JPS6150680B2 - - Google Patents

Info

Publication number
JPS6150680B2
JPS6150680B2 JP53145580A JP14558078A JPS6150680B2 JP S6150680 B2 JPS6150680 B2 JP S6150680B2 JP 53145580 A JP53145580 A JP 53145580A JP 14558078 A JP14558078 A JP 14558078A JP S6150680 B2 JPS6150680 B2 JP S6150680B2
Authority
JP
Japan
Prior art keywords
treatment
activated sludge
tank
aerobic
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53145580A
Other languages
Japanese (ja)
Other versions
JPS5573395A (en
Inventor
Taisuke Endo
Yoshitaka Matsuo
Takayuki Suzuki
Toshihiro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP14558078A priority Critical patent/JPS5573395A/en
Publication of JPS5573395A publication Critical patent/JPS5573395A/en
Publication of JPS6150680B2 publication Critical patent/JPS6150680B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は下水、産業廃水その他有機性排水を好
気的微生物によつて生物学的に浄化処理する方法
に関するものである。 従来のし尿の処理方法を大別すると嫌気性消化
法、好気性消化法および化学処理法に大別される
が、そのいずれの処理技術が適用されるにしても
処理の最終工程では生物酸化処理法によつて仕上
げが行なわれる。現在、実用化されている生物酸
化処理法の代表的なものには固着生物膜法(散水
床法、接触酸化法、回転円板法など)、浮遊生
物法(活性汚泥法など)があるが、し尿処理の分
野においては、高級な処理が可能なこと、処理が
安定しているなどの理由から活性汚泥法が一般的
に広く採用されている。 しかしながら、希釈し尿、無希釈し尿、あるい
は希釈脱離液、無希釈脱離液などのいわゆるし尿
系汚水は活性汚泥法で処理しても、下水処理の経
験で当初予想したほど高い浄化効率が得られず、
その原因の究明が強く要望されていた。 本発明者らはその原因究明に長期間とりくんで
きたが、たまたまし尿系汚水(脱離液)の活性汚
泥法の処理水中に多量のNO2−Nが含まれてお
り、その濃度は消化脱離液の希釈倍数によつて異
なるが、だいたいにおいて150〜300mg/に達す
ることを確認した。また、このNO2−Nは好気性
浄化微生物にとつて極めて有害な物質であること
を実験的に確認し、このNO2−Nが混合倍養液中
に畜積されないような条件を与えればし尿系汚水
でも、下水と同等あるいはそれ以上のBOD除去
効率を達成することができることを知つた。 し尿は本来NH4−Nを濃厚(3000〜5000mg/
)に含み、かつPHがアルカリ性(一般的には
7.5〜8.8)であり、さらに高濃度に硫化物を含ん
でいるので、活性汚泥中に硝化菌が生息していれ
ば硝化型式はNO2型で安定する。すなわち、 し尿中に濃厚に含まれているアンモニア性窒
素はNH3の形態でニトロバクター〔Nit
robacter(硝酸菌)〕の活性を劣化させる。 液のPHが高いほどNH4OHNH3+OH-の反
応が右の方向へ進むので、し尿ではアンモニア
性窒素による毒性が顕著にあらわれる。 し尿中に濃厚に含まれている硝化物はニトロ
バクター(硝酸菌)に対して強い毒性を示す。 以上の理由から、前述した通り、し尿系汚水を
活性汚泥法(その他の生物酸化処理)で処理する
と、特殊な条件規制を行なわない限り硝化型式は
亜硝酸型で安定し、そのために次に示すような処
理の面での障害が生ずる。 NO2−Nは浄化微性物に対して毒性があり、
これが混合倍養液中に一定濃度以上含まれると
生物処理が変調をきたす。 NO2−Nは濃作物、魚介類に対して毒性があ
り、従つて放流先で種々の公害問題を惹き起こ
す。 NO2−Nが存在すると処理水のCODが高く
なり、海域放流の場合のCOD規制を満足でき
ない。また、単に規制だけの問題ではなく、現
実に放流河川の溶存酸素を消費するので、河川
の汚濁に直接悪影響を与える。 二次処理水についてオゾン処理を行なう場
合、NO2−Nが存在するとオゾンが消費され
る。 このようなNO2−Nに基因する汚水処理上での
諸問題を解決するには、活性汚泥処理工程(生物
酸化処理工程)でNO2−Nが生成されない条件で
処理すればよいことになり、現時点で次のような
方法が実施可能であるが、これらの対応策はそれ
ぞれ宿命的な欠陥をもつている。即ち、 (i) 活性汚泥法を硝化菌が処理系内に存在し得な
いような汚泥令で運転する。 しかしながら、このような方法では汚泥負荷
が高くなり処理水質が悪化するだけでなく、必
ずしも硝化を完全に停止させることができな
