JPS6151019A - Fine spherical resol resin particle and its production - Google Patents

Fine spherical resol resin particle and its production

Info

Publication number
JPS6151019A
JPS6151019A JP15039984A JP15039984A JPS6151019A JP S6151019 A JPS6151019 A JP S6151019A JP 15039984 A JP15039984 A JP 15039984A JP 15039984 A JP15039984 A JP 15039984A JP S6151019 A JPS6151019 A JP S6151019A
Authority
JP
Japan
Prior art keywords
fluoride
microspherical
resin particles
resol resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15039984A
Other languages
Japanese (ja)
Other versions
JPH066615B2 (en
Inventor
Yoshiaki Echigo
良彰 越後
Mutsunori Yamao
山尾 睦矩
Yoshiyuki Suematsu
末松 義之
Tadashi Ishikura
石倉 正
Keiichi Asami
圭一 浅見
Ritsuko Shidei
四手井 律子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP59150399A priority Critical patent/JPH066615B2/en
Priority to CA000486665A priority patent/CA1243909A/en
Priority to DE8585305026T priority patent/DE3577101D1/en
Priority to EP85305026A priority patent/EP0169042B1/en
Priority to US06/755,769 priority patent/US4640971A/en
Publication of JPS6151019A publication Critical patent/JPS6151019A/en
Priority to US06/915,286 priority patent/US4778695A/en
Publication of JPH066615B2 publication Critical patent/JPH066615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain fine spherical resol particles excellent in flow property, moldability and storage stability, by reacting a phenol with an aldehyde in an aqueous medium in the presence of both of a basic catalyst and a water-insoluble inorganic salt. CONSTITUTION:The reaction of a phenol with an aldehyde in an aqueous medium in the presence of a basic catalyst, is performed by adding a substantially water-insoluble inorganic salt to the reaction system to obtain fine spherical resol resin particles each of which is surface-treated partially or entirely with the water-insoluble inorganic salt and has a particle diameter <=500mu. Said water-insoluble inorganic salt comprises at least one selected from the group consisting of calcium fluoride, magnesium fluoride and strontium fluoride and is used in an amount of preferably 0.2-10wt% based on the phenol.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、熱反応性を有し、保存安定性に骨れた微小球
状の固形レゾール樹脂粒子及びその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to microspherical solid resol resin particles having thermal reactivity and excellent storage stability, and a method for producing the same.

〈従来の技術〉 レゾール樹脂(−膜性フエノール樹脂)は、−狼にフェ
ノール、クレゾール等のフェノール類とホルムアルデヒ
ド、アセトアルデヒド等のアルデヒド類とをアンモニア
水、有機アミン、水酸化ナトリウム等の塩基性触媒の存
在下で重縮合して得られる樹脂である。
<Prior art> Resol resin (membrane phenolic resin) is produced by combining phenols such as phenol and cresol with aldehydes such as formaldehyde and acetaldehyde and a basic catalyst such as aqueous ammonia, organic amine, and sodium hydroxide. It is a resin obtained by polycondensation in the presence of.

ノボラック樹脂(二段法フェノール樹脂)が熱硬化の際
に硬化剤として5通常へキサメチレンテトラミンのよう
な架橋剤を用いるのに対し、レゾール樹脂は分子中にメ
チロール基を多く含むため硬化剤を使用せず、単独で熱
硬化することができる。このように、レゾール樹脂は反
応性が極めて大きいことから8通常は固形分50〜60
%程度の水又はメタノール溶液として製造され、そのま
ま溶液の状態で保存されており1粒状又は粉末状の安定
な固形物として溶液からとり出すことは困難であった・ このため、安定な固体状のレゾール樹脂の製造を企画し
て種々の提真がなされており9例えば特公昭53−42
077号公報には、フェノール類とホルムアルデヒドと
を塩基性触媒を用い、エチレンジアミンのごとき含チツ
素系化合物の存在下で反応させて得られる縮合物に、ゼ
ラチン、カゼイン、ポリビニルアルコールのごとき親水
性を機化合物を添加して反応させ1粒状ないし粉末状の
レゾール樹脂を製造する方法が、また特開昭52−14
1893号公報には、フェノールとホルムアルデヒドと
アンモニアのごとき塩基性触媒とをアラビアゴム、ガフ
チゴム、ヒドロキシアルキルグアルゴム又は部分加水分
解ポリビニルアルコールのごとき保護コロイドの存在下
にエマルジョン重合させて粒状のレゾール樹脂を製造す
る方法が開示されている。
Novolac resins (two-step phenolic resins) usually use a crosslinking agent such as hexamethylenetetramine as a curing agent during heat curing, whereas resol resins contain many methylol groups in their molecules, so no curing agent is used. It can be heat-cured alone without using it. In this way, since resol resin has extremely high reactivity8, the solid content is usually 50 to 60%.
It was manufactured as a water or methanol solution of about 1.5% and was stored as a solution, making it difficult to remove it from the solution as a stable solid in the form of a single grain or powder. Various proposals have been made to plan the production of resol resin9, for example,
No. 077 discloses that a hydrophilic substance such as gelatin, casein, or polyvinyl alcohol is added to a condensate obtained by reacting phenols and formaldehyde using a basic catalyst in the presence of a nitrogen-containing compound such as ethylenediamine. A method for producing resol resin in the form of one grain or powder by adding and reacting organic compounds is also disclosed in JP-A-52-14.
No. 1893 discloses the production of granular resol resin by emulsion polymerization of phenol, formaldehyde, and a basic catalyst such as ammonia in the presence of a protective colloid such as gum arabic, gum gafti, hydroxyalkyl guar gum, or partially hydrolyzed polyvinyl alcohol. A method is disclosed.

しかしながら、これらの方法は、いずれも親水性有機高
分子化合物をエマルジョン安定剤として用いるもので、
これらの方法により得られるレゾール樹脂は親水性有機
高分子化合物を含有するため、これより得られる成形品
は性能が低下し、また保存時に樹脂粒子が融着(Sin
tering)するという欠点を有している。
However, all of these methods use hydrophilic organic polymer compounds as emulsion stabilizers;
Since the resol resins obtained by these methods contain hydrophilic organic polymer compounds, the performance of molded products obtained from them decreases, and the resin particles may fuse (Sin) during storage.
It has the disadvantage of causing a lot of damage (tering).

