JPS6150384A - Manufacture of heat flow sensor - Google Patents

Manufacture of heat flow sensor

Info

Publication number
JPS6150384A
JPS6150384A JP59171515A JP17151584A JPS6150384A JP S6150384 A JPS6150384 A JP S6150384A JP 59171515 A JP59171515 A JP 59171515A JP 17151584 A JP17151584 A JP 17151584A JP S6150384 A JPS6150384 A JP S6150384A
Authority
JP
Japan
Prior art keywords
heat
semi
group
resistance plate
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59171515A
Other languages
Japanese (ja)
Other versions
JPH0358654B2 (en
Inventor
Yoshiaki Arakawa
荒川 美明
Isamu Aoyanagi
勇 青柳
Sadao Kuroiwa
黒岩 貞雄
Iwao Sakurai
桜井 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59171515A priority Critical patent/JPS6150384A/en
Publication of JPS6150384A publication Critical patent/JPS6150384A/en
Publication of JPH0358654B2 publication Critical patent/JPH0358654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

PURPOSE:To obtain the heat flow sensor of good finish without warp and distortion by molding it after incorporating the bending-prodessed differential thermocouples in a heat-resistant plate of rubber in semi-vulcanized state. CONSTITUTION:A heat-resistant rubber plate of the predetermined thickness and of semi-vulcanized state is made from raw rubber. The semi-vulcanized heat- resistant plate material thus obtained is cut in the approximately same shape and size as of when it is finished as a sensor. And the bent differential thermocouple 23 previously prepared are incorporated in the heat-resistant plate 10. The substance thus obtained is brought in pressure-tight contact by pressing. Then leading wires are connected to the 23 and a thermometer 25 and a sheet 17 made of the same material as of the heat-resistant plate which becomes a coating member is arranged on the front and back surfaces of the combined body of the differential thermocouples and the semi-vulcanized heat-resistant plate. After the pressure and heating molding, heating is made in a heater for a few hours in order to stabilize the vulcanization.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明は熱流センサの製法に関する。本熱流センサは熱
の移動する方向にセンサ面が丑直となるように、物体の
表面番こ貼着して、又は物体内に埋設して使用し、熱流
センサ内にある熱抵抗板の表裏面間の温度差を検出して
熱流密度〔単位W/m’、又は慣用単位ではkcal/
 (m′・h))を測定するもので、熱抵抗板の熱抵抗
をR1その表裏面間の温度差をΔTとすると、熱流セン
サを通過する熱がL雀度Q′は Q =ΔT/R(+) で得られ、そして、測定すべき熱波密度QはQ′に比例
することがらQを求めるものである、上述温度差の検出
には差動熱電対群を用いる構造のセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing a heat flow sensor. This heat flow sensor is used by attaching a plate to the surface of an object or embedding it inside the object so that the sensor surface is oriented directly in the direction of heat movement. The temperature difference between the back surfaces is detected and the heat flow density [unit: W/m', or in conventional units: kcal/
(m'・h)), where the thermal resistance of the thermal resistance plate is R1 and the temperature difference between the front and back surfaces is ΔT, the heat passing through the heat flow sensor is R(+), and since the heat wave density Q to be measured is proportional to Q', Q is determined. .

