, if it exceeds 0.016 mass% (= 160 mass ppm), the amount of B added to the weld metal increases and cracks occur in the weld metal. Therefore, the B content of the welding wire is in the range of 10 to 160 mass ppm. Preferably it is 10-100 mass ppm.

本発明で使用する溶接用ワイヤは、上記したBに加えて、下記の元素を含有することが好ましい。
C:0.02〜0.16質量%
Cは、溶接用ワイヤから溶接金属に添加されることによって溶接金属の強度を高める元素である。溶接用ワイヤのC含有量が0.02質量%未満では、溶接金属の十分な強度が得られない。一方、0.16質量%を超えると、溶接金属に割れが生じる。したがって、溶接用ワイヤのC含有量は0.02〜0.16質量%の範囲内が好ましい。
In addition to the above-described B, the welding wire used in the present invention preferably contains the following elements.
C: 0.02 to 0.16% by mass
C is an element that increases the strength of the weld metal by being added to the weld metal from the welding wire. If the C content of the welding wire is less than 0.02% by mass, sufficient strength of the weld metal cannot be obtained. On the other hand, if it exceeds 0.16% by mass, cracks occur in the weld metal. Therefore, the C content of the welding wire is preferably in the range of 0.02 to 0.16% by mass.

Si:0.1〜1.0質量%
Siは、溶接用ワイヤから溶接金属に添加されることによって溶接金属の脱酸剤として作用(すなわち溶接金属の酸素を除去)する元素である。ところが、溶接用ワイヤのSi含有量が1.0質量%を超えると、溶接金属の靭性が低下する。一方、溶接用ワイヤのSi含有量が0.1質量%未満では、溶接金属の酸素を除去する効果が得られない。したがって、0.1〜1.0 質量%の範囲内が好ましい。
Si: 0.1 to 1.0 mass%
Si is an element that acts as a deoxidizer for the weld metal (that is, removes oxygen from the weld metal) when added to the weld metal from the welding wire. However, when the Si content of the welding wire exceeds 1.0% by mass, the toughness of the weld metal decreases. On the other hand, if the Si content of the welding wire is less than 0.1% by mass, the effect of removing oxygen from the weld metal cannot be obtained. Therefore, the range of 0.1 to 1.0% by mass is preferable.

Mn:0.5〜3.0質量%
Mnは、溶接用ワイヤから溶接金属に添加されることによって溶接金属の強度と靭性を高める元素である。溶接用ワイヤのMn含有量が0.5質量%未満では、溶接金属の十分な強度が得られない。一方、3.0質量%を超えると、溶接金属の靭性が低下する。したがって、溶接用ワイヤのMn含有量は0.5〜3.0質量%の範囲内が好ましい。
Mn: 0.5-3.0 mass%
Mn is an element that increases the strength and toughness of the weld metal by being added to the weld metal from the welding wire. If the Mn content of the welding wire is less than 0.5% by mass, sufficient strength of the weld metal cannot be obtained. On the other hand, if it exceeds 3.0% by mass, the toughness of the weld metal decreases. Therefore, the Mn content of the welding wire is preferably in the range of 0.5 to 3.0 mass%.

Al:0.01〜0.1質量%
Alは、溶接用ワイヤから溶接金属に添加されることによって溶接金属の脱酸剤として作用する元素である。ところが、溶接用ワイヤのAl含有量が0.01質量%未満では、溶接金属の酸素を除去する効果が得られない。一方、溶接用ワイヤのAl含有量が0.1質量%を超えると、溶接金属の靭性が低下する。したがって、溶接用ワイヤのAl含有量は0.01〜0.1質量%の範囲内が好ましい。
Al: 0.01 to 0.1% by mass
Al is an element that acts as a deoxidizer for weld metal when added to the weld metal from the welding wire. However, if the Al content of the welding wire is less than 0.01% by mass, the effect of removing oxygen from the weld metal cannot be obtained. On the other hand, when the Al content of the welding wire exceeds 0.1% by mass, the toughness of the weld metal decreases. Therefore, the Al content of the welding wire is preferably in the range of 0.01 to 0.1% by mass.