このような欠点を解消するため、特開E1g57−17
7011号公報には、酸性触媒下でフェノール類と大過
剰のホルムアルデヒド(フェノール類に対して8〜10
倍モル)とを反応させて微粒状の固体熱硬化性フェノー
ル類脂を製造する方法が開示されている。
In order to eliminate such drawbacks, Unexamined Patent Publication E1g57-17
Publication No. 7011 discloses that phenols and a large excess of formaldehyde (8 to 10
Disclosed is a method for producing fine-grained solid thermosetting phenolic fats by reacting them with 2 times the molar amount.

しかし、このような方法により製造された樹脂は流れ特
性が悪く、このため成形性が不良であり。
However, resins produced by this method have poor flow characteristics and therefore poor moldability.

硬化速度も遅いという欠点を有している。It also has the disadvantage of slow curing speed.

〈発明が解決しようとする問題点〉 本発明者等は、かかる実情に鑑み、優れた特性を有する
微小球状の固体レゾール樹脂の開発について鋭息検討を
重ねた結果、フェノール類とアルデヒド類とをエマルジ
ョン重合する際に、実質的に水溶性の無機塩類を共存さ
廿る8とにより、極めて安定にエマルジョン重合を行う
ことができ。
<Problems to be Solved by the Invention> In view of the above circumstances, the present inventors have conducted intensive studies on the development of microspherical solid resol resins with excellent properties, and as a result, have found that phenols and aldehydes are During emulsion polymerization, by coexisting with substantially water-soluble inorganic salts, emulsion polymerization can be carried out extremely stably.

しかも優れた樹脂特性を有する微小球状の固形のレゾー
ル樹脂粒子を製造し得ることを知見した。
Furthermore, it has been found that microspherical solid resol resin particles having excellent resin properties can be produced.

本発明は、かかる知見に基づいてなされたものであり、
その目的とするところは粒径が500μ以下の微小球状
のレゾール樹脂粒子及びその製造法を提供することにあ
る。 ・ 本発明の他の目的は、保存安定性にΦれた微小球状のレ
ゾール樹脂粒子及びその製造法を提供することにある。
The present invention was made based on this knowledge,
The purpose is to provide microspherical resol resin particles having a particle size of 500 μm or less and a method for producing the same. - Another object of the present invention is to provide microspherical resol resin particles with excellent storage stability and a method for producing the same.

本発明の他の目的は、良好な流れ特性及び熱反応性をを
し、成形性の良好な微小球状のレゾール樹脂粒子及びそ
の製造法を提供することにある。
Another object of the present invention is to provide microspherical resol resin particles having good flow characteristics and thermal reactivity and good moldability, and a method for producing the same.

さらに9本発明の他の目的は、成形品の性能を低下する
ことな(性能及び品位に価れた成形品を得ることができ
る微小球状のレゾール樹脂及びその製造法を提供するこ
とにある。
Still another object of the present invention is to provide a microspherical resol resin and a method for producing the same, which can produce a molded product with excellent performance and quality without deteriorating the performance of the molded product.

〈問題点を解決するための手段〉 しかして、かかる目的を達成する本発明の特徴は1表面
の一部又は全部が実質的に水に未溶性の無機塩類で被覆
されており、かつ粒径が500μ以下である微小球状の
レゾール樹脂粒子及び水性媒体中でフェノール類とアル
デヒド類とを塩基性触媒の存在下で反応させるる際し、
該反応系に実質的に水に不ン容性の無機塩類を共存せし
めて反応させ1表面の一部又は全部が実質的に水に不溶
性の無機塩類で被覆された粒径500μ以下の微小球状
レゾール樹脂粒子を生成させることにある。
<Means for Solving the Problems> However, the features of the present invention that achieve such objects are as follows: 1. Part or all of the surface is coated with an inorganic salt that is substantially insoluble in water, and the particle size is When reacting phenols and aldehydes in microspherical resol resin particles with a size of 500 μ or less and an aqueous medium in the presence of a basic catalyst,
The reaction system is made to coexist with an inorganic salt that is substantially insoluble in water, and the reaction is carried out to form microspheres with a particle size of 500 μm or less whose surface is partially or entirely coated with an inorganic salt that is substantially insoluble in water. The objective is to generate resol resin particles.

以下、さらに本発明の詳細な説明する。The present invention will be further explained in detail below.

本発明にいう実質的に水に不溶性の無機塩類とは、25
℃における水に対する溶屏度が0.2 g/β以下の無
機塩類をいい1例えばフッ化カルシウム。
The substantially water-insoluble inorganic salts referred to in the present invention are 25
Refers to inorganic salts having a solubility in water of 0.2 g/β or less at ℃.1 For example, calcium fluoride.

フッ化マグネシウム、フッ化ストロンチウム、リン酸カ
ルシウム、リン酸マグネシウム、リン酸バリウム、リン
酸アルミニウム、硫酸バリウム、硫酸カルシウム、水酸
化亜鉛、水酸化アルミニウム。
Magnesium fluoride, strontium fluoride, calcium phosphate, magnesium phosphate, barium phosphate, aluminum phosphate, barium sulfate, calcium sulfate, zinc hydroxide, aluminum hydroxide.

水酸化鉄等が挙げられ、特にフッ化カルシウム。Examples include iron hydroxide, especially calcium fluoride.

フッ化マグネシウム、フッ化ストロンチウムが好ましい
Magnesium fluoride and strontium fluoride are preferred.

本発明に係る微小球状レゾール樹脂粒子は、樹脂表面に
前記の実質的に水に不溶性の無機塩類を被覆せしめてな
るものであるが、以下にその実施1点様について説明す
る。
The microspherical resol resin particles according to the present invention are formed by coating the resin surface with the above-mentioned substantially water-insoluble inorganic salts, and one embodiment thereof will be described below.

第1図tag、 tb)は1本発明微小球状レゾール樹
脂粒子構造の一例を示す走査型電子顕微鏡写真であり1
粒子表面に極めて微細な実質的に水に不溶性の無機塩類
が沈着し1粒子表面を覆っている。この実質的に水に不
溶性の無機塩類の粒子表面への被覆は、後述するごと(
水性媒体中でフェノール類とアルデヒド類とを塩基性触
媒の存在下で反応させるに際し、実質的に水に不溶性の
無機塩類を共存せしめて形成されるが、実質的に水に不
溶性の無機塩類の添加量等を適宜変更することにより所
望の被HHとすることができる。
Figure 1 (tag, tb) is a scanning electron micrograph showing an example of the microspherical resol resin particle structure of the present invention.
Very fine, substantially water-insoluble inorganic salts are deposited on the particle surface and cover the surface of each particle. The coating of the particle surface with this substantially water-insoluble inorganic salt is carried out as described below (
When phenols and aldehydes are reacted in an aqueous medium in the presence of a basic catalyst, substantially water-insoluble inorganic salts are allowed to coexist. A desired HH effect can be obtained by appropriately changing the amount added and the like.