口 従来の技術 近年、エネルギー節約上、重要な熱管理研究に温度計だ
けでなく、熱流計(熱流センサ)の必要性が広く認識さ
れるようになってきた。しかし、熱流センサは温度計に
比べて現状高価である。これらに対して、その原価低減
のため熱流センサの主要部となる熱電対群を安価に量産
する事に成功し、発明者等は既に特許出願して〔特開昭
50−158534 、特許第1180193号、実用
新案登録第1353777号(実願昭 50−17!3
68B) 、実用新案登録第 1353778号(実願
昭5O−179887) )これらの特許等においては
熱電対用異種金属箔おのおのに、離脱容易な状態で整列
する金属線材群を作り、両名の該当する端部同志を重ね
、結合して、一体の平面的差動熱電対群を用意し、他方
、ゴム質の完全に加硫した熱抵抗板と被覆材を別途用意
して、差動熱電対群が熱抵抗板の表裏に配置するが如く
配設した後、熱抵抗板、差動熱電対群、被覆材を一体と
するために接着剤にて、加圧して接着する方法をとった
。確かに前記差動熱電対群は簡単に安価に用意できて便
利であったが、接着工程においては接着剤が硬化するま
でにほぼ1日を要すること、接着剤が流れて熱流センサ
の表面に付くと汚くよごれ商品価値がなくなること、熱
流センサとして完成した時に、熱流センサが一平行面に
ならずに、そりをもつことがあったり、あるいは歪を生
ずることがあるなど不都合な点があった。
Conventional technology In recent years, the necessity of not only thermometers but also heat flow meters (heat flow sensors) has been widely recognized for energy conservation and important thermal management research. However, heat flow sensors are currently more expensive than thermometers. In order to reduce costs, the inventors have successfully mass-produced thermocouple groups, which are the main part of heat flow sensors, at low cost, and have already filed a patent application [Japanese Patent Laid-Open No. 50-158534, Japanese Patent No. 1180193]. No., Utility Model Registration No. 1353777
68B), Utility Model Registration No. 1353778 (Sho 5O-179887)) In these patents, etc., a group of metal wires that are arranged in a state where they can be easily separated is created for each type of dissimilar metal foil for thermocouples. A flat differential thermocouple group is prepared by stacking and joining the ends of the two ends, and a fully vulcanized rubber heat resistance plate and covering material are separately prepared to form a differential thermocouple. After the groups were placed on the front and back sides of the heat resistance plate, the heat resistance plate, the differential thermocouple group, and the covering material were bonded together using an adhesive under pressure. It is true that the differential thermocouple group was convenient because it could be prepared easily and inexpensively, but in the bonding process, it took about a day for the adhesive to harden, and the adhesive flowed onto the surface of the heat flow sensor. When the heat flow sensor is completed, it becomes dirty and loses its commercial value, and when it is completed, the heat flow sensor may not be parallel to each other and may have warps or distortions. .

そこで、本製作方法では完全には硬化していないで途中
まで硬化の進んでいる架橋状態の高分子樹脂(熱可塑性
樹脂)あるいは。
Therefore, in this production method, a crosslinked polymer resin (thermoplastic resin) or a crosslinked polymer resin that is not completely cured but is partially cured.

半加硫状態のゴムを熱抵抗板に使い、被覆材は熱抵抗板
と同村で、しかも未架橋、半架橋あるいは未加硫、半加
硫いずれかの状態として用意し、該被覆材と温接点群と
冷接点群とが前記熱抵抗板の表面、裏面に配置するよう
に全長一斉に折曲げ加工された前記差動熱電対群とを用
いて加圧加熱によるモールド成型によって、数十分で、
しかも接着などの継ぎ目のない、−平行面状の安価、仕
上りの良好な熱流センサを得ることに成功した。特に、
熱流センサのそりや歪は被測定面との密着条件を満たす
ことが難かしくなり、測定誤差を生ずる要因となるので
真平面のセンサが望ましい。
Semi-vulcanized rubber is used for the heat resistance plate, and the coating material is the same as the heat resistance plate, and is either uncrosslinked, semi-crosslinked, unvulcanized, or semi-vulcanized, and the coating material and The contact group and the differential thermocouple group, whose entire length is bent simultaneously so that the cold contact group is placed on the front and back surfaces of the heat resistance plate, are molded by pressure heating for several tens of minutes. in,
In addition, we succeeded in obtaining a heat flow sensor with parallel surfaces that is inexpensive, has a good finish, and has no adhesive or other joints. especially,
Warpage or distortion of the heat flow sensor makes it difficult to meet the conditions of close contact with the surface to be measured and causes measurement errors, so a true flat sensor is desirable.

従来の熱流センサの製法について説明し、次に、本発明
の製法および利点について詳しく述べる。
A conventional method for manufacturing a heat flow sensor will be described, and then the method and advantages of the present invention will be described in detail.

