JPS6150620A - Treatment of exhaust gas by addition of ozone/ammonia - Google Patents

Treatment of exhaust gas by addition of ozone/ammonia

Info

Publication number
JPS6150620A
JPS6150620A JP59170710A JP17071084A JPS6150620A JP S6150620 A JPS6150620 A JP S6150620A JP 59170710 A JP59170710 A JP 59170710A JP 17071084 A JP17071084 A JP 17071084A JP S6150620 A JPS6150620 A JP S6150620A
Authority
JP
Japan
Prior art keywords
ozone
exhaust gas
nox
ammonia
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59170710A
Other languages
Japanese (ja)
Other versions
JPH0526526B2 (en
Inventor
Hideki Nanba
南波 秀樹
Okikimi Tokunaga
徳永 興公
Nobutake Suzuki
鈴木 伸武
Akihisa Sakumoto
作本 彰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP59170710A priority Critical patent/JPS6150620A/en
Publication of JPS6150620A publication Critical patent/JPS6150620A/en
Publication of JPH0526526B2 publication Critical patent/JPH0526526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To simultaneously remove NOx and SOx by a dry process, in a method for treating exhaust gas, by adding O3 and NH3 to exhaust gas containing NOx and SOx to convert NOx and SOx to solid products. CONSTITUTION:Exhaust gas containing NOx and SOx is introduced into an O3-reaction tank while O3 is added to said exhaust gas and NOx is oxidized to HNO3 or HNO2 by O3 and water. The amount to be added of O3 is determined and regulated by the optimum condition of the whole of a process. In the next stage, NH3 is added to respectively convert HNO3 and HNO2 to NH4NO3 and NH4NO2 and SOx receives oxidation reaction to form (NH4)2SO4. NH4NO2 in the front stage of an NH3-reaction tank is further oxidized to NH4NO3 and the formed salt is collected bya collector while treated gas is exhausted from a chimney through a blower.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はオゾンとアンモニアを用いて排ガスの処理方法
に関する。本発明は公害防止技術とじて利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for treating exhaust gas using ozone and ammonia. The present invention is utilized as a pollution prevention technology.

従来の技術 オゾンを用いて排ガス中窒素酸化物(以下″NOx”と
略記する場合がある)および/または硫黄酸化物(以下
” SOx ”と略記する場合がある)を処理する技術
としては、例えば 吾妻他国、鈴木滋、後藤令幸、春田
健雄、吉留昭男著三菱電機技報 51 (12) p 
844.−8 ’ 77あるいは吾妻健国、吉留昭刀、
春田健雄、後藤令幸著化学工学協会第43回年会E10
5 p 332−3 ’ 78等がある。然しなから、
これらの従来技術はいずれも、処理後の排ガスを湿式法
で処理するため、廃液処理の必要性が生じたり、排ガス
の温度が低下するために、再加熱の必要が生ずる等、種
々の改善すべき課題を有している。
Conventional technology Technologies for treating nitrogen oxides (hereinafter sometimes abbreviated as "NOx") and/or sulfur oxides (hereinafter sometimes abbreviated as "SOx") in exhaust gas using ozone include, for example. Azuma Togoku, Shigeru Suzuki, Reiyuki Goto, Takeo Haruta, Akio Yoshidome Mitsubishi Electric Technical Report 51 (12) p.
844. -8' 77 or Kenkuni Azuma, Akito Yoshitome,
Written by Takeo Haruta and Reiyuki Goto The 43rd Annual Meeting of the Society of Chemical Engineers E10
5 p 332-3' 78 etc. Of course,
In all of these conventional technologies, the exhaust gas after treatment is treated using a wet method, which requires various improvements, such as the need for waste liquid treatment and the need for reheating as the temperature of the exhaust gas decreases. There are issues that need to be addressed.

発明が解決しようとする問題点 本発明によって、従来技術の課題が解決され、新規な排
ガス処理方法が提供される。
Problems to be Solved by the Invention The present invention solves the problems of the prior art and provides a novel exhaust gas treatment method.

本発明によってNOx および/捷たはSOxを含む排
ガスにオゾンおよびアンモニアを添加することにより、
窒素酸化物および/捷たけ硫黄酸化物を固体生成物とし
て、乾式法で同時に除去せしめることか出来る排ガスの
処理方法が解決される。
By adding ozone and ammonia to the exhaust gas containing NOx and/or SOx according to the present invention,
A method for treating exhaust gas is provided in which nitrogen oxides and/or decomposed sulfur oxides can be simultaneously removed as solid products in a dry process.