そして、前記実質的に水に不溶性の無機塩類が被覆され
た本発明レゾール樹脂粒子は、第1図(a)。
The resol resin particles of the present invention coated with the substantially water-insoluble inorganic salt are shown in FIG. 1(a).

tb)に示すごとく、その粒径が500μ以下の微小球
状を呈する。すなわち9本発明レゾール樹脂粒子は、従
来の粉末状あるいは粒状のものと異なり。
As shown in tb), the particles exhibit a microspherical shape with a particle size of 500 μm or less. That is, the resol resin particles of the present invention are different from conventional powder or granular particles.

各粒子が微小球状であり9粒子の融着は見られない、こ
のように5本発明レゾール樹脂粒子が微小球状を呈し、
融着が見られないのは、後述する製造法において形成さ
れる実質的に水に不溶性の無5塩類を被原が樹脂製造時
及び保存時に粒子の融着を防止するものと推定される。
Each particle is microspherical, and no fusion of particles is observed.In this way, the resol resin particles of the present invention exhibit a microspherical shape,
It is presumed that the reason why no fusion is observed is that the substantially water-insoluble non-salt coating material, which is formed in the production method described below, prevents the particles from fusion during resin production and storage.

かくして、上記構成よりなる本発明レゾール樹脂粒子は
、その表面が実質的に水に不溶性の無機塩類で被覆され
ているものであるから、保存安定性に優れ、1年以上粒
子の?A着を生ずることなく保存できるとともに、FL
径が500μ以下の微小球状の粒子であるから、成形な
どの使用時の取扱が容易である。
Thus, since the resol resin particles of the present invention having the above-mentioned structure have their surfaces coated with substantially water-insoluble inorganic salts, they have excellent storage stability and can last for more than one year. It can be stored without causing A-arrival, and FL
Since they are microspherical particles with a diameter of 500 μm or less, they are easy to handle during molding and other uses.

次に1本発明の上記微小球状レゾール樹脂粒子の製造法
について説明する。
Next, a method for producing the microspherical resol resin particles of the present invention will be explained.

まず1本発明方法は水性媒体中でフェノール類とアルデ
ヒドとを塩基性触媒の存在下で反応させるに際し、該反
応系に実質的に水に不溶性の無機塩類を共存せしめて反
応させる。ここで使用されるフェノール類はフェノール
及びフェノールF4体であり、このフェノール誘導体と
しては1例えば炭素数1〜9のアルキル基で置換された
m−アルキルフェノール、○−アルキルフェノール、P
−アルキルフェノール、具体的にはm−クレゾール、 
 pwter−ブチルフェノール、O−プロビルフニノ
ール、レソ゛ルシノール、ビスフェノールA及びこれら
のベンゼン核又はアルキル基の水素原子の一部又は全部
が塩素又は臭素でに摸されたハロゲン化フェノール誘導
体等が挙げられ、これらの1種又は2種以上が用いられ
る。なお、フェノール類としては、これらに限定される
ものでなくその他フェノール性水酸基を含有する化合物
であれば、いかなる化合物でも使用することができる。
First, in the method of the present invention, when phenols and aldehydes are reacted in an aqueous medium in the presence of a basic catalyst, a substantially water-insoluble inorganic salt is allowed to coexist in the reaction system. The phenols used here are phenol and phenol F4, and the phenol derivatives include m-alkylphenol substituted with an alkyl group having 1 to 9 carbon atoms, ○-alkylphenol, P
-alkylphenol, specifically m-cresol,
Examples include pwter-butylphenol, O-probyrfuninol, resorcinol, bisphenol A, and halogenated phenol derivatives in which part or all of the hydrogen atoms of the benzene nucleus or alkyl group of these are imitated with chlorine or bromine. One or more of these are used. Note that the phenols are not limited to these, and any other compound containing a phenolic hydroxyl group can be used.

また8本発明で用いられるアルデヒド類として:=。In addition, 8 aldehydes used in the present invention:=.

例えばホルマリン又はバラホルムアルデヒドのいずれの
形態のホルムアルデヒド及びフルフラール等が系げられ
、アルデヒド類のフェノール類に対するモル比は1〜2
.好ましくは1.1〜1.4である。
For example, formaldehyde in any form such as formalin or formaldehyde and furfural are used, and the molar ratio of aldehydes to phenols is 1 to 2.
.. Preferably it is 1.1 to 1.4.

また1本発明方法で使用される塩基性通謀としては、1
Jlj常のレゾール樹脂製造に用いられる塩基性触媒が
使用でき1例えばアンモニア水、ヘキサメチレンテトラ
ミン及びジメチルアミン、ジエチルトリアミン、ポリエ
チレンイミン等のアルキルアミン等が挙げられる。これ
ら塩基性触媒のフェノール類に対するモル比は0.02
〜0.2が好ましい。
In addition, as the basic conspiracy used in the method of the present invention, 1
Basic catalysts commonly used in the production of resol resins can be used, including aqueous ammonia, hexamethylenetetramine, and alkylamines such as dimethylamine, diethyltriamine, and polyethyleneimine. The molar ratio of these basic catalysts to phenols is 0.02
~0.2 is preferred.