第2図はこの種、熱流センサの最も原理的かつ正攻法の
従前の製法を示す。熱、流センサは熱抵抗板に穴を明け
、そこに金属線材を次々と通して冷、温接点を作って行
く。時間ばかへるが、熱電対群完成と同時に熱抵抗板へ
の組み込みも終っている。そして、 モールド成形法では前記熱抵抗板は未加硫状態のゴムや
未架橋のプラスチックスを使用しており、その両面に被
覆材となる熱抵抗板と同質の材料(未加硫又は未架橋状
態)を重ね、加熱プレスによって熱流センサに仕1げる
。また、接着法では前記熱抵抗板も被覆材も完全に架橋
した樹脂板あるいは完全に加硫した状態のゴムを用い、
熱抵抗板と被覆材とを接着剤で接着する。
FIG. 2 shows the conventional manufacturing method of this type of heat flow sensor, which is the most principled and straightforward method. Heat and flow sensors make holes in a heat resistance plate and pass metal wires through them one after another to create cold and hot junctions. Although it was time consuming, the thermocouple group was completed and the assembly into the heat resistance plate was also completed. In the molding method, the heat resistance plate is made of unvulcanized rubber or uncrosslinked plastic, and both sides are coated with the same material as the heat resistance plate (unvulcanized or uncrosslinked). condition) and then finish it into a heat flow sensor using a hot press. In addition, in the adhesive method, both the heat resistance plate and the covering material are made of a completely crosslinked resin plate or a completely vulcanized rubber,
The heat resistance plate and the covering material are bonded with adhesive.

、2− 第十図にその従前の方法を図解しているが、熱抵抗板l
に二列の穴2,1を明け、各穴に異種金属の短線4.5
を通し、板 1の表裏で結合して冷、温接点6.7を作
っていた。特許第1180193号では、このように熱
抵抗板lと組合せながら熱電対群を作る工法を捨て、本
発明者等は熱電対群だけを、量産する方式をとったので
ある。
, 2- Figure 10 illustrates the conventional method.
Drill two rows of holes 2, 1 in the hole, and insert a short wire 4.5 of different metal into each hole.
were passed through and connected on the front and back sides of plate 1 to create cold and hot junctions 6.7. In Japanese Patent No. 1180193, the inventors abandoned the method of manufacturing thermocouple groups by combining them with thermal resistance plates 1, and instead adopted a method of mass-producing only thermocouple groups.

即ち、第3図に示すように、ます熱電対用金属箔11に
離脱容易な状態で整列する金属線材12群をフォトエツ
チング、型抜き等により作る。また、図を略すが、第3
図の金属線材12群を裏返した形のものを金属箔IIと
は異種の金属箔で作る。これら二枚の金属箔を重ね、両
者の該当する線材端部同志を結合(溶接、ろう接、圧接
等)して第4図に示すような冷、温接点13.14が左
右に並ぶ熱電対群15とし、外側の金属箔枠部をはずす
のである。
That is, as shown in FIG. 3, 12 groups of metal wires are formed by photo-etching, die-cutting, etc. to be arranged in a manner that they can be easily separated from the thermocouple metal foil 11. Also, although the figure is omitted, the third
The 12 groups of metal wire rods shown in the figure are made upside down using a different type of metal foil than Metal Foil II. These two metal foils are overlapped and the corresponding ends of the wires are joined together (welding, brazing, pressure welding, etc.) to form a thermocouple with cold and hot junctions 13 and 14 arranged on the left and right as shown in Figure 4. Group 15 and remove the outer metal foil frame.

第5図、第6図は別の差動熱電対群の例で、異種金属箔
21.22おのおのから重ね結合時、第7図の熱電対群
23が得られるような構成で線材群を作る。枠部と線材
とのつなぎ部分を細線で略式表示している。この場合は
二群を直列につないだ熱電対群となる。先に提案した接
着法では第4図の熱電対群15は。
Figures 5 and 6 are examples of another differential thermocouple group, and a wire group is made in such a manner that when the dissimilar metal foils 21 and 22 are stacked and bonded, the thermocouple group 23 in Figure 7 is obtained. . The connecting portion between the frame and the wire rod is schematically indicated by a thin line. In this case, the thermocouple group consists of two groups connected in series. In the bonding method proposed earlier, the thermocouple group 15 in FIG.

