JPS6150724B2 - - Google Patents
Info
- Publication number
- JPS6150724B2 JPS6150724B2 JP58229494A JP22949483A JPS6150724B2 JP S6150724 B2 JPS6150724 B2 JP S6150724B2 JP 58229494 A JP58229494 A JP 58229494A JP 22949483 A JP22949483 A JP 22949483A JP S6150724 B2 JPS6150724 B2 JP S6150724B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting tool
- crystalline diamond
- carbide
- tip
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005520 cutting process Methods 0.000 claims description 31
- 239000010410 layer Substances 0.000 claims description 24
- 229910003460 diamond Inorganic materials 0.000 claims description 15
- 239000010432 diamond Substances 0.000 claims description 15
- 238000005553 drilling Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000011195 cermet Substances 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 239000002345 surface coating layer Substances 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Drilling Tools (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、すぐれた耐摩耗性を有し、特に電
子集積回路積層基板の穴明け加工に用いた場合に
すぐれた切削性能を長期に亘つて発揮する切削工
具に関するものである。
一般に、電子集積回路積層基板の製造には、例
えばガラス繊維で強化された非常に硬質のFRP
(繊維強化樹脂)などの材料が使用され、かつこ
の積層基板の製造に際しては、小径の穴明け加工
が不可欠であり、しかもこの穴明け加工には小径
の穴明け用ミニチユアドリルやバリ取り用ルータ
ーが使用されている。したがつて、これらの切削
工具には、穴明け加工に際して折損しない高靭性
と、硬質の被削材に耐えるすぐれた耐摩耗性が要
求されることから、通常、主要硬質分散相形成成
分が炭化タングステン(以下WCで示す)または
炭化チタン(以下TiCで示す)で構成され、かつ
主要結合相形成成分が鉄族金属で構成されたWC
基超硬合金製のものや、TiC基サーメツト製のも
のが使用されている。
しかし、これらのWC基超硬合金およびTiC基
サーメツトは、靭性を有するものの、耐摩耗性が
十分満足するものでないために、これを、特に電
子集積回路積層基板の穴明け加工用切削工具とし
て使用した場合、比較的短かい使用寿命しか示さ
ないものであつた。
そこで、本発明者等は、上述のような観点か
ら、電子集積回路積層基板の穴明け加工に適した
切削工具を得べく研究を行なつた結果、上記の
WC基超硬合金製またはTiC基サーメツト製切削
工具本体の少なくとも先端部加工面、例えばミニ
チユアドリルであれば、少なくともリツプ部およ
びマージン部のいずれか、あるいは両方に、必要
に応じて周期律表の4a,5a,および6a族金属の炭
化物、並びに同4aおよび5a族金属の窒化物および
炭窒化物(以下、これらを総称して金属の炭・窒
化物という)のうちの1種の単層または2種以上
の複層からなる表面被覆層を介して、気相合成法
によりマイクロビツカース硬さで8000Kg/mm2以上
の高硬度を有する結晶ダイヤモンドからなる硬質
層を0.2〜20μmの平均層厚で形成すると、前記
結晶ダイヤモンドからなる硬質層によつてすぐれ
た耐摩耗性が確保され、一方前記切削工具本体に
よつてすぐれた靭性が確保されるようになること
から、これを電子集積回路積層基板の穴明け加工
に使用すると、すぐれた切削性能を著しく長期に
亘つて発揮するようになるという知見を得たので
ある。
この発明は、上記知見にもとづいてなされたも
のであり、かつこの発明の切削工具において、結
晶ダイヤモンド硬質層の平均層厚を0.2〜20μm
に限定したのは、その平均層厚が0.2μm未満で
は所望の耐摩耗性向上効果が得られず、一方20μ
mを越えた平均層厚にすると、結晶ダイヤモンド
硬質層にチツピングによる剥離が発生し易くなる
という理由によるものであり、好ましくは0.5〜
10μmの平均層厚が望ましい。
また、この発明の切削工具における結晶ダイヤ
モンド硬質層は、切削工具本体の表面から0.5〜
3cm離れた位置に、W,Ta,Mo,あるいは黒鉛
からなるフイラメントを位置させた状態で、CH4
とH2との容量割合、すなわちCH4/H2を0.001〜
0.05に調整した混合反応ガスを前記フイラメント
を通過して前記切削工具本体の表面に当るように
ながしながら、切削工具本体の表面温度:500〜
1200℃、フイラメント温度:1800〜2500℃の条件
で行なうことによつて形成することができ、この
結果形成される結晶ダイヤモンドは粒状あるいは
膜状を呈するものである。
つぎに、この発明の切削工具を実施例により具
体的に説明する。
実施例 1
切削工具本体として、それぞれ第1表に示され
The present invention relates to a cutting tool that has excellent wear resistance and exhibits excellent cutting performance over a long period of time, particularly when used for drilling holes in electronic integrated circuit laminated substrates. Generally, for the production of electronic integrated circuit laminated boards, very rigid FRP reinforced with glass fibers, for example, is used.