い。 (ii) 混合倍溶液のPH(PH6.0〜7.0)を流入NH4
N濃度に対応して低目に設置(連続的に調整す
る)すれば硝化型式はNO3−N型となり、NO2
−Nによる問題は解決するが、PH調整用の薬品
代が過大となる。またNO3−N型の硝化型式に
なつたとしても、最終沈殿池でのスカムトラブ
ルは絶対にさけることができない。 などの問題点がある。 本発明はこれら従来の諸欠点を適確に除去しよ
うとするもので、活性汚泥処理法において避ける
ことのできないNO2−Nによる障害を完全硝化一
部分脱窒と加圧浮上による固液分離の組合せによ
つて解決できる有効で経済的な処理方法を提供す
ることを目的とするものである。 また本発明の他の目的はし尿系汚水を活性汚泥
法で処理するにあたり、ほとんど不可抗力的に生
成されるNO2−Nを特殊なプロセスによつてNO3
−Nに転換せしめ、極めて安定した処理を行ない
大量処理に適し運転管理も簡易な処理法とするこ
とにある。 本発明は、し尿系汚水をそのままかあるいは適
当な濃度に希釈して嫌気性槽に流入せしめ、一方
好気性槽から硝化混合液を適量循環し、さらに加
圧浮上装置から返送される浮上濃縮汚泥と撹拌混
合し、原水中のBOD源を有効に利用して部分的
に脱窒素することを特徴とするものである。 このような好気性槽による完全硝化と硝化液循
環による嫌気性槽での部分脱窒素によつてNH4
Nは著しく低濃度化されるかあるいは完全に消滅
しこれによつてNH3のニトロバクター(硝酸菌)
に対する毒性は大幅に緩和され、したがつて硝化
型式はNO3−N型で安定するので、従来の活性汚
泥処理におけるNO2−Nの毒作用、その他処理の
面で好ましくない影驚を完全に解消することがで
きることとなる。 なお部分的に除去される窒素の量は循環される
硝化液量によつて決まるが、いずれにしても100
%除去されることはあり得ない。従つて、好気性
槽から流出する混合液中にはある濃度のNO3−N
が含まれているので、これがそのまま従来の沈殿
池に流入すると沈殿池内で脱窒素反応が起り、活
性汚泥の分離濃縮は不可能である。従つて、本発
明のプロセスを完全無欠なものとするためには硝
化混合液中の活性汚泥を分離濃縮するために加圧
浮上の適用が肝要である。 次に本発明による処理方法の実施態様を従来例
(第1図)と比して第2図を参照しつつ説明する
と、従来では第1図に示すように原水流入管1よ
り好気性槽2に導入される排水は空気3と汚泥返
送管5からの返送汚泥とが混合されて生物学的処
理が施され流出水を沈殿池4で沈降分離をして放
流管6から処理水として導出する処理であつた
が、本発明では第2図に示すように、まず
BOD、SS、NH4−Nを含む排水は原水流入管1
を経由して嫌気性槽11に導入される。この嫌気
性槽11へは後続される好気性槽2において、活
性汚泥の存在とブロワー13からの空気3などの
酸素供給により原水中のNH4−NをNOxにまで酸
化された所謂硝化混合液が循環用パイプ12を通
じて少なくとも一部例えば流入原水量の4〜8倍
が循環される。前記好気性槽2は加圧浮上装置1
0に連絡され処理混合液を最終的に加圧浮上処理
して固液分離したのち放流管6から処理水として
流出させるようになつている。そして該加圧浮上
装置10によつて分離濃縮された活性汚泥も汚泥
返送管5を通して嫌気性槽11に返送され、酸素
並びに硝化混合液を活性汚泥の三者が嫌気性槽1
1で嫌気的に撹拌混合される過程でNOxは原水
中のBOD源の存在下で脱窒素菌により環元分解
される。この部分的に脱窒素された原水は活性汚
泥とともに後続の好気性槽2に流下し、原水中に
含まれているNH4−Nは完全にNOxまで硝化され
る。 以上、原水中に含まれているNH4−Nは好気性
槽11による部分脱窒と好気性槽による完全硝化
により極めて低濃度かあるいはほとんど検出限界
以下になり、また、この処理系で動的状態におい
ても平衡に達するPH値も比較的に低いのでニトロ
バクターに対するNH3の活性阻害作用が消去さ
れ、硝化型式は完全に硝酸型で安定する。 前記好気性槽2から流出する硝化混合液中には
循環により嫌気性槽11に返送できない残余の
NOx(無限大に循環すれば好気性槽で生成され
たNOxを全量嫌気性槽に戻すことはできるが、
動力費節減の関係もあり、通常原水の4〜8倍量
の硝化混合液が循環され、この循環率でのNOx
の最大返送率はおおよそ80%程度である。)は処
理水中にリークするので、従来の重力式沈殿装置
を適用して活性汚泥を分離したのでは沈殿池での
脱窒素反応により汚泥が浮上し、スカムが生成し
て活性汚泥処理が成立たなくなる。そこで加圧浮
上装置10を適用して強制的に活性汚泥を分離、
濃縮し、この濃縮活性汚泥を汚泥返送管5を通し
て嫌気性槽11に適量返送して処理する。一方、
該加圧浮上装置10によつて活性汚泥と分離され
た処理水は放流管6を経由して自然水系に放流さ
れる。 次に本発明の実施例を示す。 処理の基本となる活性汚泥処理プロセスは第1
図に示すような嫌気性槽と好気性槽および加圧浮
上槽よりなる本発明によるプロセスであり、硝化
混合液が好気性槽から嫌気性槽に適量が循環され
る。 この実験に使用した各主要装置の諸元は、嫌気
性槽、好気性槽ともに100、加圧浮上槽50の
容積をもち、加圧浮上槽での処理水の加圧は3
Kg/cm2、加圧水量は150〜200%(槽流入水量)の
範囲となるように調整した。 供試し尿としてはスクリーニングした10倍希釈
し尿を用いその理化学的性状は表−1の通りであ
る。