前記フェノール類とアルデヒド類とを塩基性触媒の存在
下で反応させる際に共存させる実質的に水に不溶性の無
機塩類としては、上述したごとくフッ化カルシウム、フ
ッ化マグネシウム、フッ化ストロンチウム等が好ましく
、その工はフェノール類に対もて0.2〜10wt%、
好ましくは0.5〜3.5wt%である。なお、実質的
に水に不溶性の無機塩類を添加するには、前記のごとく
実質的に水に不溶性の無機塩類を直接添加してもよく、
また反応時にかかる実質的に水に不溶性の無機塩類が生
成されるような2種以上の水溶性無機塩類を添加しても
よい、すなわち1例えばカルシウム、マグネシウム、ス
トロンチウムのフッ累化合物に代えて水溶性の無機塩類
の一方にフッ化ナトリウム、フッ化カリウム、フッ化ア
ンモニウムからなる群より選ばれた少なくとも1種と他
方にカルシウム。
As the substantially water-insoluble inorganic salts that are allowed to coexist when the phenols and aldehydes are reacted in the presence of a basic catalyst, calcium fluoride, magnesium fluoride, strontium fluoride, etc. are preferably used as described above. , the process has a content of 0.2 to 10 wt% relative to phenols,
Preferably it is 0.5 to 3.5 wt%. In addition, in order to add substantially water-insoluble inorganic salts, the substantially water-insoluble inorganic salts may be directly added as described above,
In addition, two or more water-soluble inorganic salts may be added such that substantially water-insoluble inorganic salts are produced during the reaction, i.e., water-soluble At least one selected from the group consisting of sodium fluoride, potassium fluoride, and ammonium fluoride on one side of the inorganic salts and calcium on the other side.

マグネシウム、ストロンチウムの塩化物、硫酸塩。Chlorides and sulfates of magnesium and strontium.

硝酸塩からなる群より選ばれた少なくとも1種とを添加
して反応時にカルシウム、マグネシウム。
At least one member selected from the group consisting of nitrates is added during the reaction to produce calcium and magnesium.

ストロンチウムのフッ素化合物を生成させるようにする
こともできる。
It is also possible to generate a fluorine compound of strontium.

本発明方法の反応は、水性媒体中で行われるが。The reaction of the method of the invention is carried out in an aqueous medium.

この場合の水の仕込量としては1例えば樹脂の固形分濃
度が30〜70w t%、好ましくは50〜60w t
%となるようにすることが望ましい。
In this case, the amount of water to be charged is 1. For example, the solid content concentration of the resin is 30 to 70 wt%, preferably 50 to 60 wt%.
%.

反応は、攪拌下で昇温速度0.5〜1.5°C/min
The reaction was carried out at a temperature increase rate of 0.5 to 1.5°C/min under stirring.
.

好ましくは0.8〜1.2℃/minで、温度を徐々に
上昇せしめ2反応温度70〜90°C1好ましくは83
〜87゛Cで60〜150分、好ましくは80〜110
分間反応させる。このようにして反応せしめた後1反応
物を40℃以下に冷却すると安定な固形レゾールの水性
エマルジョンが得られる。
The temperature is gradually increased, preferably at a rate of 0.8 to 1.2°C/min, and the reaction temperature is 70 to 90°C.
~87°C for 60-150 minutes, preferably 80-110 minutes
Let it react for a minute. After reacting in this manner, one reactant is cooled to 40° C. or lower to obtain a stable aqueous emulsion of solid resol.

次に、この水性エマルジョンを濾過又は遠心分周等の常
法に従って固液を分剤した後、洗浄して乾逮すれば表面
が実質的に不溶性の無機塩類で被覆された粒径が500
μ以下の本発明の固形の微小球状レゾール樹脂粒子が得
られる。
Next, this aqueous emulsion is divided into solid and liquid parts according to a conventional method such as filtration or centrifugal separation, and then washed and dried to obtain a particle size of 500 ml, the surface of which is coated with substantially insoluble inorganic salts.
Solid, microspherical resol resin particles of the present invention with a size of less than μ are obtained.

なお5本発明方法は連続法又はパンチ法のいずれでも行
うことができるが9通常はパンチ法で行われる。
Although the method of the present invention can be carried out by either a continuous method or a punch method, 9 it is usually carried out by a punch method.

上記のごとくして1本発明方法によって得られるレゾー
ル樹脂粒子はサラサラとした融若のない微小球状の画形
粒子であり、上述したごと(安定性に仁れるとともに、
流れ特性が良好で、成形性に曇れている。また1本発明
方法による微小球状レゾール樹脂粒子は1反応性も良好
でゲル化速度も速く、短時間での成形が可能であり、成
形品の性能及び品位も良好である。さらに1本発明方法
で得られる微小球状レゾール樹脂粒子は、その粒径が5
00μ以下で、大部分が100μ以下であり。
As described above, the resol resin particles obtained by the method of the present invention are smooth microspherical patterned particles with no melting and waxing, and as described above (in addition to being highly stable),
Good flow properties and poor formability. Furthermore, the microspherical resol resin particles obtained by the method of the present invention have good reactivity, a high gelation rate, can be molded in a short time, and the performance and quality of the molded product are also good. Furthermore, the microspherical resol resin particles obtained by the method of the present invention have a particle size of 5.
00μ or less, and most of them are 100μ or less.

従来法によって製造される粒状レゾール樹脂に比して粒
度分布が極めてシャープであり、このことから本発明方
法のエマルジョン安定化法が極めて優れた方法であるこ
とが肯首される。
The particle size distribution is extremely sharp compared to the granular resol resin produced by the conventional method, and this confirms that the emulsion stabilization method of the present invention is an extremely superior method.

本発明の微小球状レゾール樹脂粒子は1通常成形可能な
固体レゾール樹脂として使用されるが。
The microspherical resol resin particles of the present invention are generally used as moldable solid resol resins.

上述した反応後に得られる固体レゾールの水性エマルジ
ョンのまま接着剤等に用いることもできる。
The aqueous emulsion of the solid resol obtained after the above-mentioned reaction can also be used as is for adhesives and the like.

また1本発明のレゾール樹脂粒子は9例えば積3品、バ
インダー等の通常のフェノール樹脂が使用さる全ての分
野にも適用可能であり、フェノール樹脂の充填剤1例え
ば木粉、ガラス繊維等との併用や、他の有籾富分子1例
えばポリビニルホルマール、ナイロン等とブレンドして
使用することもできる。
In addition, the resol resin particles of the present invention can be applied to all fields in which ordinary phenolic resins are used, such as products and binders. It can also be used in combination or in a blend with other rice-rich molecules such as polyvinyl formal, nylon, etc.