(fiber-reinforced resin) and other materials are used, and when manufacturing this laminated board, it is essential to drill small diameter holes. router is used. Therefore, these cutting tools are required to have high toughness that will not break during drilling and excellent wear resistance that can withstand hard work materials, so the main hard dispersed phase forming component is usually carbonized. WC composed of tungsten (hereinafter referred to as WC) or titanium carbide (hereinafter referred to as TiC), and whose main binder phase forming component is an iron group metal.
Those made of cemented carbide or TiC-based cermet are used. However, although these WC-based cemented carbides and TiC-based cermets have toughness, they do not have sufficient wear resistance, so they are not used particularly as cutting tools for drilling holes in electronic integrated circuit laminated boards. In this case, the service life was relatively short. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a cutting tool suitable for drilling holes in electronic integrated circuit laminated substrates, and as a result, they found the above-mentioned cutting tool.
If necessary, the periodic table is applied to at least the machined surface of the tip of the cutting tool body made of WC-based cemented carbide or TiC-based cermet, for example, in the case of a miniature drill, at least the lip and/or margin. A single layer of one of the carbides of group 4a, 5a, and 6a metals, and the nitrides and carbonitrides of group 4a and 5a metals (hereinafter collectively referred to as metal carbonitrides). Or, through a surface coating layer consisting of two or more types of multilayers, a hard layer consisting of crystalline diamond with a high hardness of 8000 Kg/mm 2 or more in terms of micro-Vickers hardness is formed by vapor phase synthesis with an average thickness of 0.2 to 20 μm. When formed thickly, the hard layer made of the crystalline diamond ensures excellent wear resistance, while the cutting tool body ensures excellent toughness. They found that when used for drilling holes in laminated substrates, it exhibits excellent cutting performance over a long period of time. This invention has been made based on the above findings, and in the cutting tool of this invention, the average layer thickness of the crystalline diamond hard layer is 0.2 to 20 μm.
The reason for this is that if the average layer thickness is less than 0.2 μm, the desired effect of improving wear resistance cannot be obtained.
This is because if the average layer thickness exceeds 0.5 m, peeling due to chipping will easily occur in the crystalline diamond hard layer.
An average layer thickness of 10 μm is preferred. In addition, the crystalline diamond hard layer in the cutting tool of this invention is 0.5 to 0.5 mm thick from the surface of the cutting tool body.
CH 4 with a filament made of W, Ta, Mo, or graphite placed 3 cm apart.
The capacity ratio between CH4 and H2 , that is, CH4 / H2 , is 0.001~
While flowing the mixed reaction gas adjusted to 0.05 through the filament so as to hit the surface of the cutting tool body, the surface temperature of the cutting tool body: 500~
It can be formed by performing the process at 1200° C. and a filament temperature of 1800 to 2500° C. The crystalline diamond thus formed has a granular or film-like shape. Next, the cutting tool of the present invention will be specifically explained using examples. Example 1 As the cutting tool body, each of the cutting tools shown in Table 1 was used.
