JPS6150673B2 - - Google Patents

Info

Publication number
JPS6150673B2
JPS6150673B2 JP52029958A JP2995877A JPS6150673B2 JP S6150673 B2 JPS6150673 B2 JP S6150673B2 JP 52029958 A JP52029958 A JP 52029958A JP 2995877 A JP2995877 A JP 2995877A JP S6150673 B2 JPS6150673 B2 JP S6150673B2
Authority
JP
Japan
Prior art keywords
magnesia
adsorbent
water
present
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52029958A
Other languages
Japanese (ja)
Other versions
JPS53114792A (en
Inventor
Yoshimasa Igari
Shoichiro Yokoyama
Ryutaro Itaya
Hiroomi Watanabe
Yasuhiro Matsuda
Kenji Takeda
Keisuke Kato
Toshiharu Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Envirotech Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Sumitomo Heavy Industries Envirotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sumitomo Heavy Industries Envirotech Inc filed Critical Agency of Industrial Science and Technology
Priority to JP2995877A priority Critical patent/JPS53114792A/en
Publication of JPS53114792A publication Critical patent/JPS53114792A/en
Publication of JPS6150673B2 publication Critical patent/JPS6150673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 本発明は水中に溶解するアニオン系界面活性剤
の除去方法、さらに詳しくは、水中に溶解するア
ニオン系界面活性剤をマグネシア系吸着剤に吸着
させて水中から除去することを特徴とするアニオ
ン系界面活性剤の除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for removing an anionic surfactant that dissolves in water, and more specifically, a method for removing an anionic surfactant that dissolves in water from water by adsorbing the anionic surfactant to a magnesia adsorbent. The present invention relates to a method for removing anionic surfactants characterized by the following.

水中に溶解する界面活性剤を除去する場合、従
来は水中に空気を吹込み、起泡をして浮上させて
除去したり、活性炭に吸着させて除去する方法が
行なわれており、本発明におけるようなマグネシ
ア系吸着剤に吸着させて除去するような方法は知
られいない。
Conventionally, when removing surfactants that dissolve in water, the methods of blowing air into the water, causing bubbles to float, and removing them, or by adsorbing them to activated carbon, have been used. There is no known method for removing it by adsorbing it with a magnesia-based adsorbent.

本発明者らは、マグネシア系吸着剤の種々の物
質に対する吸着能について鋭意研究を重ねていた
ところ、意外にも、水中に溶解する界面活性剤は
マグネシア系吸着剤により効率よく吸着除去され
ることを見出し、本発明を完成するに到つた。
The present inventors have been conducting extensive research on the adsorption ability of magnesia-based adsorbents for various substances, and have surprisingly found that surfactants that dissolve in water can be efficiently adsorbed and removed by magnesia-based adsorbents. They discovered this and completed the present invention.

本発明におけるマグネシア系吸着剤とは、マグ
ネシアを吸着性主成分として含むもので、焼成マ
グネシアや、種々の金属酸化物を含むマグネシア
混合物、たとえば、マグネシアとアルミナの混合
物、マグネシアを含む粘土鉱物の焼成物などが包
含される。
The magnesia-based adsorbent in the present invention includes magnesia as a main adsorptive component, and includes calcined magnesia, magnesia mixtures containing various metal oxides, such as mixtures of magnesia and alumina, and calcined clay minerals containing magnesia. It includes things such as things.

本発明における好ましいマグネシア系吸着剤
は、水酸化マグネシウムや炭酸マグネシウム、塩
基性炭酸マグネシウム(ヒドロオキシ炭酸マグネ
シウム)などの加熱により分解し、マグネシアを
形成する任意のマグネシウム化合物を原料とし、
これを慣用の手段により焼成することによつて形
成される。
Preferred magnesia-based adsorbents in the present invention are made from any magnesium compound that decomposes on heating to form magnesia, such as magnesium hydroxide, magnesium carbonate, and basic magnesium carbonate (hydroxymagnesium carbonate), and
It is formed by firing this by conventional means.