〈実施例〉 以下、本発明を実施例により具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 12の三ツロフラスコにフェノール200g、 37%
ホルマリン200g、水70g、ヘキサメチレンテトラ
ミン18g、塩化カルシウム8.4gを撹拌しながら投
太し、均一な?容ン夜とし、この’I8ン夜に1児!$
下でフッ化ナトリウムの10%溶液4hを添加し、60
分間で85°Cに上昇し、同温度で900分間反応せて
、微小球状レゾール樹脂のエマルジョンを得た。
Example 1 200 g of phenol, 37% in 12 Mitsuro flasks
200 g of formalin, 70 g of water, 18 g of hexamethylenetetramine, and 8.4 g of calcium chloride are poured into a uniform layer while stirring. It was a long night, and I had one child on this night! $
Add 4 h of a 10% solution of sodium fluoride under 60
The temperature was raised to 85° C. for 900 minutes at the same temperature to obtain an emulsion of microspherical resol resin.

次に、フラスコ内容物を30°Cに低下せしめ、0.5
にの水を73加した後、上澄み液を除去し、下層の微小
球状化した樹脂粒子を水洗して風乾した0次いで、これ
を減圧下しく 5 mmHε以下)で50〜60℃で乾
燥して平均粒径約50μの微小球状樹脂粒子を得た。(
樹脂A) 実施例2 17!の三ツロフラスコにフェノール200F、、 3
7%ホルマリン257g、 28%アンモニア水64.
2gを攪拌しながら投入し、均一なン容液とし、このン
容?夜にフッ化カリウム5.ag、塩化カルシウム8.
4g、水40gとから別途調整したフッ化カルシウム分
散液54 、28を攪拌下に添加し、 40分間で87
℃に上昇せしめ同温度で85分間反応させた0次いで、
実施例1と同様にして後処理を行い、平均粒径約70μ
の微小球状レゾール樹脂粒子を得た。(樹脂B)実施例
3 原料のフェノール200gの代わりにフェノール190
gとPwter−ブチルフェノール10gの混合物を使
用する以外は、実施例1と同様にして反応及び後処理を
行い、平均粒径約50μの微小球状レゾーノC樹脂粒子
を得た。(樹脂C) 実施例4 塩基性触媒のへキサメチレンテトラミン18gの代わり
にジエチレントリアミ718gを使用する以外は、実施
例1と同様にして反応及び後処理を行い、平均粒径約4
0μの微小球状レゾール樹脂を得た。(樹脂D) 実施例5 原料のフェノール200gの代わりにビスフェノール2
00gを使用する以外は、実施例1と同様にして反応及
び後処理を行い、平均粒径約80μの微小球状レゾール
樹脂粒子を得た。(樹脂E)比較例1 特開昭52−141893号公報記載の方法を参考にし
て粒子状レゾール樹脂を作った。
The flask contents were then cooled to 30°C and 0.5
After adding 73 cm of water, the supernatant liquid was removed, and the microspheroidal resin particles in the lower layer were washed with water and air-dried.Next, this was dried at 50 to 60°C under reduced pressure (5 mmHε or less). Microspherical resin particles with an average particle size of about 50 μm were obtained. (
Resin A) Example 2 17! Phenol 200F in a Mitsuro flask, 3
7% formalin 257g, 28% ammonia water 64.
Add 2g while stirring to make a uniform liquid, and reduce to this volume. Potassium fluoride at night5. ag, calcium chloride8.
Calcium fluoride dispersion 54, 28 prepared separately from 4g of calcium fluoride and 40g of water was added under stirring, and 87g of calcium fluoride was added in 40 minutes.
℃ and reacted for 85 minutes at the same temperature.
Post-treatment was carried out in the same manner as in Example 1, and the average particle size was approximately 70μ.
Microspherical resol resin particles were obtained. (Resin B) Example 3 190 phenol instead of 200 g of raw material phenol
The reaction and post-treatment were carried out in the same manner as in Example 1, except that a mixture of 10 g of Pwter-butylphenol and 10 g of Pwter-butylphenol was used to obtain microspherical Resono C resin particles with an average particle size of about 50 μm. (Resin C) Example 4 The reaction and post-treatment were carried out in the same manner as in Example 1, except that 718 g of diethylene triamine was used instead of 18 g of hexamethylenetetramine as a basic catalyst, and the average particle size was about 4.
A microspherical resol resin with a diameter of 0μ was obtained. (Resin D) Example 5 Bisphenol 2 instead of 200g of raw material phenol
The reaction and post-treatment were carried out in the same manner as in Example 1, except that 00g was used, to obtain microspherical resol resin particles with an average particle size of about 80μ. (Resin E) Comparative Example 1 A particulate resol resin was produced with reference to the method described in JP-A-52-141893.

すなわち、実施例2の無機塩類のフッ化カルシウム分散
液の代わりに保8mコロイドとして10wt%アラビア
ゴム水溶液40gを用い、他は実施例2と同様にして反
応及び後処理を行うたところ、乾燥時に樹脂粒子が一部
融着し、直径5mm程度の塊となった。この塊りを粉砕
し、微小球状の樹脂を得た。(樹脂F) 比較例2 特開昭57−177011号公報託叔の方法を参考にし
て微小球状フェノール樹脂を作った。
That is, in place of the calcium fluoride dispersion of inorganic salts in Example 2, 40 g of a 10 wt % gum arabic aqueous solution was used as the 8m colloid, and the reaction and post-treatment were carried out in the same manner as in Example 2. Some of the resin particles were fused to form a lump with a diameter of about 5 mm. This lump was crushed to obtain microspherical resin. (Resin F) Comparative Example 2 A microspherical phenol resin was produced with reference to the method of Takashi in Japanese Patent Application Laid-Open No. 57-177011.

すなわち、2βの三ツロフラスコに37%ホルマリン4
05g、 35%塩酸214g、水881gの混合水溶
液を入れ、これにフェノール50g、 37%ホルマリ
ン8.4g、 水4.1gの混合水溶液62.5Bを添
加して20秒間攪拌した後、60分間静ヱした1次いで
1時々尻拌しながら60分間で80℃に昇温し、同温度
で30分間攪拌し、続いて内容物を30℃に冷却した後
、濾過。
That is, 37% formalin 4 was added to a 2β Mitsuro flask.
05g of 35% hydrochloric acid, and 881g of water were added, and to this was added a mixed aqueous solution of 62.5B of 50g of phenol, 8.4g of 37% formalin, and 4.1g of water. After stirring for 20 seconds, the mixture was allowed to stand still for 60 minutes. The mixture was heated to 80°C over 60 minutes with occasional stirring, stirred at the same temperature for 30 minutes, and then the contents were cooled to 30°C and filtered.