【表】
る組成を有し、かつ先端径が0.6mmφの小径ミニ
チユアドリルを用意し、これらミニチユアドリル
の一部、すなわち第1表に示されるミニチユアド
リルについて、その先端部に通常の化学蒸着装置
を用いて、同じく第1表に示される組成および平
均層厚の単層または複層の表面被覆層を形成し、
ついで、これらの各種のミニチユアドリルの先端
部を、直径:120mmφを有する石英管製反応容器
内に挿入し、
反応容器内雰囲気:10torrの真空、
使用フイラメント:金属W、
ドリル表面とフイラメント間の距離:1.5cm、
ドリルの表面加熱温度:700℃、
フイラメント温度:200℃、
混合反応ガス:CH4/H2=0.005、
反応時間:0.5時間、0.8時間、3時間、6時
間、15時間および30時間、
の条件で気相反応を行なうことによつて、前記
ミニチユアドリルの先端部にそれぞれ0.2μm,
0.5μm,2.0μm,4.0μm,10.0μm,および
20.0μmの平均層厚を有し、かつマイクロビツカ
ース硬さで8800〜9300Kg/mm2の硬さをもつた6種
の結晶ダイヤモンド硬質層を形成し、さらに被削
材への食い付きを良くし、かつ鉛直度と心円度を
出すためにコーナー部とリツプ部を残し、ポイン
ト部とマージン部を取除く研削加工を施すことに
よつて本発明切削工具1〜15をそれぞれ製造し
た。
つぎに、この結果得られた本発明切削工具1〜
15、並びに比較の目的で、第1表に示されるよう
に上記の結晶ダイヤモンド硬質層の形成がないミ
ニチユアドリル(以下比較切削工具という)1〜
3について、1枚の厚さが0.6mmのAlとCuとSiで
集積回路を形成したプラスチツク製の基板を25枚
重ねて積層体とした被削材に、ドリル回転速度:
8万r.p.m.、穴明け速度:80個/分の条件で穴明
けを施し、その使用寿命を測定した。なお、使用
寿命は、ドリル先端エツジ部の摩耗が原因で切削
面に粗れが現われるようになるまでの穴明け数を
もつて定めた。これらの結果を第1表に示した。
第1表に示される結果から、本発明切削工具1
〜15は、いずれも結晶ダイヤモンド硬質層の形成
がない比較切削工具1〜3に比してすぐれた耐摩
耗性を示し、特に結晶ダイヤモンド硬質層の平均
層厚が0.5〜10μmの場合に著しくすぐれた切削
寿命を示すことが明らかである。
実施例 2
切削工具として、WC:85重量%、Co:15重量
%からなる組成を有し、かつ外径:4mmφのルー
ターを用い、このルーターの先端部加工面に、実
施例1におけると同一の条件で平均層厚:2μm
の結晶ダイヤモンド硬質層を形成することによつ
て本発明切削工具を製造した。
ついで、この本発明切削工具を、電子集積回路
積層基板のバリ取り加工に、回転数:50000r.p.
m.、速さ:900〜1000mm/minの条件で用い、寿
命に至るまでの加工長さを測定したところ、10m
を示した。これに対して、ダイヤモンド硬質層の
形成がない上記ルーターは1mの加工長さで使用
寿命に至るものであつた。
上述のように、この発明の切削工具は、少なく
とも先端部加工面に被覆形成された結晶ダイヤモ
ンド硬質層によつてすぐれた耐摩耗性が確保さ
れ、かつWC基超硬合金製またはTiC基サーメツ
ト製の本体によつてすぐれた靭性が確保されるの
で、これらの特性が要求される電子集積回路積層
基板の穴明け加工用に用いた場合にすぐれた性能
を著しく長期に亘つて発揮するのである。[Table] Prepare small diameter miniature drills with a tip diameter of 0.6 mmφ, and some of these miniature drills, that is, the miniature drills shown in Table 1, have a normal Using a chemical vapor deposition device, form a single or multilayer surface coating layer having the composition and average layer thickness also shown in Table 1,
Next, the tips of these various miniature drills were inserted into a quartz tube reaction vessel with a diameter of 120 mmφ, and the atmosphere inside the reaction vessel was a vacuum of 10 torr, the filament used was metal W, and the space between the drill surface and the filament was Distance: 1.5cm, Drill surface heating temperature: 700℃, Filament temperature: 200℃, Mixed reaction gas: CH 4 /H 2 = 0.005, Reaction time: 0.5 hours, 0.8 hours, 3 hours, 6 hours, 15 hours and By performing a gas phase reaction for 30 hours under the following conditions, 0.2 μm and 0.2 μm, respectively, were added to the tip of the miniature drill.
0.5μm, 2.0μm, 4.0μm, 10.0μm, and
Forms a hard layer of 6 types of crystalline diamond with an average layer thickness of 20.0 μm and a micro-Vickers hardness of 8800 to 9300 Kg/ mm2 , which also improves the bite into the workpiece. Cutting tools 1 to 15 of the present invention were manufactured by performing a grinding process in which corner portions and lip portions were left and point portions and margin portions were removed in order to obtain verticality and circularity. Next, the cutting tools 1 to 1 of the present invention obtained as a result
15, and for the purpose of comparison, miniature drills (hereinafter referred to as comparative cutting tools) 1 to 1 without the formation of the crystalline diamond hard layer as shown in Table 1.