問題点を解決するだめの手段 上述した問題点は窒素酸化物および/または硫黄酸化′
吻を含む排ガスにオゾンならびにアンモニアを添jJ1
11することによって、窒素酸化物および/または硫黄
酸化物を固体生成物として同時に除去せしめることによ
って解決される。
Means for Solving the Problems The above-mentioned problems are caused by
Adding ozone and ammonia to the exhaust gas including the snout jJ1
11 by simultaneously removing nitrogen oxides and/or sulfur oxides as solid products.

本発明の構成を第1図を参照して説明する。第1図は本
発明のプロセスの一態様を示すダイヤグラムで、実線は
ガスの流れを、点線はガスの流量を制(財)する信号の
流れを表わす。
The configuration of the present invention will be explained with reference to FIG. FIG. 1 is a diagram illustrating one embodiment of the process of the present invention, with solid lines representing the flow of gas and dotted lines representing the flow of signals controlling the flow rate of the gas.

処理しようとする排ガスにオゾンを添加し、オゾン反応
槽に導入する。オゾンにより排ガス中のNOx (主に
一酸化窒素No  )は排ガス中の水とともに、以下の
ように酸化される。
Ozone is added to the exhaust gas to be treated and introduced into an ozone reaction tank. NOx (mainly nitrogen monoxide No. 2) in the exhaust gas is oxidized by ozone together with water in the exhaust gas as follows.

NO+O−+NO2+02 2NO2+H2O−+HNO3+HNO3N○2+03
 →NO3+02 NO2+ IIJ03 →N205 N205+H20→2HNO3 HNO+O−)HNO+0 これらの反応は気相中で進行し、NOxはHNO3もし
くはHNO2に酸化される。 この反応に必要々オゾン
の量は、ガスの温度とNOxの量に依存する。
NO+O-+NO2+02 2NO2+H2O-+HNO3+HNO3N○2+03
→NO3+02 NO2+ IIJ03 →N205 N205+H20→2HNO3 HNO+O-)HNO+0 These reactions proceed in the gas phase, and NOx is oxidized to HNO3 or HNO2. The amount of ozone required for this reaction depends on the temperature of the gas and the amount of NOx.

ガスの温度が低ければ、NOVを処理するのに必要なオ
ゾンの量は少なくなるという利点を有するが、処理済の
ガスの放出時の再加熱が必要となる。それ酸ガスの温度
ならびに添加するオゾン量は、プロセス全体の最適条件
で決めるべきである。大過剰のオゾンを添加すnげ、N
Oxは完全に酸化され、除去さnる。この時未反応のオ
ゾンが、観測ahるようになるが、次段に添加するアン
モニアによって、完全にこのオゾンは分解されるので、
オゾンによる二次汚染のおそれはない。しかしながら、
オゾンを無駄に消費することになるので、オゾンモニタ
ーによりオゾン濃度を観測し、フィー1−゛バックさせ
ることによって、添加するオゾン量を調節するのが望ま
しい。ここで生成した酸(硝酸。
Lower gas temperatures have the advantage of requiring less ozone to treat the NOV, but require reheating upon discharge of the treated gas. The temperature of the acid gas and the amount of ozone added should be determined based on the optimum conditions of the entire process. Add a large excess of ozone, N
Ox is completely oxidized and removed. At this time, unreacted ozone becomes visible, but this ozone is completely decomposed by the ammonia added in the next step.
There is no risk of secondary contamination due to ozone. however,
Since ozone would be wasted, it is desirable to monitor the ozone concentration with an ozone monitor and adjust the amount of ozone added by feedback. The acid produced here (nitric acid).

亜硝酸)は次段で添加するアンモニアと反応し、硝酸ア
ンモニウムならびに亜硝酸アンモニウムを生成する。
Nitrous acid) reacts with ammonia added in the next step to produce ammonium nitrate and ammonium nitrite.

HNC〕3+ NH3→NH4No3 HNO2+NTl3  →NH4NO2SOxの主成分
である二酸化研究(S02)はNO2の存在下では以下
のようにオゾン反応槽内で酸化さnる 802 + NO2→SO3+ N。
HNC] 3+ NH3 → NH4No3 HNO2 + NTl3 → NH4 Dioxide research (S02), which is the main component of SOx, is oxidized in the ozone reactor in the presence of NO2 as follows: 802 + NO2 → SO3+ N.