水洗、乾燥を行い、平均粒径約30μの微粒子状フニノ
ール樹脂を得た。(樹脂G) 参考例1 上記実施例1〜5及び比較例1〜2で得た樹脂A−Gに
ついてJIS K−6911に阜して樹脂の流れ特性を
測定し、さらに150℃熱板におけるゲル化時間を測定
した結果を第1表に示す。
After washing with water and drying, fine particulate Funinol resin having an average particle size of about 30 μm was obtained. (Resin G) Reference Example 1 The flow characteristics of the resins A-G obtained in Examples 1 to 5 and Comparative Examples 1 to 2 above were measured in accordance with JIS K-6911, and the gel flow characteristics on a 150°C hot plate were measured. Table 1 shows the results of measuring the curing time.

第1表 第1表から明らかなように、比較の樹脂Gはゲル化時間
が測定不能であり、硬化速度も遅く、流れ特性も不良で
あるのに対し1本発明の樹脂A〜Eはい豐れも良姓な流
れ特性及び熱反応性を臂し・ている。
Table 1 As is clear from Table 1, Comparative Resin G has an unmeasurable gelation time, slow curing speed, and poor flow characteristics, whereas Resins A to E of the present invention have poor flow properties. Both have good flow properties and thermal reactivity.

また、上記の樹脂A−Gを30℃、相対湿度85%の恒
温恒温室に1力月放置し、樹脂の性状変化を調べたとこ
ろ、樹脂Fは粒子が融若し固まってしよったが、他の本
発明の樹脂A−E及び比1較の樹脂Cは微小Ejの球状
で自由流動性を有していた。
In addition, when the above resins A to G were left in a thermostatic chamber at 30°C and 85% relative humidity for one month and changes in the properties of the resins were investigated, it was found that the particles of resin F melted and solidified, but , other resins A-E of the present invention, and comparative resin C were spherical with a minute Ej and had free-flowing properties.

〈発明の効果〉 以上述べたごとく1本発明微小球状レゾール樹脂粒子は
、その表面が実質的に水に水溶性の無機塩類で被覆され
てなるものであるから、保存安定性にイ■れ1粒子が融
看することなく長期間保存することができる。葦だ1粒
径が500μ以下の微小球状の固形粒子であるから、従
来の溶液状態のものや粉末状のものと違って使用時の取
扱が容易である。
<Effects of the Invention> As stated above, the surface of the microspherical resol resin particles of the present invention is substantially coated with water-soluble inorganic salts, so that storage stability is improved. Particles can be stored for long periods without deterioration. Since the reeds are microspherical solid particles with a particle diameter of 500 μm or less, they are easy to handle during use, unlike conventional solutions or powders.

また9本発明方法は実質的に水に不溶性の無機塩類を反
応系内に共存せしめて反応させるものであるから、50
0μ以下の微小球状の固形粒子として安定して製造する
ことができるのみならず、従来法によって製造される粒
状のレゾール樹脂に比して粒度分布のシャープな微小球
の固形粒子を得ることができる。しかも1本発明方法に
よって得られる微小球状レゾール樹脂粒子は、上述した
親水性有機高分子化合物を含育したレゾール樹脂のごと
く成形品の性能を低下することがなく、性能及び品位に
優れた成形品を得ることができる。
In addition, since the method of the present invention involves coexisting inorganic salts that are substantially insoluble in water in the reaction system,
Not only can it be stably produced as microspherical solid particles of 0 μ or less, but also microspherical solid particles with a sharper particle size distribution can be obtained compared to granular resol resin produced by conventional methods. . Moreover, the microspherical resol resin particles obtained by the method of the present invention do not deteriorate the performance of molded products unlike the above-mentioned resol resin containing a hydrophilic organic polymer compound, and can produce molded products with excellent performance and quality. can be obtained.

さらに1本発明方法によって得られる微小球状レゾール
樹脂粒子は、流れ特性が良好で成形性にイ■れるととも
に、ゲル化速度も速く1反応性も良好で、短時間での成
形が可能であるなどの特’+hも有しており9本発明の
生産面における効果は頗る顕暑で、その工業的意義は極
めて大きい。
Furthermore, the microspherical resol resin particles obtained by the method of the present invention have good flow characteristics and good moldability, and also have a fast gelation rate and good reactivity, and can be molded in a short time. It also has the characteristics of 9+h, and the effects of the present invention in terms of production are extremely significant, and its industrial significance is extremely large.