第8図に示すように、細長い熱抵抗板lOの片縁に添わ
しコ形に曲げて配設し、両側にダミー板16を添え、表
裏をゴム板17で被覆し、接着剤を用いて第9図(イ)
に示すように外形仕上げしていた。あるいは第9図(ロ
)の外形仕上げとなるように熱電対群をl    □*
1llk!SL!−11−−117.ア。、た。第7図
の熱電対群23についても第10図(イ)のように熱抵
抗板10の内縁に金属線材12を当てたり、又、第10
図(ロ)のように熱電対群23を折り曲げ、接着剤によ
る接着仕にげをしていた。
As shown in Fig. 8, a long and narrow heat resistance plate IO is bent into a U-shape along one edge, a dummy plate 16 is attached to both sides, the front and back sides are covered with a rubber plate 17, and an adhesive is used. Figure 9 (a)
The exterior was finished as shown. Alternatively, arrange the thermocouple group so that it has the external finish shown in Figure 9 (b).
1llk! SL! -11--117. a. ,Ta. Regarding the thermocouple group 23 in FIG. 7, the metal wire 12 is applied to the inner edge of the heat resistance plate 10 as shown in FIG.
As shown in Figure (B), the thermocouple group 23 was bent and bonded with adhesive.

ハ6発明が解決しようとする問題点 しかし、上述の接着剤による接着法仕上げにおいては接
着に数十時間を要すること、仕りがりが余りきれいでな
いこと、熱流センサにそりやひずみを生ずることなど不
都合な点を生ずることが多々あった。
C6 Problems to be Solved by the Invention However, in the above-mentioned adhesive finishing method, there are disadvantages such as it takes several tens of hours to bond, the finished product is not very clean, and the heat flow sensor is warped or distorted. There were many cases where problems occurred.

他方、加熱プレスを用いるモールド法によって、前記第
4図や第7図の差動熱電文4群を用いて熱流センサをモ
ールド仕−ヒげしようとして未加硫のゴムや未架橋の熱
硬化性プラスチックスを熱抵抗板に用いると差動熱電対
群が加圧加熱中にひずんだりたわんだりして、温接点群
や冷接点群が所望の状況に位置することは積であり、そ
の結果温接点や冷接点が被覆材を突き抜けてセンサ表面
に頭を出したり、また、熱抵抗板の中にもぐり込んで、
熱流センサの検出感度が所望の値として得られなかった
り、また感度のバラツキが大きかったりして、実用上不
都合で あった。
On the other hand, when trying to mold a heat flow sensor using the four groups of differential thermoelectrics shown in FIGS. If plastic is used as a thermal resistance plate, the differential thermocouple group will be distorted or bent during pressure heating, and it is a product that the hot junction group and cold junction group are located in the desired situation, and as a result, the temperature decreases. Contacts and cold junctions may penetrate through the covering material and protrude above the sensor surface, or may penetrate into the thermal resistance plate.
The detection sensitivity of the heat flow sensor may not be obtained as a desired value, or the sensitivity may vary widely, which is inconvenient in practice.

二0問題点を解決するための手段拳作用本発明はこのよ
うな状況にあって、モールド法によって所望の実用的か
つ安価な熱流センサを得る製法に関するものである。熱
抵抗板や被覆材に使用する材料はシリコーンゴムゴムや
ネオブレンゴム、弗素ゴムなどのゴム質の場合と熱硬化
性のプラスチックスである。
20 Means for Solving the Problems The present invention is directed to a manufacturing method for obtaining a desired practical and inexpensive heat flow sensor using a molding method. The materials used for heat resistance plates and covering materials include rubbers such as silicone rubber, neoprene rubber, and fluororubber, and thermosetting plastics.

まず、フォトエツチングあるいは型抜き等によって異種
金属箔から金属材群を作り、両者の端部同志を重ねて温
接点群、冷接点群を設けた第4図や第7図の例に示すよ
うな平面的な差動熱電対群を作る。
First, a group of metal materials is made from dissimilar metal foils by photo-etching or die cutting, and the ends of the two are overlapped to form a group of hot junctions and a group of cold junctions, as shown in the examples shown in Figures 4 and 7. Create a flat differential thermocouple group.