SO3+H2O−+H2SO4 こうして生じた酸it NOxと同様、アンモニアと反
応してアンモニウム塩を生ずる。
SO3+H2O-+H2SO4 The acid thus formed, like NOx, reacts with ammonia to form ammonium salts.

H:!S04+2NH3→(NH,)2So4大過剰の
オゾンを添加した場合はNO2が存在しないので、S0
2は未反応のままオゾン反応槽を通過するが、アンモニ
ア反応槽内では、オゾンとアンモニアにより生じたOH
,NH2,NH2O,NHO等のラジカルが反応に関与
すると共に、S02とアンモニアとの反応が生じ、最終
的に硫酸アンモニウムとなる。アンモニア反応槽の前段
で生ずる不安定な亜硝酸アンモニウムならびに亜硫酸ア
ンモニウムは、さらに酸化され、硝酸アンモニウムなら
びK 硫酸アンモニウムとなる。
H:! S04+2NH3→(NH,)2So4If a large excess of ozone is added, NO2 will not exist, so S0
2 passes through the ozone reaction tank unreacted, but in the ammonia reaction tank, OH generated by ozone and ammonia
, NH2, NH2O, NHO, etc. participate in the reaction, and a reaction occurs between S02 and ammonia, which ultimately becomes ammonium sulfate. The unstable ammonium nitrite and ammonium sulfite produced upstream of the ammonia reactor are further oxidized to become ammonium nitrate and ammonium K sulfate.

こうして生成したアンモニウム塩は、捕集器により捕集
し、処理済のガスはプロワ−を通して煙突より放出され
る。
The ammonium salt thus produced is collected by a collector, and the treated gas is discharged from the chimney through a blower.

本発明の利点ならびに有用性は以下の実施例により、一
層具体的に明らかにされる。
The advantages and usefulness of the present invention will be more specifically clarified by the following examples.

実施例 12.および3 No(600111n)−8o2(100011rn)
 −N20(8%)−02(12%)−N2(バランス
)を含む混合ガス(1,44Nyyi”/hy)に12
0℃で880Mとなる量のオゾン(実施例1)。
Example 12. and 3 No(600111n)-8o2(100011rn)
-N20(8%)-02(12%)-12 to mixed gas (1,44Nyyi”/hy) containing N2(balance)
Ozone in an amount of 880 M at 0°C (Example 1).

1500111’llとなる景のオゾン(実施例2)、
あるいは190011116となる量のオゾン(実施例
3)を添加し、さらに2600pa O濃度となる量の
アンモニアを添加して、ガス中のNOxならびにSO2
濃度を測定した。この結果を表−1に示す。NOx濃度
は1900騨添加時で600隼から8−にSo2濃度は
11000prから5pIm以下へと減少した。いずれ
の場合も排出ガス中にオゾンは検出されなかった。また
、排出ガス中に多数の白色生成物が観測された。
1500111'll of scenic ozone (Example 2),
Alternatively, by adding ozone in an amount of 190011116 (Example 3) and further adding ammonia in an amount of 2600 pa O concentration, NOx and SO2 in the gas can be reduced.
The concentration was measured. The results are shown in Table-1. The NOx concentration decreased from 600 to 8 when 1,900 pores were added, and the So2 concentration decreased from 11,000 pr to 5 pIm or less. No ozone was detected in the exhaust gas in any case. In addition, many white products were observed in the exhaust gas.

これらの生成物を採取し、同定したところ硫酸アンモニ
ウム((NH,)2304)ならびに硝酸アンモニウム
(NH4No3)であった。
These products were collected and identified as ammonium sulfate ((NH,)2304) and ammonium nitrate (NH4No3).

表−1 実施例1および2と同じ混合ガスに100℃で880四
となる量のオゾン(実施例4)ならびにtzooprm
−どなる量のオゾン(実施例5)を添加し、さらに〒 26001111mとなる量のアンモニアを添加して、
ガス中のNOxならびにS02濃度を測定した。この結
果を表−2に示す。12001111m添加時でNO!
濃度は10卿にSO2濃度は5岬以下へと減少した。い
ずれの場合も排出ガス中にオゾンは検出されなかった。
Table 1 Ozone (Example 4) and tzooprm in an amount of 880°C at 100°C in the same mixed gas as in Examples 1 and 2
- adding a certain amount of ozone (Example 5) and further adding ammonia in an amount of 26001111 m,
The NOx and S02 concentrations in the gas were measured. The results are shown in Table-2. NO when adding 12001111m!
The concentration decreased to 10 points, and the SO2 concentration decreased to below 5 points. No ozone was detected in the exhaust gas in any case.