【図面の簡単な説明】 第1図(al、 (blは本発明の微小球状レゾール樹
脂粒子構造の一例を示す電子顕微鏡写真(倍率300倍
)である。 特許出願人  ユニチカ社式会社 手続ネ甫正;(自発) 1.事件の表示 特願昭59−150399号 2、発明の名称 微小球状レゾール樹脂粒子及びその製造法3、補正をす
る者 事件との関係   特許出願人 住 所  兵庫県尼崎市東本町1丁目50番地〒 54
1 住 所  大阪市東区北久太部町4丁目68@地名称 
ユニ壬力社式会社特許部 電話06−281−5258 (ダイヤルイン)4、補
正の対象 明細♂の発明の詳細な説明の憫及び図面の簡単な説明の
欄 5、補正の内容 (11明細書第6頁第4行目の 「水溶性」を「水に不溶性」と訂正する。 (2)明細さ第7頁第8行目の 「させるる際し」を「させるに際し」と訂正する。 (3)明細書第9頁第8行目の 「塩類を被覆」を「塩類の被覆」と訂正する。 (4)明細書第14頁第10行目の 「可能であり、」を「可能である。」と訂正する。 (5)明細書第14頁第1O〜14行目の「フェノール
−・−・−・できる、」を以下の文章に訂正する。 「 また9本発明の微小球状レゾール樹脂粒子は、必要
に応じて熱可塑性樹脂、熱硬化性樹脂、難燃剤2発泡剤
、補強剤、充填剤、増量剤、電気伝厚剤あるいは洗顔料
などの添加剤の1種、またはそれ以上と併用して使用す
ることができる。 熱可塑性樹脂の例としては9例えばポリエチレン、ポリ
プロピレン、ポリスチレン、ゴム変性ポリスチレン、A
S、ABS、 ポIJi化ビニル、ポリメチルメタアク
リレート、エチレン−酢酸ビニル共重合体などのポリオ
レフィン、ポリエチレンテレフタレート、ポリブチレン
チレフクレート、ポリカーボネート。 ボリアリレートなどのポリエステル、ポリカプロラクタ
ム、ポリヘキサメチレンアジパミドなどのポリアミド、
ポリスルホン、ポリフニニレンスルフィドなどが挙げら
れる。 熱硬化性樹脂の例としては1例えばメラミン樹脂、尿累
樹脂、フラン樹脂、アルキッ°ド樹脂、不飽和ポリエス
テル樹脂などが挙げられる。 難燃剤の例としては1例えばデカブロモジフェニルエー
テルを始めとするハロゲン化合物、無機及び有機のリン
化合物などが挙げられる。 補強剤、充填剤、増量剤等としては1例えばガラス繊維
、アスベスト繊維、炭素繊維。 金属繊維1石英、雲母、アスベスト、カオリン、タルク
、酸化アルミニウム、シリカ、水酸化アルミニウム、二
酸化アルチモンなどが挙げられる。その他の添加剤とし
ては、酸化チタン、酸化鉄、アルミニウム粉、鉄粉、金
属石部、カーボンブランク、木粉5紙等を挙げることが
できる。」 (6)明細書第20頁第11〜12行目のr C侶$3
00 倍) Jを「(倍率は(a)が300倍、(b)
が3000倍)」と訂正する。
[Brief Description of the Drawings] Figure 1 (al, (bl) are electron micrographs (magnification: 300x) showing an example of the microspherical resol resin particle structure of the present invention. Patent applicant: Unitika Co., Ltd. Correct; (spontaneous) 1. Indication of the case Japanese Patent Application No. 150399/1982 2. Name of the invention: Microspherical resol resin particles and its manufacturing method 3. Person making the amendment Relationship with the case Patent applicant address Higashi, Amagasaki City, Hyogo Prefecture Honmachi 1-50 54
1 Address 4-68 Kitakyutabe-cho, Higashi-ku, Osaka @Place name
Uni Jinriki Company Patent Department Tel: 06-281-5258 (dial-in) 4. Detailed explanation of the invention of the specification subject to amendment ♂ and brief explanation of the drawings column 5. Contents of the amendment (11. "Water-soluble" in line 4 of page 6 is corrected to "insoluble in water." (2) "When causing" in line 8 of page 7 of the specification is corrected to "when causing." (3) "Coating with salts" on page 9, line 8 of the specification is corrected to "coating with salts." (4) "It is possible," on page 14, line 10 of the specification is corrected to "possible." (5) On page 14 of the specification, lines 10 to 14, "phenol can be..." is corrected to the following sentence. The resol resin particles may optionally contain one or more additives such as a thermoplastic resin, a thermosetting resin, a flame retardant, a blowing agent, a reinforcing agent, a filler, an extender, an electroconductive agent, or a facial cleanser. It can be used in combination with the above. Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, rubber-modified polystyrene, A
S, ABS, polyolefins such as polyvinyl chloride, polymethyl methacrylate, ethylene-vinyl acetate copolymer, polyethylene terephthalate, polybutylene terephthalate, polycarbonate. Polyesters such as polyarylates, polyamides such as polycaprolactam, polyhexamethylene adipamide,
Examples include polysulfone and polyphnynylene sulfide. Examples of thermosetting resins include melamine resins, urine resins, furan resins, alkyd resins, and unsaturated polyester resins. Examples of flame retardants include halogen compounds such as decabromodiphenyl ether, inorganic and organic phosphorus compounds, and the like. Examples of reinforcing agents, fillers, extenders, etc. include glass fibers, asbestos fibers, and carbon fibers. Metal Fiber 1 Examples include quartz, mica, asbestos, kaolin, talc, aluminum oxide, silica, aluminum hydroxide, and altimony dioxide. Other additives include titanium oxide, iron oxide, aluminum powder, iron powder, metal stone, carbon blank, wood powder 5 paper, and the like. (6) Specification page 20, lines 11-12 r C $3
00 times)
3000 times).”

Claims (7)