この場合、高められた吸着能を持つマグネシア
を得るには、その焼成温度として、500〜700℃、
好ましくは550〜650℃という制限された範囲の温
度を選定することが必要である。焼成温度がこれ
より高くなると、得られるマグネシアの吸着能は
著しく低下し、また吸着後に焼成してもその吸着
能は再生されず、劣化する。焼成温度が前記温度
よりも低くなると得られるマグネシアは吸着能の
著しく低いもので実際の使用に適したものではな
い。焼成時間は40〜60分で十分である。
In this case, in order to obtain magnesia with increased adsorption capacity, the calcination temperature should be 500-700℃,
It is necessary to select a temperature within a limited range, preferably between 550 and 650°C. If the calcination temperature is higher than this, the adsorption capacity of the obtained magnesia will be significantly reduced, and even if the magnesia is calcined after adsorption, the adsorption capacity will not be regenerated and will deteriorate. When the calcination temperature is lower than the above temperature, the resulting magnesia has extremely low adsorption capacity and is not suitable for actual use. A baking time of 40 to 60 minutes is sufficient.

本発明におけるマグネシア系吸着剤は、30〜
200メツシユ、好ましくは60〜90メツシユの粒度
で使用され、その粒径がこれより小さくなると吸
着能が低下する傾向を示す。また、このマグネシ
ア系吸着剤は、通常の軽焼マグネシアに比べ、そ
の結晶度は小さく、またその見掛比重は0.47〜
0.37程度であり、著しく低い。さらに、本発明の
マグネシア系吸着剤は、水溶液中で使用する場合
すぐれた沈降性を示す。
The magnesia-based adsorbent in the present invention is 30 to 30%
It is used at a particle size of 200 mesh, preferably 60 to 90 mesh; if the particle size is smaller than this, the adsorption capacity tends to decrease. In addition, this magnesia-based adsorbent has a lower crystallinity than normal light calcined magnesia, and its apparent specific gravity is 0.47~
It is around 0.37, which is extremely low. Furthermore, the magnesia-based adsorbent of the present invention exhibits excellent sedimentation properties when used in an aqueous solution.

前記のマグネシア系吸着剤は、カオリン
(Al2Si2O5OH)4、酸化第二鉄(Fe2O3)、酸化カ
ルシウム(CaO)及びアルミナ(Al2O3)の中か
ら選ばれる金属酸化物の少なくとも1種を混合す
ることにより、その吸着能を損なわずにその量を
増大させ得るとともに、その吸着能を改良するこ
とができる。この場合、添加する金属酸化物量
は、マグネシアと添加金属酸化物の総重量に対
し、5〜40重量%、好ましくは10〜30重量%であ
る。本発明における殊に好ましい添加剤はアルミ
ナである。この混合吸着剤はより高められた性能
を有し、また再生による吸着力の低下が防止さ
れ、さらに良好な沈降性を示すという利点を有す
る。このような混合吸着剤は、前記マグネシアに
対し、対応する金属酸化物を500〜700℃で焼成し
てあらかじめ形成した金属酸化物を混合すること
により、及び前記マグネシア形成原料と金属水酸
化物をあらかじめ混合し、この混合物を500〜700
℃の温度で焼成することにより調製される。
The magnesia-based adsorbent is a metal selected from kaolin (Al 2 Si 2 O 5 OH) 4 , ferric oxide (Fe 2 O 3 ), calcium oxide (CaO), and alumina (Al 2 O 3 ). By mixing at least one kind of oxide, the amount of the oxide can be increased without impairing the adsorption ability, and the adsorption ability can be improved. In this case, the amount of metal oxide added is 5 to 40% by weight, preferably 10 to 30% by weight, based on the total weight of magnesia and added metal oxide. A particularly preferred additive in the present invention is alumina. This mixed adsorbent has the advantage of having improved performance, preventing a decrease in adsorption power due to regeneration, and exhibiting better sedimentation properties. Such a mixed adsorbent can be produced by mixing the magnesia with a metal oxide previously formed by firing the corresponding metal oxide at 500 to 700°C, and by mixing the magnesia forming raw material and metal hydroxide. Pre-mix and add this mixture to 500-700
It is prepared by firing at a temperature of °C.