次に、差動熱電対群は第7図に示すものを、また、熱抵
抗板、被覆材にはシリコーンゴムを用いる熱流センサを
例に製作工程について説明する。
Next, the manufacturing process will be explained using as an example a differential thermocouple group shown in FIG. 7, and a heat flow sensor using silicone rubber for the heat resistance plate and coating material.

熱抵抗板とするゴムを生ゴムから所定 の厚さ、たとえば 1mm厚さでかつ半加硫状態、すな
わち成型時の加硫温度×加硫時間のうち、加硫温度が1
70°Cであれば150〜170°Cの温度で、また加
硫時間が30分であれば、 5〜15分程度の条件で、
加熱加圧(約5〜20kg/crn’) して半加硫状
態の熱抵抗板ゴムを製作する。半加硫状態の製作方法は
成型性の温度に比して低い温度で行なうが、あまり温度
が低すぎると未加硫と半加硫の間の状態ができやすく、
後述するモールド成型時の差動熱電対群の安定固定が難
かしくなる一方、温度、加硫時間が成型条件に近くなっ
て加硫が進みすぎると、後述する被覆材をかぶせて、仕
上げのための加圧加熱しても自己接着性能が出ないので
、ゴムの材質に合わせて適宜半加硫条件をつかむ必要が
ある。
Rubber to be used as a heat resistance plate is made from raw rubber to a predetermined thickness, for example, 1 mm, and is in a semi-vulcanized state, that is, when the vulcanization temperature is 1 of the vulcanization temperature x vulcanization time during molding.
If the vulcanization time is 70°C, the temperature is 150 to 170°C, and if the vulcanization time is 30 minutes, the vulcanization time is 5 to 15 minutes.
Heat and press (approximately 5 to 20 kg/crn') to produce a semi-vulcanized heat resistant rubber plate. The semi-vulcanized state production method is carried out at a temperature lower than the moldability temperature, but if the temperature is too low, a state between unvulcanized and semi-vulcanized is likely to occur.
While it becomes difficult to stably fix the differential thermocouple group during molding, which will be described later, if the temperature and vulcanization time get close to the molding conditions and vulcanization progresses too much, it may be necessary to cover it with the coating material described later for finishing. Since self-adhesive performance cannot be achieved even with pressure and heating, it is necessary to determine the semi-vulcanization conditions appropriately according to the material of the rubber.

上述のようにして得た半加硫の熱抵抗板材料をセンサと
して仕上げた時と同形同寸法に近い状態で切り出す。そ
の例を第11図に示す。■◎○は、第7図の差動熱電対
群がO又は■の状態に配設できるように切り込みや、切
り離しをしたものである。■◎Oに限らす他の切り込み
、切り離しは考えられ−。
The semi-vulcanized heat resistance plate material obtained as described above is cut out in a state close to the same shape and size as when finished as a sensor. An example is shown in FIG. ■◎○ indicates that the differential thermocouple group in FIG. 7 is cut or separated so that it can be arranged in the state of O or ■. ■◎Other incisions and separations other than O can be considered.

次に、第7図のようにして準備した平面的な差動熱電対
群のみをプレス金型や折曲げ金具を用いて、第11図@
又はωの形状となるように全長一斉にわたって折曲げる
。そして、第11図■◎θに示したような熱抵抗板へ第
1図のようにして用意した折曲げ差動熱電対群を組み込
む。このとき、必要によっては第7図中の25の温度計
(図は熱電対の一方側の素線を示す)を完成させる。そ
して、差動熱電対群と共に熱抵抗板に配設する。この理
由は差動熱電対群の出力特性が温度依存性を有すること
や熱抵抗板の熱伝導率の温度依存、        性
により熱流センサの感度が通常は一定とならないために
熱流センサの温度を知る必要があるからである。
Next, only the planar differential thermocouple group prepared as shown in Fig. 7 was assembled using a press mold or bending metal fittings, as shown in Fig. 11@
Or, bend the entire length all at once so that it has the shape of ω. Then, the bent differential thermocouple group prepared as shown in FIG. 1 is assembled into the thermal resistance plate shown in FIG. 11 ◎ θ. At this time, if necessary, the thermometer 25 in FIG. 7 (the figure shows the wire on one side of the thermocouple) is completed. Then, it is arranged on a thermal resistance plate together with the differential thermocouple group. The reason for this is that the output characteristics of the differential thermocouple group are temperature dependent, and the thermal conductivity of the thermal resistance plate is temperature dependent. This is because it is necessary.