【特許請求の範囲】[Claims] (1)表面の一部又は全部が実質的に水に不溶性の無機
塩類で被覆されており、かつ粒径が500μ以下である
ことを特徴とする微小球状レゾール樹脂粒子。
(1) Microspherical resol resin particles characterized in that part or all of the surface is coated with a substantially water-insoluble inorganic salt, and the particle size is 500 μm or less.
(2)実質的に水に不溶性の無機塩類が、フッ化カルシ
ウム、フッ化マグネシウム、フッ化ストロンチウムから
なる群から選ばれた少なくとも1種である特許請求の範
囲囲第1項記載の微小球状レゾール樹脂粒子。
(2) The microspherical resol according to claim 1, wherein the substantially water-insoluble inorganic salt is at least one selected from the group consisting of calcium fluoride, magnesium fluoride, and strontium fluoride. resin particles.
(3)水性媒体中でフェノール類とアルデヒド類とを塩
基性触媒の存在下で反応させるに際し、該反応系に実質
的に水に不溶性の無機塩類を共存せしめて反応させるこ
とを特徴とする表面の一部又は全部が実質的に水に不溶
性の無機塩類で被覆されており、かつ粒径が500μ以
下である微小球状レゾーン樹脂粒子の製造法。
(3) A surface characterized in that when phenols and aldehydes are reacted in an aqueous medium in the presence of a basic catalyst, a substantially water-insoluble inorganic salt is allowed to coexist in the reaction system. A method for producing microspherical rezone resin particles, some or all of which are coated with a substantially water-insoluble inorganic salt and have a particle size of 500 μm or less.
(4)実質的に水に不溶性の無機塩類が、フッ化カルシ
ウム、フッ化マグネシウム、フッ化ストロンチウムから
なる群から選ばれた少なくとも1種である特許請求の範
囲第3項記載の微小球状レゾール樹脂粒子の製造法。
(4) The microspherical resol resin according to claim 3, wherein the substantially water-insoluble inorganic salt is at least one selected from the group consisting of calcium fluoride, magnesium fluoride, and strontium fluoride. Method of manufacturing particles.
(5)フッ化カルシウム、フッ化マグネシウム、フッ化
ストロンチウムからなる群から選ばれた少なくとも1種
を、フェノール類に対して0.2〜10wt%共存させ
る特許請求の範囲第4項記載の微小球状レゾール樹脂粒
子の製造法。
(5) Microspheres according to claim 4, in which at least one selected from the group consisting of calcium fluoride, magnesium fluoride, and strontium fluoride coexists in an amount of 0.2 to 10 wt% relative to the phenol. Method for producing resol resin particles.
(6)フッ化カルシウム、フッ化マグネシウム、フッ化
ストロンチウムからなる群から選ばれた少なくとも1種
が、2種以上の水溶性の無機塩類を用いて反応系内で析
出させたものである特許請求の範囲第4項又は第5項記
載の微小球状レゾール樹脂粒子の製造法。
(6) A patent claim in which at least one member selected from the group consisting of calcium fluoride, magnesium fluoride, and strontium fluoride is precipitated in a reaction system using two or more water-soluble inorganic salts. A method for producing microspherical resol resin particles according to item 4 or 5.
(7)水溶性の無機塩類が、フッ化ナトリウム、フッ化
カリウム、フッ化アンモニウムからなる群より選ばれた
少なくとも1種とカルシウム、マグネシウム、ストロン
チウムの塩化物、硫酸塩、硝酸塩からなる群から選ばれ
た少なくとも1種である特許請求の範囲第6項記載の微
小球状レゾール樹脂粒子の製造法。
(7) The water-soluble inorganic salt is selected from the group consisting of at least one selected from the group consisting of sodium fluoride, potassium fluoride, and ammonium fluoride, and chlorides, sulfates, and nitrates of calcium, magnesium, and strontium. 7. The method for producing microspherical resol resin particles according to claim 6, which is at least one type of microspherical resol resin particles.
JP59150399A 1984-07-17 1984-07-17 Micro-spherical resin particles and method for producing the same Expired - Lifetime JPH066615B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59150399A JPH066615B2 (en) 1984-07-17 1984-07-17 Micro-spherical resin particles and method for producing the same
CA000486665A CA1243909A (en) 1984-07-17 1985-07-11 Microspherical particles of resole resins and process for producing the same
DE8585305026T DE3577101D1 (en) 1984-07-17 1985-07-15 RESOLE RESIN MICROBALLS AND METHOD FOR THEIR PRODUCTION.
EP85305026A EP0169042B1 (en) 1984-07-17 1985-07-15 Microspherical particles of resole resins and process for producing the same
US06/755,769 US4640971A (en) 1984-07-17 1985-07-17 Microspherical particles of resole resins and process for producing the same
US06/915,286 US4778695A (en) 1984-07-17 1986-10-03 Production of microspheroidal particles of resole resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59150399A JPH066615B2 (en) 1984-07-17 1984-07-17 Micro-spherical resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6151019A true JPS6151019A (en) 1986-03-13
JPH066615B2 JPH066615B2 (en) 1994-01-26

Family

ID=15496124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59150399A Expired - Lifetime JPH066615B2 (en) 1984-07-17 1984-07-17 Micro-spherical resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JPH066615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127719A (en) * 1984-11-26 1986-06-16 Unitika Ltd Flame-retardant very small spherical resol resin particle and production thereof
US5118587A (en) * 1989-07-28 1992-06-02 Toda Kogyo Corporation Magnetic particles used for electrostatic latent image developer and process for producing the same
US5229216A (en) * 1989-01-23 1993-07-20 Nihon Tokushu Toryo Co., Ltd. Vibration-damping sheet
WO2008047702A1 (en) 2006-10-20 2008-04-24 Air Water Inc. Granular phenol resin, method for producing the same, and granular phenol resin dispersion liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748011A (en) * 1980-09-02 1982-03-19 Taiyo Kogyo Kk Assembling method for frame body of silt protector floating on water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748011A (en) * 1980-09-02 1982-03-19 Taiyo Kogyo Kk Assembling method for frame body of silt protector floating on water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127719A (en) * 1984-11-26 1986-06-16 Unitika Ltd Flame-retardant very small spherical resol resin particle and production thereof
JPH0546860B2 (en) * 1984-11-26 1993-07-15 Unitika Ltd
US5229216A (en) * 1989-01-23 1993-07-20 Nihon Tokushu Toryo Co., Ltd. Vibration-damping sheet
US5118587A (en) * 1989-07-28 1992-06-02 Toda Kogyo Corporation Magnetic particles used for electrostatic latent image developer and process for producing the same
WO2008047702A1 (en) 2006-10-20 2008-04-24 Air Water Inc. Granular phenol resin, method for producing the same, and granular phenol resin dispersion liquid
US8362187B2 (en) 2006-10-20 2013-01-29 Air Water Inc. Phenol resin powder, method for producing the same, and phenol resin powder dispersion liquid

Also Published As

Publication number Publication date
JPH066615B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US5180637A (en) Double-walled microcapsules and a process for preparation of same
NZ331562A (en) Water soluble and storage stable resole-melamine resin containing higher solids
US4640971A (en) Microspherical particles of resole resins and process for producing the same
KR900006994B1 (en) Spherical thermosetting phenolic resin particles and process for producing the same
US4182696A (en) Process for producing particulate filler-containing resole molding compositions from aqueous dispersion
JPS6151019A (en) Fine spherical resol resin particle and its production
US4317901A (en) Method for the production of a powdered phenolic resole resin
JPS61258819A (en) Production of spherulitic cured phenolic resin particle
JP3149092B2 (en) Double-walled microcapsule and method for producing the same
JPH1160664A (en) Production on pressure/heat-sensitive self-curing spherical phenolic resin
JPS61272260A (en) Minute spherical resin composition and production thereof
JPS621748A (en) Microspherical resin composition and production thereof
JPS6227455A (en) Particulate resol resin composition and production thereof
JPS6218415A (en) Microspherical modified resol resin particle and its production
JP3159443B2 (en) Manufacturing method of spherical phenol resin
JPH1180300A (en) Production of microspherical cured phenolic resin particle
JPH02113041A (en) Coated granule, production thereof and amino resin composition containing same
JPH0610234B2 (en) Microspherical cured melamine resin particles and method for producing the same
JPS61127719A (en) Flame-retardant very small spherical resol resin particle and production thereof
JPH0466264B2 (en)
JP2000503141A (en) Reflector blank, method and means for producing the blank
JPH0292952A (en) Phenolic resin molding material composition
JPS62161813A (en) Production of flame-retardant phenolic resin
JPH06104750B2 (en) Method for producing porous molded body made of phenolic resin
JPS63189445A (en) Production of porous formed body