本発明の方法を実施するには、前記したマグネ
シア系吸着剤にアニオン系界面活性剤を溶解する
水を接触させることによつて実施される。この場
合の接触方式としては、粉末添加法、流動法など
があり、また操作方式はバツチ式、連続式のいず
れも採用し得る。たとえば、アニオン系界面活性
剤を粉末添加法により除去するには、マグネシア
系吸着剤の微粉末を直接水中に添加混合してその
中に含まれる界面活性剤を吸着させた後、生成し
た懸濁物質を沈降分離させる。次に得られたスラ
リーを脱水し、固形物として回収する。また、本
発明の方法はカラム法により実施されるが、この
場合には、前記した吸着剤粉末を適当な粒度に成
形あるいは造粒したのち、カラムに充填し、この
カラム中に界面活性剤を溶解する水を通水する。
The method of the present invention is carried out by bringing water in which an anionic surfactant is dissolved into contact with the magnesia-based adsorbent described above. In this case, the contact method includes a powder addition method, a fluidization method, etc., and either a batch method or a continuous method can be adopted as the operation method. For example, to remove anionic surfactants using the powder addition method, fine powder of magnesia adsorbent is directly added and mixed into water, the surfactant contained therein is adsorbed, and the resulting suspension is The substance is separated by sedimentation. The resulting slurry is then dehydrated and recovered as a solid. Further, the method of the present invention is carried out by a column method, but in this case, the above-mentioned adsorbent powder is molded or granulated to an appropriate particle size, and then packed into a column, and a surfactant is placed in the column. Pass the water to be dissolved.

本発明によれば、アニオン系界面活性剤、たと
えばカルボン酸型、硫酸エステル型及びスルホン
酸型のものを効率よく除去することができる。マ
グネシア系吸着剤の使用量は水中に溶解するアニ
オン系界面活性剤に対して、重量で2〜20倍量、
一般には5〜15倍量の割合である。
According to the present invention, anionic surfactants such as carboxylic acid type, sulfuric acid ester type, and sulfonic acid type can be efficiently removed. The amount of magnesia-based adsorbent used is 2 to 20 times the weight of the anionic surfactant dissolved in water.
Generally, the ratio is 5 to 15 times the amount.

本発明の方法は洗剤使用工場から排出されるア
ニオン系界面活性剤含有排水の処理法として有効
である。また、本発明による吸着剤は使用後、焼
成して再使用することができるので、工業上極め
て有効である。
The method of the present invention is effective as a method for treating anionic surfactant-containing wastewater discharged from factories using detergents. In addition, the adsorbent according to the present invention can be fired and reused after use, making it extremely effective industrially.

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 水酸化マグネシウム80重量部に対し水酸化アル
ミニウム20重量部の割合で混合したのち、この混
合物を600℃の温度で2時間焼成してマグネシウ
ムとアルミナの混合物からなる吸着剤を調製し
た。
Example 1 After mixing 80 parts by weight of magnesium hydroxide and 20 parts by weight of aluminum hydroxide, this mixture was calcined at a temperature of 600° C. for 2 hours to prepare an adsorbent consisting of a mixture of magnesium and alumina.