上述によって1組込んだ断面状態が第11図のO又はe
のように得られた一体ものを、プレスにより加圧密着さ
せる。この工程は差動熱電対群を熱抵抗板へなじませ、
後述する加圧加熱モールド工程で差動熱電対群が所望の
位置に安定固定されるために重要な工程である。そして
、差動熱電対群23や25にリード線を接続する。
The cross-sectional state incorporated as described above is O or e in Fig. 11.
The integral piece obtained as above is pressed into close contact with a press. This process adapts the differential thermocouple group to the thermal resistance plate,
This is an important step in order to stably fix the differential thermocouple group at a desired position in the pressurized and heated molding step, which will be described later. Then, lead wires are connected to the differential thermocouple groups 23 and 25.

最後の工程として、差動熱電対群と半加硫状態の熱抵抗
板とを組合わせたものの表、裏面に、被覆材となる熱抵
抗板と同材料のシートを配置する。このシートは未加硫
状態でも半加硫状態のものでもいずれでもよい。
As the final step, sheets made of the same material as the heat resistance plate, which will serve as the covering material, are placed on the front and back surfaces of the combination of the differential thermocouple group and the semi-vulcanized heat resistance plate. This sheet may be in an unvulcanized state or a semi-vulcanized state.

被覆材の形状寸法は第11図の熱抵抗板の場合と同様に
、熱流センサとして仕上げた時の形状と略同寸法として
用意する。しかし、切込みは必要ない。そして、第12
図のようにセンサ形状に切り抜かれたスペーサの中に被
覆材+熱抵抗板+差動熱電対群(必要によっては温度計
も)十被覆材を入れ込み加熱加圧プレスに装着する。こ
のとき、前記、被覆材+熱抵抗板+差動熱電対群+被覆
材の各々の当初の厚さの和がスペーサの厚さより0.5
〜1mw程度厚−いことが必要である。
As in the case of the heat resistance plate shown in FIG. 11, the shape and dimensions of the covering material are prepared to be approximately the same as the shape when finished as a heat flow sensor. However, no incision is necessary. And the twelfth
As shown in the figure, the coating material + thermal resistance plate + differential thermocouple group (and thermometer if necessary) are inserted into a spacer cut out in the shape of a sensor, and the coating material is placed in a heating press. At this time, the sum of the initial thicknesses of the coating material + thermal resistance plate + differential thermocouple group + coating material is 0.5% less than the thickness of the spacer.
It is necessary that the thickness be approximately 1 mw.

加圧加熱モールドに際しては脱気を充分に行ない所定の
成型条件、たとえば170℃×30分加熱、プレス圧5
〜20kg/crn’でモールド成型する。
When pressurizing and heating molding, perform sufficient degassing and meet the specified molding conditions, such as heating at 170°C for 30 minutes and press pressure 5.
Mold at ~20 kg/crn'.

ホ、実施例 上述によって実用的、安価な熱流センサが得られる。そ
して、スペーサから取り出した熱流センサは必要によっ
て2次キュアーといって、加硫を安定化するために例え
ば250°Cで数時間加熱炉内に入れて加熱する。
E. By the above-described embodiment, a practical and inexpensive heat flow sensor can be obtained. Then, if necessary, the heat flow sensor taken out from the spacer is heated in a heating furnace at 250° C. for several hours to stabilize vulcanization, which is called secondary curing.

その後、センサの横流れゴム(第12図のゴム逃げ穴へ
逃げたゴム)を切り落し、成型してセンサとして仕上げ
る。
Thereafter, the side-flowing rubber of the sensor (rubber that escaped into the rubber escape hole in Fig. 12) is cut off and molded to complete the sensor.