The present invention relates to a method for biologically purifying sewage, industrial wastewater, and other organic wastewater using aerobic microorganisms. Conventional human waste treatment methods can be broadly classified into anaerobic digestion, aerobic digestion, and chemical treatment, but no matter which treatment technology is applied, biological oxidation treatment is used in the final step of treatment. The finishing touches are done according to the law. Typical biological oxidation treatment methods that are currently in practical use include fixed biofilm methods (sprinkle bed method, contact oxidation method, rotating disk method, etc.) and suspended organism methods (activated sludge method, etc.). In the field of human waste treatment, the activated sludge method is generally widely adopted because it enables high-grade treatment and is stable. However, even if so-called human waste wastewater, such as diluted human waste, undiluted human waste, diluted desorbed liquid, or undiluted desorbed liquid, is treated using the activated sludge method, the purification efficiency is not as high as initially expected based on experience in sewage treatment. Unable to do so.
There was a strong demand for an investigation into the cause. The present inventors have been working hard to investigate the cause for a long time, but it happened that a large amount of NO 2 -N is contained in the activated sludge method treatment water of night soil wastewater (desorption liquid), and the concentration is low. Although it differs depending on the dilution ratio of syneresis, it was confirmed that the amount reached approximately 150 to 300 mg/. Furthermore, it has been experimentally confirmed that this NO 2 -N is an extremely harmful substance to aerobic purification microorganisms, and if conditions are provided to prevent this NO 2 -N from accumulating in the mixed culture solution, We learned that it is possible to achieve BOD removal efficiency equal to or higher than that of sewage even with human waste water. Human waste is naturally rich in NH 4 -N (3000-5000mg/
), and the pH is alkaline (generally
7.5 to 8.8), and since it contains a high concentration of sulfide, if nitrifying bacteria live in activated sludge, the nitrification type will be stable as NO 2 type. In other words, ammonia nitrogen, which is concentrated in human urine, is produced by Nitrobacter in the form of NH3 .