Ti:0.05〜0.3質量%
Tiは、溶接用ワイヤから溶接金属に添加されることによって溶接金属の脱酸剤として作用する元素であり、しかも生成したTi酸化物が溶接金属の凝固組織の微細化に寄与する。ところが、溶接用ワイヤのTi含有量が0.05質量%未満では、溶接金属の酸素を除去する効果および溶接金属の凝固組織を微細化する効果が得られない。一方、溶接用ワイヤのTi含有量が 0.3質量%を超えると、溶接金属の靭性が低下する。したがって、溶接用ワイヤのTi含有量は0.05〜0.3 質量%の範囲内が好ましい。
Ti: 0.05-0.3 mass%
Ti is an element that acts as a deoxidizer for weld metal when added to the weld metal from the welding wire, and the generated Ti oxide contributes to refinement of the solidification structure of the weld metal. However, if the Ti content of the welding wire is less than 0.05% by mass, the effect of removing oxygen from the weld metal and the effect of refining the solidified structure of the weld metal cannot be obtained. On the other hand, when the Ti content of the welding wire exceeds 0.3% by mass, the toughness of the weld metal decreases. Therefore, the Ti content of the welding wire is preferably in the range of 0.05 to 0.3% by mass.

Mo:0.1〜0.7質量%
Moは、溶接用ワイヤから溶接金属に添加されることによって溶接金属の強度を高める元素である。ところが、溶接用ワイヤのMo含有量が0.7質量%を超えると、溶接金属の靭性が低下する。一方、溶接用ワイヤのMo含有量が0.1質量%未満では、溶接金属の強度を高める効果が得られない。したがって、0.1〜0.7質量%の範囲内が好ましい。
Mo: 0.1-0.7 mass%
Mo is an element that increases the strength of the weld metal by being added to the weld metal from the welding wire. However, when the Mo content of the welding wire exceeds 0.7 mass%, the toughness of the weld metal is lowered. On the other hand, if the Mo content of the welding wire is less than 0.1% by mass, the effect of increasing the strength of the weld metal cannot be obtained. Therefore, the range of 0.1 to 0.7% by mass is preferable.

さらに溶接の作業性やビードの形状等を改善する観点から、上記した組成に加えて、従来から有効される元素(たとえばCu,Ni,Cr,V,Nb等)を含有しても、サブマージアーク溶接によって靭性に優れた溶接金属を安定して得るという本発明の効果は損なわれない。
本発明者は、上記した成分を満足する様々な溶接用ワイヤと溶接用フラックスとを用いてサブマージアーク溶接を行ない、溶接金属に添加されるB量と溶接電圧の変動との関係について詳細に検討した。その結果、溶接を施工する際の溶接電圧と溶接金属のB含有量との関係が明らかになった。その一例を図1に示す。
Furthermore, from the viewpoint of improving the workability of welding and the shape of the bead, in addition to the above-described composition, even if it contains a conventionally effective element (for example, Cu, Ni, Cr, V, Nb, etc.), it is a submerged arc. The effect of the present invention of stably obtaining a weld metal excellent in toughness by welding is not impaired.
The present inventor performs submerged arc welding using various welding wires and welding fluxes that satisfy the above-described components, and examines in detail the relationship between the amount of B added to the weld metal and the welding voltage fluctuation. did. As a result, the relationship between the welding voltage during welding and the B content of the weld metal was clarified. An example is shown in FIG.

図1では、B23-を0.35質量%含有する溶接用フラックスと、Bを150質量ppm含有する溶接用ワイヤとを用いて、単電極のサブマージアーク溶接(溶接電流:650A,溶接電圧:32V,35V,38V)を行なった。
図1から明らかなように、溶接電圧が高くなると、溶接用ワイヤから溶接金属に添加されるB量は減少するが、溶接用フラックスから溶接金属に添加されるB量は増加する。つまり、溶接用ワイヤと溶接用フラックスの両方から溶接金属にBを添加することによって、溶接電圧が低電圧から高電圧までの間で変動しても溶接金属に添加されるB量の変化を補完できるので、溶接金属のB含有量を一定に維持できる。
In FIG. 1, single-electrode submerged arc welding (welding current: 650 A, welding voltage: welding flux containing 0.35% by mass of B 2 O 3− and welding wire containing 150% by mass of B is used. 32V, 35V, 38V).
As apparent from FIG. 1, when the welding voltage increases, the amount of B added from the welding wire to the weld metal decreases, but the amount of B added from the welding flux to the weld metal increases. In other words, by adding B to the weld metal from both the welding wire and the welding flux, even if the welding voltage fluctuates between a low voltage and a high voltage, the amount of B added to the weld metal is compensated. Therefore, the B content of the weld metal can be kept constant.