上記の成型条件で、差動熱電対群をクロノルーアルメル
38対とし、#熱シリコーンゴムの熱抵抗板の厚さをL
++m 、全体の厚さ約3゜、巾50+am、長さく長
方形部分の厚さ)  loOsm+の熱流センサを既知
の熱流密度を発生することのできる表面鉄板5mmの熱
流センサ検出装置で検出したときのセンサの感度の逆a
Aはセンサの温度が160℃テA = 173kcal
/(rrr’ ・h * mV)、240°CでA =
  187kcal/(m’−he mV)であった。
Under the above molding conditions, the differential thermocouple group is 38 pairs of Chronoru Alumel, and the thickness of the thermal resistance plate of #thermal silicone rubber is L.
++m, overall thickness approximately 3°, width 50+am, thickness of the long rectangular part) loOsm+ heat flow sensor when detected by a heat flow sensor detection device with a 5mm iron plate on the surface that can generate a known heat flow density. The inverse of the sensitivity of a
A is when the sensor temperature is 160℃.A = 173kcal
/(rrr' ・h * mV), A = at 240 °C
It was 187 kcal/(m'-he mV).

このセンサの感度の逆数Aは計算値によって求めた値と
はシ一致し。
The reciprocal A of the sensor's sensitivity does not match the calculated value.

良い結果であった。It was a good result.

へ9発明の効果 上述した様に、所望の性能を有する良好な、安価製法の
熱流センサが得られた。材質がゴムの場合は上述した製
法とほり同様の工程で製作できる。また、この製法は熱
硬化性のプラスチックスにおいても同様に利用できる。
9. Effects of the Invention As described above, a heat flow sensor that has desired performance and is manufactured at low cost was obtained. If the material is rubber, it can be manufactured using a process similar to the manufacturing method described above. Furthermore, this manufacturing method can be similarly used for thermosetting plastics.

半加硫又は半架橋の熱抵抗板を用いること、そして加圧
によって前記熱抵抗板と差動熱電対群とをなじませる工
程が重要であって、この工程を経て良好な熱流センサが
得られる。
It is important to use a semi-vulcanized or semi-crosslinked heat resistance plate and to blend the heat resistance plate and the differential thermocouple group together by applying pressure, and a good heat flow sensor can be obtained through this process. .

【図面の簡単な説明】[Brief explanation of the drawing]

第 1図は1本発明の主たる特徴を表わす図面である。 但し、本発明は数工程の組合せから成るので、本図のみ
が主要部ではない。 第2図は、熱流センサの従来製法 第3図は、熱電対用金属箔と金属線材の関係図第4図は
、S3図のものの加工説明図 第5図、第6図は、差動熱電対群の別の例を示す図 第7図は、熱電対群の構成図 810図は、接着仕上説明図 第11図は、熱抵抗板切り出し説明図 第12図は、スペーサの説明図である。
FIG. 1 is a drawing showing the main features of the present invention. However, since the present invention consists of a combination of several steps, this figure is not the only main part. Figure 2 is a conventional manufacturing method for a heat flow sensor. Figure 3 is a diagram of the relationship between thermocouple metal foil and metal wire. FIG. 7 is a diagram showing another example of a pair group. FIG. 7 is a configuration diagram of a thermocouple group. FIG. 11 is an explanatory diagram of adhesive finishing. FIG. .

Claims (1)