robacter (nitrate bacteria)] activity. The higher the pH of the liquid, the more the reaction of NH 4 OHNH 3 +OH - proceeds in the right direction, so the toxicity of ammonia nitrogen becomes more pronounced in human waste. The nitrates that are concentrated in human waste are highly toxic to Nitrobacter (nitrate bacteria). For the above reasons, as mentioned above, when human waste wastewater is treated using the activated sludge method (other biological oxidation treatment), unless special conditions are regulated, the nitrification type is stable as the nitrite type. Such processing problems occur. NO 2 -N is toxic to purified microorganisms;
If this concentration exceeds a certain level in the mixed culture solution, biological treatment will be affected. NO 2 -N is toxic to concentrated crops, fish and shellfish, and therefore causes various pollution problems at the destination. The presence of NO 2 -N increases the COD of the treated water, making it impossible to meet COD regulations when discharged into the sea. In addition, this is not just a matter of regulation; it actually consumes dissolved oxygen in rivers, which has a direct negative impact on river pollution. When performing ozone treatment on secondary treated water, ozone is consumed if NO 2 -N is present. In order to solve the various problems in wastewater treatment caused by NO 2 -N, it is necessary to treat the activated sludge treatment process (biological oxidation treatment process) under conditions where NO 2 -N is not generated. At present, the following methods are available, but each of these countermeasures has a fatal flaw. That is, (i) the activated sludge process is operated at a sludge level such that nitrifying bacteria cannot exist in the treatment system; However, such a method not only increases the sludge load and deteriorates the quality of treated water, but also cannot necessarily completely stop nitrification. (ii) NH4
If it is installed at a low level (continuously adjusted) according to the N concentration, the nitrification type will be NO 3 -N type, and NO 2
-The problem caused by N is solved, but the cost of chemicals for pH adjustment becomes excessive. Furthermore, even if the NO 3 -N type nitrification type is adopted, scum trouble in the final settling tank cannot be avoided. There are other problems. The present invention aims to accurately eliminate these conventional drawbacks, and aims to solve the problem caused by NO 2 -N, which is unavoidable in activated sludge treatment methods, by combining complete nitrification, partial denitrification, and solid-liquid separation by pressurized flotation. The purpose is to provide an effective and economical treatment method that can be solved by. Another object of the present invention is to convert NO 2 -N, which is almost irresistibly produced when human waste water is treated by the activated sludge method, into NO 3 through a special process.
-N, to perform extremely stable treatment and to provide a treatment method that is suitable for large-scale treatment and has simple operation management. The present invention allows human waste water to flow into an anaerobic tank either as it is or diluted to an appropriate concentration, while an appropriate amount of nitrification mixture is circulated from the aerobic tank, and the floated concentrated sludge is returned from a pressure flotation device. It is characterized by partially denitrifying the raw water by stirring and mixing it with the raw water and effectively utilizing the BOD source in the raw water. NH 4
N is reduced to a significantly lower concentration or completely disappears, causing nitrobacterium (nitrobacterium) of NH3 .
As a result, the toxicity of NO 2 -N in conventional activated sludge treatment and other unfavorable effects on treatment can be completely eliminated, as the nitrification type is stabilized as NO 3 -N. This means that it can be resolved. The amount of nitrogen that is partially removed depends on the amount of nitrification liquid being circulated, but in any case, it is
% cannot be removed. Therefore, there is a certain concentration of NO 3 -N in the mixed liquid flowing out from the aerobic tank.
If this sludge flows directly into a conventional settling tank, a denitrification reaction will occur within the settling tank, making it impossible to separate and concentrate the activated sludge. Therefore, in order to make the process of the present invention perfect, it is essential to apply pressure flotation to separate and concentrate the activated sludge in the nitrification mixture. Next, an embodiment of the treatment method according to the present invention will be explained with reference to FIG. 2 in comparison with a conventional example (FIG. 1). Conventionally, as shown in FIG. The wastewater introduced into the sludge is mixed with air 3 and sludge returned from the sludge return pipe 5, subjected to biological treatment, and the effluent is separated by sedimentation in the sedimentation tank 4, and then led out as treated water from the discharge pipe 6. However, in the present invention, as shown in FIG.
Wastewater containing BOD, SS, and NH 4 -N is collected from raw water inlet pipe 1.