次に、この吸着剤(粒度30〜100メツシユ)の
種々の量を、スルホンコハク酸ジ−2−エチルヘ
キシルナトリウムの0.1%(1040ppm)及び0.005
%(52ppm)溶液に対して加え、温度20℃、撹
拌速度100rpm、撹拌時間90分の条件下で撹拌処
理した。その結果を第1図及び第2図に示す。な
お、第1図は原料溶液として0.5%、第2図は
0.005%の濃度のものを用いた場合の結果を示
す。これらのグラフにおいて、横軸は吸着剤の添
加量で0.25%(2500ppm)から20%
(20000ppm)の範囲で変化する。左縦軸は処理
後の溶液中に残存する界面活性剤濃度(%)を示
し、右縦軸は界面活性剤の除去率(%)を示す。
また、これらのグラフにおいて、曲線1は残存界
面活性剤の測定濃度及び曲線2はその測定値から
算出された界面活性剤の除去率の値を示す。
Varying amounts of this adsorbent (particle size 30-100 mesh) were then mixed with 0.1% (1040 ppm) and 0.005% di-2-ethylhexyl sodium sulfonesuccinate.
% (52 ppm) solution and stirred at a temperature of 20° C., a stirring speed of 100 rpm, and a stirring time of 90 minutes. The results are shown in FIGS. 1 and 2. Note that Figure 1 shows the raw material solution at 0.5%, and Figure 2 shows the raw material solution at 0.5%.
The results are shown when using a concentration of 0.005%. In these graphs, the horizontal axis is the amount of adsorbent added from 0.25% (2500ppm) to 20%.
(20000ppm). The left vertical axis shows the surfactant concentration (%) remaining in the solution after treatment, and the right vertical axis shows the surfactant removal rate (%).
Further, in these graphs, curve 1 shows the measured concentration of the residual surfactant, and curve 2 shows the value of the removal rate of the surfactant calculated from the measured value.

実施例 2 家庭用粉末洗剤(全温度チエアー)を0.1%
(重量/容量)(1000ppm)になるように溶解し
た。この溶液の分析の結果、ABS(アルキルベ
ンゼンスルホン酸ナトリウム)240ppmを含み、
そのPH値は9.8であつた。
Example 2 Household powder detergent (all temperature Cheer) 0.1%
(weight/volume) (1000 ppm). As a result of analysis of this solution, it contained 240 ppm of ABS (sodium alkylbenzene sulfonate).
Its pH value was 9.8.

次に、この試料溶液に対し、実施例1で示した
吸着剤を0.5%(重量/容量)及び2.0%(重量/
容量)を加え、温度20℃、回転速度100rpm及び
撹拌時間90分の条件下で撹拌処理した。この処理
の結果、0.5%の吸着剤添加の場合、ABS系除去
率は90.0%でり、また2.0%の吸着剤添加の場
合、96.3%であつた。
Next, the adsorbent shown in Example 1 was added to this sample solution at 0.5% (weight/volume) and 2.0% (weight/volume).
volume) and stirred at a temperature of 20°C, a rotation speed of 100 rpm, and a stirring time of 90 minutes. As a result of this treatment, the ABS removal rate was 90.0% when 0.5% adsorbent was added, and 96.3% when 2.0% adsorbent was added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による界面活性剤の
除去結果を示すグラフである。
FIGS. 1 and 2 are graphs showing the results of surfactant removal according to the present invention.

Claims (1)

【特許請求の範囲】 1 熱分解によりマグネシア形成可能のマグネシ
ウム化合物を500〜700℃の温度で焼成して形成し
たマグネシアを主成分とするマグネシア系吸着剤
に対し、水中に溶解するアニオン系界面活性剤を
吸着させ、水中から除去することを特徴とするア
ニオン系界面活性剤の除去方法。 2 マグネシアに対し、カオリン、酸化第二鉄、
酸化カルシウム及びアルミナの中から選ばれた少
なくとも1種の金属酸化物を混合したマグネシア
混合物を用いる特許請求の範囲第1項の方法。 3 金属酸化物としてアルミナを用いる特許請求
の範囲第2項の方法。 4 金属酸化物混合量が5〜40重量%である特許
請求の範囲第2項又は第3項の方法。
[Scope of Claims] 1. An anionic surfactant that dissolves in water with respect to a magnesia-based adsorbent whose main component is magnesia, which is formed by firing a magnesium compound capable of forming magnesia by thermal decomposition at a temperature of 500 to 700°C. A method for removing anionic surfactants, which is characterized by adsorbing an anionic surfactant and removing it from water. 2 For magnesia, kaolin, ferric oxide,
The method according to claim 1, which uses a magnesia mixture containing at least one metal oxide selected from calcium oxide and alumina. 3. The method according to claim 2, in which alumina is used as the metal oxide. 4. The method according to claim 2 or 3, wherein the amount of metal oxide mixed is 5 to 40% by weight.
JP2995877A 1977-03-18 1977-03-18 Removing method for surfactants Granted JPS53114792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2995877A JPS53114792A (en) 1977-03-18 1977-03-18 Removing method for surfactants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2995877A JPS53114792A (en) 1977-03-18 1977-03-18 Removing method for surfactants