厚さ20mmの厚鋼板1を用いて図2に示すような開先(開先角θ:90°,開先深さd:7.8mm)を形成してサブマージアーク溶接を行なった。使用した溶接用ワイヤの成分を表1に示し、溶接用フラックスのB23-含有量と塩基度を表2に示す。表1に示す溶接用ワイヤのうちのWBは、B含有量が本発明の範囲を外れる例である。また、表2に示す溶接用フラックスのうちのFBは、B23-含有量が本発明の範囲を外れる例である。 A groove (groove angle θ: 90 °, groove depth d: 7.8 mm) as shown in FIG. 2 was formed using a thick steel plate 1 having a thickness of 20 mm, and submerged arc welding was performed. The components of the welding wire used are shown in Table 1, and the B 2 O 3- content and basicity of the welding flux are shown in Table 2. WB of the welding wires shown in Table 1 is an example in which the B content is outside the scope of the present invention. Moreover, FB among the welding fluxes shown in Table 2 is an example in which the B 2 O 3- content is outside the scope of the present invention.

Figure 0005030483
Figure 0005030483

Figure 0005030483
Figure 0005030483

これらの溶接用ワイヤと溶接用フラックスを、表3に示すように組み合わせて4電極のサブマージアーク溶接(溶接速度:210cm/分)を行なった。4電極の設定は、それぞれ溶接電流を1200A,1000A,800A,650Aとし、溶接電圧は各々35V,38V,40V,40Vとし、この標準溶接条件から電圧が各々±3V変動した場合と比較した。
得られた溶接金属から試料をそれぞれ3個ずつ採取してB含有量を測定した。その結果は表3に示す通りである。つまり、発明例ではB含有量の測定値の変動幅が2〜3質量ppmであったのに対して、比較例では変動幅が6〜8質量ppmであった。したがって、本発明を適用することによって、溶接金属のB含有量の変動が抑制され、溶接金属の特性を安定させることができる。
These welding wires and welding flux were combined as shown in Table 3 to perform four-electrode submerged arc welding (welding speed: 210 cm / min). The four electrodes were set at welding currents of 1200 A, 1000 A, 800 A, and 650 A, respectively, and the welding voltages were 35 V, 38 V, 40 V, and 40 V, respectively.
Three samples were collected from each of the obtained weld metals, and the B content was measured. The results are as shown in Table 3. That is, in the example of the invention, the fluctuation range of the measured value of the B content was 2 to 3 ppm by mass, whereas in the comparative example, the fluctuation range was 6 to 8 ppm by mass. Therefore, by applying the present invention, fluctuations in the B content of the weld metal can be suppressed and the characteristics of the weld metal can be stabilized.

また、溶接金属からシャルピー衝撃試験片(JIS規格Z2202 に準拠したVノッチ試験片)をそれぞれ3個ずつ採取して、シャルピー衝撃試験(−30℃)を行なった。測定された V-30(J)のうちの最低値を表3に示す。発明例では V-30の最低値が180〜210Jであったのに対して、比較例では80〜120Jであった。したがって、本発明を適用することによって靭性に優れた溶接金属を得ることができる。 Further, three Charpy impact test pieces (V-notch test pieces conforming to JIS standard Z2202) were collected from the weld metal, and Charpy impact test (−30 ° C.) was performed. Table 3 shows the lowest value of the measured V E -30 (J). In the inventive example, the minimum value of V E -30 was 180 to 210 J, while in the comparative example, it was 80 to 120 J. Therefore, the weld metal excellent in toughness can be obtained by applying the present invention.