It is introduced into the anaerobic tank 11 via. In the aerobic tank 2 that follows this anaerobic tank 11, a so-called nitrification mixed liquid is produced in which NH4 -N in the raw water is oxidized to NOx due to the presence of activated sludge and the supply of oxygen such as air 3 from the blower 13. At least a portion of the water, for example 4 to 8 times the amount of inflow raw water, is circulated through the circulation pipe 12. The aerobic tank 2 is a pressurized flotation device 1
0, the treated mixed liquid is finally subjected to pressure flotation treatment to separate solid and liquid, and then is discharged from the discharge pipe 6 as treated water. The activated sludge separated and concentrated by the pressurized flotation device 10 is also returned to the anaerobic tank 11 through the sludge return pipe 5, and oxygen and the nitrification mixture are transferred to the anaerobic tank 1.
During the anaerobic stirring and mixing process in step 1, NOx is decomposed by denitrifying bacteria in the presence of a BOD source in the raw water. This partially denitrified raw water flows down to the subsequent aerobic tank 2 together with activated sludge, and the NH 4 -N contained in the raw water is completely nitrified to NOx. As mentioned above, NH 4 -N contained in raw water is reduced to an extremely low concentration or almost below the detection limit due to partial denitrification in the aerobic tank 11 and complete nitrification in the aerobic tank. Since the pH value at which equilibrium is reached is also relatively low, the inhibitory effect of NH 3 on Nitrobacter is eliminated, and the nitrification type is completely stable as the nitric acid type. The nitrification mixture flowing out from the aerobic tank 2 contains residual substances that cannot be returned to the anaerobic tank 11 through circulation.
NOx (If it is circulated infinitely, all of the NOx generated in the aerobic tank can be returned to the anaerobic tank,
In order to reduce power costs, a nitrification mixture of 4 to 8 times the amount of normal raw water is circulated, and at this circulation rate NOx
The maximum return rate is approximately 80%. ) leaks into the treated water, so if activated sludge was separated using a conventional gravity settling device, the sludge would float to the surface due to the denitrification reaction in the settling tank, and scum would form, resulting in activated sludge treatment. It disappears. Therefore, a pressurized flotation device 10 is applied to forcibly separate activated sludge.
The activated sludge is concentrated, and an appropriate amount of the concentrated activated sludge is returned to the anaerobic tank 11 through the sludge return pipe 5 for treatment. on the other hand,
The treated water separated from activated sludge by the pressurized flotation device 10 is discharged into the natural water system via the discharge pipe 6. Next, examples of the present invention will be shown. The activated sludge treatment process, which is the basis of treatment, is the first
The process according to the present invention consists of an anaerobic tank, an aerobic tank, and a pressurized flotation tank as shown in the figure, and an appropriate amount of the nitrification mixture is circulated from the aerobic tank to the anaerobic tank. The specifications of each main device used in this experiment are that the anaerobic tank and aerobic tank both have a volume of 100, and the pressurized flotation tank has a volume of 50. The pressurization of the treated water in the pressurized flotation tank is 3.
Kg/cm 2 , and the pressurized water amount was adjusted to be in the range of 150 to 200% (tank inflow water amount). Screened 10-fold diluted human urine was used as the sample urine, and its physicochemical properties are shown in Table 1.