Regarding 3, drill rotation speed:
Holes were drilled under the conditions of 80,000 rpm and a drilling speed of 80 holes/min, and their service life was measured. The service life was determined by the number of holes drilled until roughness appeared on the cut surface due to wear of the edge of the drill tip. These results are shown in Table 1. From the results shown in Table 1, cutting tool 1 of the present invention
- 15 all showed superior wear resistance compared to comparative cutting tools 1 to 3, which did not have a crystalline diamond hard layer, and were particularly excellent when the average layer thickness of the crystalline diamond hard layer was 0.5 to 10 μm. It is clear that the cutting life is long. Example 2 A router having a composition of 85% by weight of WC and 15% by weight of Co and an outer diameter of 4 mm was used as a cutting tool, and the same as in Example 1 was applied to the machined surface of the tip of this router. Average layer thickness under the conditions: 2μm
A cutting tool of the present invention was manufactured by forming a hard layer of crystalline diamond. Next, the cutting tool of the present invention was used for deburring electronic integrated circuit laminated boards at a rotation speed of 50,000 r.p.
m., speed: 900 to 1000 mm/min, and the machining length until the end of its life was measured, and it was found to be 10 m.
showed that. On the other hand, the above-mentioned router without the formation of a diamond hard layer reached its service life with a machining length of 1 m. As described above, the cutting tool of the present invention has excellent wear resistance due to the crystalline diamond hard layer coated on at least the machined surface of the tip, and is made of WC-based cemented carbide or TiC-based cermet. The main body ensures excellent toughness, so when used for drilling holes in electronic integrated circuit laminated substrates that require these characteristics, it exhibits excellent performance over an extremely long period of time.
Claims (1)
タン基サーメツト製切削工具本体の少なくとも先
端部加工面に、気相合成法により形成したマイク
ロビツカース硬さで8000Kg/mm2以上の高硬度を有
する結晶ダイヤモンドからなる硬質層を0.2〜20
μmの平均層厚で被覆してなる電子集積回路積層
基板の穴明け加工用切削工具。 2 炭化タングステン基超硬合金製または炭化チ
タン基サーメツト製切削工具本体の少なくとも先
端部加工面に、周期律表の4a,5a,および6a族金
属の炭化物、並びに同4aおよび5a族金属の窒化物
および炭窒化物のうちの1種の単層または2種以
上の複層からなる表面被覆層を介して、気相合成
法により形成したマイクロビツカース硬さで8000
Kg/mm2以上の高硬度を有する結晶ダイヤモンドか
らなる硬質層を0.2〜20μmの平均層厚で被覆し
てなる電子集積回路積層基板の穴明け加工用切削
工具。[Scope of Claims] 1. Micro-Vickers hardness of 8000 Kg/mm 2 or more formed by vapor phase synthesis on at least the machined surface of the tip of a cutting tool body made of tungsten carbide-based cemented carbide or titanium carbide-based cermet. Hard layer consisting of crystalline diamond with high hardness 0.2~20
A cutting tool for drilling holes in electronic integrated circuit laminated substrates coated with an average layer thickness of μm. 2 Carbides of metals from groups 4a, 5a, and 6a of the periodic table, and nitrides of metals from groups 4a and 5a of the periodic table, on at least the machined surface of the tip of the cutting tool body made of tungsten carbide-based cemented carbide or titanium carbide-based cermet. 8000 microvitkers hardness formed by vapor phase synthesis via a surface coating layer consisting of a single layer or a multilayer of two or more of carbonitrides and carbonitrides.