Figure 0005030483
Figure 0005030483

溶接を施工する際の溶接電圧と溶接金属のB含有量との関係を示すグラフである。It is a graph which shows the relationship between the welding voltage at the time of constructing welding, and B content of a weld metal. 溶接実験で使用した厚鋼板の開先形状を模式的に示す断面図である。It is sectional drawing which shows typically the groove shape of the thick steel plate used by the welding experiment.

符号の説明Explanation of symbols

1 厚鋼板   1 Thick steel plate

Claims (3)

23を0.12〜1質量%含有する溶融型フラックスと、Bを10〜160質量ppm含有する溶接用ワイヤとを用いるサブマージアーク溶接方法において、前記溶融型フラックス中のB含有量(質量%)を[B]F 、前記溶接用ワイヤ中のB含有量(質量%)を[B] W したとき、[B]W /[B]F の値が0.04〜0.40の範囲内であることを特徴とするサブマージアーク溶接方法。 A melt flux containing B 2 O 3 0. 12 ~1 wt%, in submerged arc welding method using a welding wire containing 10-160 ppm by weight B, B content of the melt flux ( Mass%) is [B] F and the B content (mass%) in the welding wire is [B] W , the value of [B] W / [B] F is in the range of 0.04 to 0.40. A submerged arc welding method characterized by being. 前記溶融型フラックスは、B23を含有する溶融型フラックスを使用し、前記溶接用ワイヤがBに加えて、Cを0.02〜0.16質量%、Siを0.1〜1.0質量%、Mnを0.5〜3.0質量%、Alを0.01〜0.1質量%、Tiを0.05〜0.3質量%、Moを0.1〜0.7質量%含有することを特徴とする請求項1に記載のサブマージアーク溶接方法。 The melt type flux uses a melt type flux containing B 2 O 3 , the welding wire is added to B, C is 0.02 to 0.16% by mass, Si is 0.1 to 1.0% by mass, and Mn is 0.5 to 0.5%. The submerged arc welding method according to claim 1, comprising 3.0% by mass, Al 0.01-0.1% by mass, Ti 0.05-0.3% by mass, and Mo 0.1-0.7% by mass. 前記溶融型フラックスの塩基度が−0.5〜2.5であることを特徴とする請求項1または2に記載のサブマージアーク溶接方法。   The submerged arc welding method according to claim 1 or 2, wherein the basicity of the molten flux is -0.5 to 2.5.
JP2006169999A 2006-06-20 2006-06-20 Submerged arc welding method Active JP5030483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169999A JP5030483B2 (en) 2006-06-20 2006-06-20 Submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169999A JP5030483B2 (en) 2006-06-20 2006-06-20 Submerged arc welding method

Publications (2)

Publication Number Publication Date
JP2008000761A JP2008000761A (en) 2008-01-10
JP5030483B2 true JP5030483B2 (en) 2012-09-19

Family

ID=39005553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169999A Active JP5030483B2 (en) 2006-06-20 2006-06-20 Submerged arc welding method

Country Status (1)

Country Link
JP (1) JP5030483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398105A (en) * 2010-09-15 2012-04-04 中国石油天然气集团公司 Process for integral hardening and tempering of X80 steel-grade automatic submerged arc welding pipe fittings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649753B2 (en) * 2000-03-31 2011-03-16 Jfeスチール株式会社 Elementary pipe for high strength thick welded bend steel pipe with excellent weld toughness and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008000761A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP5411820B2 (en) Flux-cored welding wire and overlay welding arc welding method using the same
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
KR100920550B1 (en) Flux-cored wire for titania-based gas shielded arc welding
JP6809533B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
JP6573056B1 (en) Solid wire for gas shielded arc welding to thin steel plate
US10870178B2 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
JP6671157B2 (en) Flux-cored wire for stainless steel welding, stainless steel welded joint, and method of manufacturing the same
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP2013154363A (en) Flux for one side submerged arc welding
KR102034470B1 (en) Narrow-gap tandem submerged arc welding process
JP5450260B2 (en) Weld metal with excellent hot crack resistance
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP2008161899A (en) Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
KR101962050B1 (en) Flux-cored wire for gas-shielded arc welding
JP5030483B2 (en) Submerged arc welding method
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP2015110828A (en) Duplex stainless steel material and duplex stainless steel tube
JP2005169414A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2005329460A (en) Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250