【特許請求の範囲】 イ、熱電対用異種金属箔おのおのに、離脱容易な状態で
整列する金属線材群を作り、両者の該当する端部同志を
重ね、結合して一体の 平面的差動熱電対群を作る工程 ロ、前記平面的差動熱電対群の左右に分かれる冷、温両
接点群の中間位置で熱抵抗板の表面と裏面に前記温接点
群と冷接点群が各々配置するがごとく全長一斉に折曲げ
る工程 ハ、全長一斉に折曲げた前記差動熱電対群の温接点、冷
接点が、半架橋又は半加硫の状態で用意された熱抵抗板
の表面、裏面に各々配置するがごとく前記熱抵抗板と組
み合わせて配設し、加圧して前記差動熱電対群を前記 熱抵抗板と密着成形する工程 ニ、前述で用意された差動熱電対群と熱抵抗板とを組み
合わせたものの表、裏面に熱抵抗板と同質で薄板状の被
覆用材料を未架橋又は未加硫あるいは半架橋又は半加硫
の状態でおのおの配置し、加熱プレスによってモールド
する工程を有することを特徴とする熱流センサの製法
[Scope of Claims] A. For each dissimilar metal foil for thermocouples, a group of metal wires arranged in a state where they can be easily separated is made, and the corresponding ends of the two are overlapped and joined to form an integrated planar differential thermocouple. In the step of forming the pair group, the hot junction group and the cold junction group are placed on the front and back surfaces of the thermal resistance plate, respectively, at intermediate positions between the left and right cold and hot junction groups of the planar differential thermocouple group. Step 3: The hot junction and cold junction of the differential thermocouple group bent over the entire length are placed on the front and back surfaces of the heat resistance plate prepared in a semi-crosslinked or semi-vulcanized state, respectively. Step (2) of placing the differential thermocouple group in combination with the thermal resistance plate as if it were to be placed, pressurizing it, and molding the differential thermocouple group in close contact with the thermal resistance plate; A thin plate-like covering material of the same quality as the heat resistance plate is placed on the front and back sides of the combination in an uncrosslinked or unvulcanized state, or in a semi-crosslinked or semi-vulcanized state, and is molded using a hot press. A method for manufacturing a heat flow sensor characterized by
JP59171515A 1984-08-20 1984-08-20 Manufacture of heat flow sensor Granted JPS6150384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171515A JPS6150384A (en) 1984-08-20 1984-08-20 Manufacture of heat flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171515A JPS6150384A (en) 1984-08-20 1984-08-20 Manufacture of heat flow sensor

Publications (2)

Publication Number Publication Date
JPS6150384A true JPS6150384A (en) 1986-03-12
JPH0358654B2 JPH0358654B2 (en) 1991-09-06

Family

ID=15924548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171515A Granted JPS6150384A (en) 1984-08-20 1984-08-20 Manufacture of heat flow sensor

Country Status (1)

Country Link
JP (1) JPS6150384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179437A (en) * 1989-04-28 1993-01-12 Ikegani Tsushinki Co., Ltd. Apparatus for color correction of image signals of a color television camera
US5702185A (en) * 1994-08-09 1997-12-30 P. A. Hilton Limited Heat flow transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179437A (en) * 1989-04-28 1993-01-12 Ikegani Tsushinki Co., Ltd. Apparatus for color correction of image signals of a color television camera
US5702185A (en) * 1994-08-09 1997-12-30 P. A. Hilton Limited Heat flow transducer

Also Published As

Publication number Publication date
JPH0358654B2 (en) 1991-09-06

Similar Documents

Publication Publication Date Title
US11644368B2 (en) Temperature sensor and device including temperature sensor
JP5959558B2 (en) Composite structure and method for producing the same
CA2095874A1 (en) Heater, a method of manufacturing the same, and an anti-condensation mirror incorporating the same
JPS6150384A (en) Manufacture of heat flow sensor
WO1994012337A1 (en) Machine for welding and fusing of plastic balloon and the like
US2785729A (en) Heat sealing thermoplastic polymers
JPH06132335A (en) Manufacture of lead frame insert injection molded article
JP2004031147A (en) Glass panel for cathode-ray tube
JP3595918B2 (en) Heating mat for forming electric fusion joints
JPS5515833A (en) Laminatetube manufacturing method
JP2003065861A (en) Square plate temperature sensor and its manufacturing method
JP2000061226A (en) Filter unit and its production
JPS62267125A (en) Method for joining resin lens to reflector
JPH059149Y2 (en)
JPH0673950A (en) Heat-insulating section and manufacture thereof
JPH0130709Y2 (en)
JPS62199414A (en) Preparation of molding
JP2603903B2 (en) Manufacturing method of sheet heating element
JPH04247602A (en) Manufacture of ptc thermistor
JP3074540U (en) Air filled bag
JP3414273B2 (en) Manufacturing method of laminate
JPH0337496B2 (en)
JPS60182665A (en) Terminal forming method of carbon plastic electrode plate
JPS628703A (en) Spliced fastener chain and its production
JPH0242342B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term