【表】 なお処理条件としては、供試10倍希釈し尿の供
給量を100/日となるように流量調整しながら
供給した。加圧浮上槽での加圧水の圧力は3Kg/
cm2、加圧水量150%で浮上濃縮汚泥の濃度は平均
25000mg/(20000〜30000mg/)、返送量は嫌気
性槽、好気性槽での活性汚泥濃度が6000mg/と
なるように調整(35〜45/日)した。このよう
な条件で嫌気性槽、好気性槽の両槽に存在する活
性汚泥に対するBOD負荷は0.07〜0.1Kg・BOD/
KgMLSS.日であり、この条件での処理水の水質
は表−1に示す通り処理水中に含まれるSSは12
〜25mg/で固液分離は極めて良好であり、処理
中のBODは13〜20mg/の範囲で極めて良好であ
つた。 これに対比して行なつた第1図に示すような従
来の活性汚泥処理方式による処理実験では曝気槽
容積200、活性汚泥濃度6000mg/(本発明のプ
ロセスと容積、汚泥濃度ともに同じにしてあ
る)、供試10倍希釈し尿の供給量100/日曝気槽
内の活性汚泥に対するBOD負荷は本発明プロセ
スと同じで0.07〜0.1Kg・BOD/KgMOSS.日の条
件での処理水質は表−1に示してあるが、沈殿池
における脱窒現象のためにスカムが発生し、処理
水中にSSが高濃度にリークした。また、実験当
初からある期間内は返送汚泥濃度10000mg/程度
を維持できたが、その濃度は徐々に希薄となり、
曝気槽内に6000mg/の活性汚泥を維持できなく
なり、活性汚泥処理が成立たなくなつた。 本発明プロセスは嫌気性工程、好気性工程およ
び加圧浮上工程の合理的な組合せによつて、この
種の排水の活性汚泥処理において宿命的に生成さ
れるNO2−Nによる諸種の処理面でのトラブルを
完全に解消することができ、しかも窒素を含む有
機性排水の活性汚泥処理に安定した処理が容易に
可能であり、大量処理に適し運転管理も簡易であ
る利益がある。
[Table] As for the treatment conditions, the sample 10 times diluted human urine was supplied while adjusting the flow rate so that the supply amount was 100/day. The pressure of pressurized water in the pressurized flotation tank is 3Kg/
cm 2 , the concentration of floated thickened sludge is average at 150% pressurized water volume.
25,000 mg/(20,000 to 30,000 mg/), and the return amount was adjusted so that the activated sludge concentration in the anaerobic tank and aerobic tank was 6,000 mg/day (35 to 45/day). Under these conditions, the BOD load on the activated sludge present in both the anaerobic and aerobic tanks is 0.07 to 0.1 Kg・BOD/
KgMLSS.day, and the quality of the treated water under these conditions is as shown in Table 1.
The solid-liquid separation was extremely good at ~25 mg/, and the BOD during treatment was extremely good in the range of 13-20 mg/. In contrast, in a treatment experiment using a conventional activated sludge treatment method as shown in Figure 1, the aeration tank volume was 200 and the activated sludge concentration was 6000 mg/cm (both the volume and sludge concentration were the same as in the process of the present invention). ), the BOD load on the activated sludge in the aeration tank is the same as the process of the present invention, and the treated water quality under the conditions of 0.07 to 0.1 Kg・BOD/KgMOSS.day is Table 1. As shown in Figure 2, scum was generated due to the denitrification phenomenon in the settling tank, and SS leaked into the treated water at a high concentration. In addition, we were able to maintain a return sludge concentration of around 10,000 mg/kg for a certain period from the beginning of the experiment, but that concentration gradually became diluted.
It became impossible to maintain activated sludge at 6000 mg/kg in the aeration tank, and activated sludge treatment was no longer possible. The process of the present invention uses a rational combination of an anaerobic process, an aerobic process, and a pressurized flotation process to eliminate various treatment problems caused by the NO 2 -N that is inevitably produced in the activated sludge treatment of this type of wastewater. This method has the advantage of being able to completely eliminate the troubles of the above, and also being able to easily perform stable activated sludge treatment of nitrogen-containing organic wastewater, being suitable for large-scale treatment, and easy to manage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法のフローシート、第2図は本発
明のフローシートである。 1……原水流入管、2……好気性槽、3……空
気、4……沈殿池、5……汚泥返送管、6……放
流管、10……加圧浮上装置、11……嫌気性
槽、12……循環用パイプ、13……ブロワー。
FIG. 1 is a flow sheet of the conventional method, and FIG. 2 is a flow sheet of the present invention. 1... Raw water inflow pipe, 2... Aerobic tank, 3... Air, 4... Sedimentation tank, 5... Sludge return pipe, 6... Outflow pipe, 10... Pressure flotation device, 11... Anaerobic Sex tank, 12...Circulation pipe, 13...Blower.