また生成物は実施例1および2と同じく硫酸アンモニウ
ムならびに硝酸アンモニウムであった。
Also, the products were ammonium sulfate and ammonium nitrate as in Examples 1 and 2.

No(600卿)−N20(8チ)−〇□(12係)−
N2(バランス)を含む混合ガス(1,44Nm”/h
r)に120℃で88011111となる量のオゾン(
実施例6)を加え、さらに600卿  となる量のアン
モニアを添加して、ガス中のNO濃度を測定した。この
結果を表−3に示す、さらにアンモニア添加槽内に生成
する白色生成物を捕集し、同定したところ、硝酸アンモ
ニウム(NH4NO3)ならびに亜硝酸アンモニウム−
(NH,No2)であった。排出ガス中にオゾンは検出
されなかった。
No (600 sir) - N20 (8 chi) - 〇□ (12th section) -
Mixed gas containing N2 (balance) (1,44Nm”/h
r) in an amount of ozone (88011111 at 120℃).
Example 6) was added, and 600 μm of ammonia was added, and the NO concentration in the gas was measured. The results are shown in Table 3. Furthermore, when the white products generated in the ammonia addition tank were collected and identified, ammonium nitrate (NH4NO3) and ammonium nitrite-
(NH, No. 2). No ozone was detected in the exhaust gas.

502(tloopTl1)−N20(8チ)−02(
12チ)−1’T2(バランス)の120℃の混合ガス
に880卿 となる量のオゾンを添加し、2200胛と
なる量のアンモニアを添加してガス中のSO3濃度を測
定した。この結果を表4に示す。この時生成する白色生
成物を同定したところ硫酸アンモニウム((NH4)2
SO4)であった。排出ガス中にオゾンは検出されなか
った。
502(tloopTl1)-N20(8chi)-02(
Ozone in an amount of 880 degrees Celsius was added to a mixed gas of 120℃-1'T2 (balance) at 120°C, and ammonia in an amount of 2200 degrees Celsius was added, and the SO3 concentration in the gas was measured. The results are shown in Table 4. When the white product produced at this time was identified, ammonium sulfate ((NH4)2
SO4). No ozone was detected in the exhaust gas.

表−4 No (2soprs)−3o2(25opIm) −
)T2O(a % ) −02(124)−N2(バラ
ンス)の120℃の混合ガスに880四となる量のオゾ
ンを添加し750pImとなる量のアンモニアを添加し
て、ガス中のS02ならびにtJOxの濃度を測定した
。この結果を表−5に示す、この時生成する白色生成物
を同定したところ、硫酸アンモニウム((NH4)2S
04)と硝酸アンモニウム(N)l、N03)であった
。排出ガス中にオゾンは検出されなかった。
Table-4 No (2soprs)-3o2(25opIm)-
) T2O (a %) -02(124)-N2 (balance) mixed gas at 120°C, ozone in an amount of 8804 and ammonia in an amount of 750pIm were added to reduce S02 and tJOx in the gas. The concentration of was measured. The results are shown in Table 5. When the white product produced at this time was identified, ammonium sulfate ((NH4)2S
04) and ammonium nitrate (N)l, N03). No ozone was detected in the exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明Oプロセスの一態様を模式的に示し。 たダイヤグラムである。 FIG. 1 schematically shows one embodiment of the O process of the present invention. This is a diagram.

Claims (1)

【特許請求の範囲】 1)窒素酸化物および/または硫黄酸化物を含む排ガス
にオゾンならびにアンモニアを添加することによつて、
窒素酸化物および/または硫黄酸化物を固体生成物とし
て同時に除去せしめることから成る排ガスの処理方法。 2)添加するオゾンの量が、窒素酸化物の2倍の濃度な
らびに硫黄酸化物の濃度の和に相当する量以下である特
許請求の範囲第1項記載の方法。 3)添加するアンモニアの量が窒素酸化物を硝酸として
、硫黄酸化物を硫酸として、これを中和するに要する量
である特許請求の範囲第1項記載の方法。
[Claims] 1) By adding ozone and ammonia to exhaust gas containing nitrogen oxides and/or sulfur oxides,
A method for the treatment of exhaust gases, which comprises simultaneously removing nitrogen oxides and/or sulfur oxides as solid products. 2) The method according to claim 1, wherein the amount of ozone added is equal to or less than the sum of twice the concentration of nitrogen oxides and the concentration of sulfur oxides. 3) The method according to claim 1, wherein the amount of ammonia added is the amount required to neutralize nitrogen oxides as nitric acid and sulfur oxides as sulfuric acid.
JP59170710A 1984-08-16 1984-08-16 Treatment of exhaust gas by addition of ozone/ammonia Granted JPS6150620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170710A JPS6150620A (en) 1984-08-16 1984-08-16 Treatment of exhaust gas by addition of ozone/ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170710A JPS6150620A (en) 1984-08-16 1984-08-16 Treatment of exhaust gas by addition of ozone/ammonia