Publications (2)

Publication Number Publication Date
JPS53114792A JPS53114792A (en) 1978-10-06
JPS6150673B2 true JPS6150673B2 (en) 1986-11-05

Family

ID=12290478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2995877A Granted JPS53114792A (en) 1977-03-18 1977-03-18 Removing method for surfactants

Country Status (1)

Country Link
JP (1) JPS53114792A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117687A (en) * 1977-03-24 1978-10-14 Toyo Soda Mfg Co Ltd Adsorbent
JP2013031795A (en) * 2011-08-01 2013-02-14 Sumitomo Osaka Cement Co Ltd Elution-reducing material, and method for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5166214A (en) * 1974-10-02 1976-06-08 Yunaitetsudo Suteetsu Suchiiru
JPS51104578A (en) * 1975-03-12 1976-09-16 Sumitomo Electric Industries ZETSUENDENSENNOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5166214A (en) * 1974-10-02 1976-06-08 Yunaitetsudo Suteetsu Suchiiru
JPS51104578A (en) * 1975-03-12 1976-09-16 Sumitomo Electric Industries ZETSUENDENSENNOSEIZOHOHO

Also Published As

Publication number Publication date
JPS53114792A (en) 1978-10-06

Similar Documents

Publication Publication Date Title
US4458030A (en) Adsorbent composition
Deng et al. Formation of NaP zeolite from fused fly ash for the removal of Cu (II) by an improved hydrothermal method
KR20210001642A (en) Method of Preparing Layered Double Hydroxide Based Adsorbent and Method of Removing Heavy Metals in Water Using the Same Prepared thereby
JP2006256892A (en) Aluminum silicate, production method therefor and method for purifying polyoxyalkylene polyol using the aluminum silicate
JP4336148B2 (en) Magnesium oxide powder and method for producing the same
US3862054A (en) Adsorbent for purifying vegetable oils from phosphorus containing compounds
CN110548477B (en) Adsorbing material and preparation method and application thereof
JPS6150673B2 (en)
JPH0261320B2 (en)
JPS6026595B2 (en) How to remove fluoride ions
JPS6143089B2 (en)
JPS6259973B2 (en)
JPS5911357B2 (en) Treatment method for phosphorus-containing wastewater
RU2682599C1 (en) Method for producing a mineral-based sorbent
JPS61192340A (en) Fluorine complex ion adsorbent
RU2077380C1 (en) Method of production of granulated filter medium
JPS62132727A (en) Clinoptilolite-type zeolite and production thereof
JPS591113B2 (en) How to remove phosphorus
JPS6261635A (en) Composition having adsorbing function
GB2200350A (en) Process for producing granulated filter material for water purification
JP2000233188A (en) Removing agent of selenium ion and arsenic ion, and use thereof
JPH0975717A (en) Method for removing arsenate ion
SU1148834A1 (en) Method of obtaining carbon ferromagnetic sorbent
RU2219994C1 (en) Method to manufacture a filtering material and the filtering material
RU2146223C1 (en) Method of production of synthetic granulated faujasite