A cutting tool for drilling holes in electronic integrated circuit laminated substrates, which is coated with a hard layer made of crystalline diamond having a high hardness of Kg/mm 2 or more with an average layer thickness of 0.2 to 20 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22949483A JPS60123209A (en) | 1983-12-05 | 1983-12-05 | Cutting tool for drilling of electronic integrated circuit laminated base board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22949483A JPS60123209A (en) | 1983-12-05 | 1983-12-05 | Cutting tool for drilling of electronic integrated circuit laminated base board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60123209A JPS60123209A (en) | 1985-07-01 |
JPS6150724B2 true JPS6150724B2 (en) | 1986-11-05 |
Family
ID=16893043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22949483A Granted JPS60123209A (en) | 1983-12-05 | 1983-12-05 | Cutting tool for drilling of electronic integrated circuit laminated base board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60123209A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63292940A (en) * | 1987-05-26 | 1988-11-30 | Matsunaga:Kk | Body measuring apparatus |
JP2005224914A (en) * | 2004-02-16 | 2005-08-25 | Mitsubishi Materials Kobe Tools Corp | Shaft cutting tool capable of high-speed cutting of hard-to-cut material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE442305B (en) * | 1984-06-27 | 1985-12-16 | Santrade Ltd | PROCEDURE FOR CHEMICAL GAS DEPOSITION (CVD) FOR THE PREPARATION OF A DIAMOND COATED COMPOSITION BODY AND USE OF THE BODY |
JPH0729520Y2 (en) * | 1985-05-14 | 1995-07-05 | 佐藤工業株式会社 | Milling cutter for cutting contaminated concrete |
JP2648797B2 (en) * | 1986-02-28 | 1997-09-03 | 京セラ株式会社 | Cermet Solid End Mill |
JPH0360907A (en) * | 1989-07-28 | 1991-03-15 | Mitsubishi Materials Corp | Miniature drill excellent in wear resistance |
JP2778175B2 (en) * | 1990-01-18 | 1998-07-23 | 三菱マテリアル株式会社 | Artificial diamond-coated indexable insert and method of manufacturing the same |
GB9224627D0 (en) * | 1992-11-24 | 1993-01-13 | De Beers Ind Diamond | Drill bit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563117A (en) * | 1979-06-25 | 1981-01-13 | Mitsubishi Metal Corp | Coated miniature drill made of hard alloy metal |
JPS566920A (en) * | 1979-06-28 | 1981-01-24 | Philips Nv | Dry lubricating bearing |
JPS5695525A (en) * | 1979-12-27 | 1981-08-03 | G N Tool Kk | Boring reamer |
-
1983
- 1983-12-05 JP JP22949483A patent/JPS60123209A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563117A (en) * | 1979-06-25 | 1981-01-13 | Mitsubishi Metal Corp | Coated miniature drill made of hard alloy metal |
JPS566920A (en) * | 1979-06-28 | 1981-01-24 | Philips Nv | Dry lubricating bearing |
JPS5695525A (en) * | 1979-12-27 | 1981-08-03 | G N Tool Kk | Boring reamer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63292940A (en) * | 1987-05-26 | 1988-11-30 | Matsunaga:Kk | Body measuring apparatus |
JP2005224914A (en) * | 2004-02-16 | 2005-08-25 | Mitsubishi Materials Kobe Tools Corp | Shaft cutting tool capable of high-speed cutting of hard-to-cut material |
Also Published As
Publication number | Publication date |
---|---|
JPS60123209A (en) | 1985-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6929851B1 (en) | Coated substrate | |
US6063149A (en) | Graded grain size diamond layer | |
JP2003508242A (en) | Coated grooving or cutting inserts | |
JP2699816B2 (en) | Surface-coated indexable insert with excellent wear resistance | |
JPWO2006046498A1 (en) | Surface coated cutting tool | |
WO2006070538A1 (en) | Surface coating cutter | |
JPH10225805A (en) | Cutting tool coated with cvd and pvd | |
JP4019246B2 (en) | Surface coated cemented carbide cutting tools with excellent chipping resistance | |
JPS6142789B2 (en) | ||
JPS6150724B2 (en) | ||
JP2964664B2 (en) | Diamond coated micro drill | |
JPH0558065B2 (en) | ||
JP3707223B2 (en) | Milling tool with excellent wear resistance | |
JP5187572B2 (en) | Diamond coated cemented carbide cutting tool | |
JP2841749B2 (en) | Boron carbide coated cutting tools | |
JP3460565B2 (en) | Milling tool with excellent wear resistance | |
JP2004160561A (en) | Micro drill | |
EP1192050B1 (en) | Substrate treatment method | |
JP2648718B2 (en) | Manufacturing method of coated cemented carbide tool | |
JPH058103A (en) | Cutting tool member made of surface-coated tungsten carbide base sintered alloy | |
JP2699815B2 (en) | Surface-coated end mill with excellent wear resistance | |
JPS6247126B2 (en) | ||
JP4072048B2 (en) | Surface coating tool | |
JPH0780713A (en) | Miniature drill coated with hard carbon film | |
JP3463459B2 (en) | Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance with hard coating layer |