Publications (2)

Publication Number Publication Date
JPS6150620A true JPS6150620A (en) 1986-03-12
JPH0526526B2 JPH0526526B2 (en) 1993-04-16

Family

ID=15909963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170710A Granted JPS6150620A (en) 1984-08-16 1984-08-16 Treatment of exhaust gas by addition of ozone/ammonia

Country Status (1)

Country Link
JP (1) JPS6150620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000025341A (en) * 1998-10-10 2000-05-06 이구택 Method for removing nitrogen oxide by using ozone and ammonia
JP2012125698A (en) * 2010-12-15 2012-07-05 Osaka Prefecture Univ Method and device of treating exhaust gas, and boiler system including the same
JP2013529545A (en) * 2010-06-23 2013-07-22 チャン,バオカン Combustion exhaust gas purification and recycling system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548170A (en) * 1977-06-21 1979-01-22 Chiyoda Chem Eng & Constr Co Ltd Treating method for gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548170A (en) * 1977-06-21 1979-01-22 Chiyoda Chem Eng & Constr Co Ltd Treating method for gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000025341A (en) * 1998-10-10 2000-05-06 이구택 Method for removing nitrogen oxide by using ozone and ammonia
JP2013529545A (en) * 2010-06-23 2013-07-22 チャン,バオカン Combustion exhaust gas purification and recycling system and method
JP2012125698A (en) * 2010-12-15 2012-07-05 Osaka Prefecture Univ Method and device of treating exhaust gas, and boiler system including the same

Also Published As

Publication number Publication date
JPH0526526B2 (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US4035470A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
CA1086921A (en) Exhaust gas scrubbing process
NL8602694A (en) PROCESS FOR REDUCING THE CONTENT OF NITROGEN OXIDES IN THE SMOKE FLOW OF A BOILER FROM AN ELECTRIC POWER PLANT WITH SMOKE PURIFICATION PLANT.
JPS63178829A (en) Method and apparatus for recovering ammonia during separation of nitrogen oxides from waste gas
GB1389730A (en) Method of treatment of gas containing sulphur dioxide
CA3008430A1 (en) Process for the removal of contaminants from flue gas streams
US4541999A (en) Method for removing acidic components including nitrogen oxide from waste gases
US4853193A (en) Process for removing NOx and SOx from a gaseous mixture
SE452559B (en) PROCEDURE FOR REMOVING NITROGEN OXIDES FROM GAS
JPH01164422A (en) Removal of acidic component and nitrogen oxide from waste gas of industrial furnace apparatus
US2110431A (en) Process for the absorption of nitrogen oxides from gases
JPS6150620A (en) Treatment of exhaust gas by addition of ozone/ammonia
CN108339385A (en) The double tower ammonia process of desulfurization organically combines the method for sintering flue gas desulfurization denitration with oxidation catalysis denitration
CN111330442A (en) Ammonia process catalysis combined desulfurization and denitrification method
RU2724607C2 (en) Low-temperature scr method based on urea in the presence of exhaust gases with high sulfur content
US4565678A (en) Method of reducing sulfur oxide and nitrogen oxide content of flue gas
US4971776A (en) Process for the recovery of NO from the waste gas resulting from the production of ammonium nitrite
JPS5910328A (en) Method for purifying waste gas using hydrogen sulfate
JPS5889987A (en) Treatment for purification of waste water after desulfurization and denitration
JPH0127796B2 (en)
US6238639B1 (en) Process for removing NOx from nitrosylsulphuric acid
JPS6344923A (en) Treatment of exhaust gas
SU971786A1 (en) Process for denitrating concentrated sulfuric acid
JPH0386B2 (en)
JPS588889B2 (en) High Gas Datsuryu Datsushi Youhouhou