Claims (1)

【特許請求の範囲】 1 アンモニア性窒素を濃厚に含む有機性排水を
そのままかあるいは適当な濃度に希釈したのち、
嫌気性工程と好気性工程とからなる処理プロセス
に導入し、好気性混合液を好気性工程から嫌気性
工程に適量循環し、最終的に処理混合液を加圧浮
上工程に導入して固液分離すると共に、該加圧浮
上工程で分離濃縮された活性汚泥の少なくとも一
部を前記嫌気性工程に返送導入されて処理するこ
とを特徴とする有機性排水の生物学的処理法。 2 前記嫌気性工程が、好気性工程からの硝化混
合液を流入原水量の4〜8倍の範囲で循環されて
処理されるものである特許請求の範囲第1項記載
の生物学的処理法。
[Claims] 1. Organic wastewater containing concentrated ammonia nitrogen can be used as it is or after being diluted to an appropriate concentration,
The treated mixture is introduced into a treatment process consisting of an anaerobic process and an aerobic process, and an appropriate amount of the aerobic mixture is circulated from the aerobic process to the anaerobic process.Finally, the treated mixture is introduced into the pressure flotation process to form a solid-liquid. A biological treatment method for organic wastewater, characterized in that at least a part of the activated sludge separated and concentrated in the pressure flotation process is returned to the anaerobic process for treatment. 2. The biological treatment method according to claim 1, wherein the anaerobic step is performed by circulating the nitrification mixture from the aerobic step in an amount of 4 to 8 times the amount of inflow raw water. .
JP14558078A 1978-11-25 1978-11-25 Biological treatment of organic waste water Granted JPS5573395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14558078A JPS5573395A (en) 1978-11-25 1978-11-25 Biological treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14558078A JPS5573395A (en) 1978-11-25 1978-11-25 Biological treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS5573395A JPS5573395A (en) 1980-06-03
JPS6150680B2 true JPS6150680B2 (en) 1986-11-05

Family

ID=15388374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14558078A Granted JPS5573395A (en) 1978-11-25 1978-11-25 Biological treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS5573395A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884096A (en) * 1981-11-13 1983-05-20 Ebara Infilco Co Ltd Digesting and denitrifying method for night soil sewage
JP4859192B2 (en) * 2005-12-09 2012-01-25 三菱重工環境・化学エンジニアリング株式会社 Advanced sewage treatment method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345049A (en) * 1976-10-04 1978-04-22 Mitsubishi Heavy Ind Ltd Method of treating organic waste water
JPS5570394A (en) * 1978-11-22 1980-05-27 Ebara Infilco Co Ltd Biological treatment of organic waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345049A (en) * 1976-10-04 1978-04-22 Mitsubishi Heavy Ind Ltd Method of treating organic waste water
JPS5570394A (en) * 1978-11-22 1980-05-27 Ebara Infilco Co Ltd Biological treatment of organic waste water

Also Published As

Publication number Publication date
JPS5573395A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
CA2635278C (en) Method and system for nitrifying and denitrifying wastewater
CN102633359B (en) Method for treating total nitrogen of nitrogen-containing chemical wastewater
EP1012121B1 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
CN108046518B (en) Enhanced nitrogen and phosphorus removal device and method for low-carbon source sewage
CN106430845A (en) Kitchen garbage wastewater treatment apparatus
CN109205954A (en) Light electrolysis catalysis oxidation, biochemical treatment high-concentration waste hydraulic art
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
Ahmed et al. Combined anaerobic-aerobic system for treatment of textile wastewater
KR20010025386A (en) Biological, pysical and chemical treatment method of waste water from livestock
CN111003816B (en) Biochemical tail water biological denitrification method for inhibiting non-filamentous bacterium expansion
CN209778572U (en) Petrochemical industry sewage treatment system
CN105984991B (en) A kind of sewerage advanced treatment process
KR100331898B1 (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
JP2796909B2 (en) Wastewater treatment method
Chui et al. Wastewater treatment and nitrogen removal using submerged filter systems
JP2000189995A (en) Method and device for removing nitrogen in waste water
CN205933538U (en) Processing apparatus behind coking wastewater
CN110697991B (en) Garbage leachate biological treatment process and system
Charmot‐Charbonnel et al. Nitrification of high strength ammonium wastewater in an aerated submerged fixed bed
CN113860653A (en) Sewage treatment system and process utilizing filamentous fungi and controlling sludge bulking
Núnez et al. Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater
JPS6150680B2 (en)
JPS6117559B2 (en)
CN112010496A (en) High-efficient landfill leachate processing apparatus
CN206437994U (en) A kind of kitchen garbage, waste-water processing unit