JPS615033A - Preparation of trifluoromethyl benzal chloride or derivative thereof - Google Patents
Preparation of trifluoromethyl benzal chloride or derivative thereofInfo
- Publication number
- JPS615033A JPS615033A JP59122963A JP12296384A JPS615033A JP S615033 A JPS615033 A JP S615033A JP 59122963 A JP59122963 A JP 59122963A JP 12296384 A JP12296384 A JP 12296384A JP S615033 A JPS615033 A JP S615033A
- Authority
- JP
- Japan
- Prior art keywords
- chloride
- fluoride
- trichloromethylbenzal
- reaction
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はトリフルオロメチルヘンザルクロリドまたはそ
の誘導体の製造方法、特にトリクロルメチルヘンザルク
ロリドまたはその誘導体とフッ化水素とか反応させて対
応するトリフルオロメチルヘンザルクロリドまたはその
誘導体を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing trifluoromethyl henzal chloride or its derivatives, and in particular to a method for producing trifluoromethyl henzal chloride or its derivatives by reacting trichloromethyl henzal chloride or its derivatives with hydrogen fluoride or the like. The present invention relates to a method for producing a derivative.
トリフルオロメチルベンザルクロリドまたはその誘導体
は医詑薬、染料の中間体と1.て有用である。これらの
うちオルトトリフルオロメチルヘンザルクロリドは、対
応するトリクロルメチルヘンザルクロリドとフッ化水素
とを液相状態の不均一系で反応させて製造し得ることが
報告されている(Ana 1.Chem、Ac ta、
10、P34.1954;J、Chem、Soc、40
03.1960)。この場合、温度は90〜150℃で
、圧力は70〜14 (1atmの高圧である。しかし
ながら、この方法では反応速度が十分でなく収率な向ヒ
させるために大過剰のフッ化水素を用いて長時間反応を
行う必要があること、目的物の収率が低いこと、高圧下
て覚拌を行う必要があるために装置上の難点を有するこ
となどで、工業的な製法として不適当てあ)た。一方、
メタ、パラトリフルオロメチルヘンザルクロリドまたは
それらの誘導体に関[)では、対応するメタ、パラトリ
クロロメチルベンザルクロリドまたはそれらの誘導体を
五塩化アンチモンなどのハロゲン移動触媒の存在下、1
〜3気圧程度の圧力下てフッ化水素を用いてフッ素化を
行いPA造する方法が提案されている(特開昭58−7
9936号)。しかしながら、この製法でも収率がかな
り低く、工業的には満足すべきψ】のでない。Trifluoromethylbenzal chloride or its derivatives are used as medicines, intermediates for dyes, and 1. It is useful. It has been reported that ortho-trifluoromethyl henzal chloride can be produced by reacting the corresponding trichloromethyl henzal chloride with hydrogen fluoride in a heterogeneous system in a liquid phase (Ana 1. Chem. , Acta,
10, P34.1954; J, Chem, Soc, 40
03.1960). In this case, the temperature is 90-150°C and the pressure is 70-14 (1 atm). However, in this method, the reaction rate is insufficient and a large excess of hydrogen fluoride is used to improve the yield. It is unsuitable as an industrial production method because it requires a long reaction time, the yield of the target product is low, and there are difficulties with the equipment due to the need to stir under high pressure. A). on the other hand,
For meta, para-trifluoromethylbenzal chloride or derivatives thereof, the corresponding meta-, para-trichloromethylbenzal chloride or derivatives thereof is reacted with 1
A method for producing PA by fluorination using hydrogen fluoride under a pressure of ~3 atm has been proposed (Japanese Patent Laid-Open No. 58-7
No. 9936). However, even with this production method, the yield is quite low and is not industrially satisfactory.
本発明者は、従来法にfFう種々の欠点を改善すべくト
リクロルメチルベンザルクロリドまたはその誘導体とフ
ッ化水素との常圧付近での気相触媒反応に関して検討を
行った結果、フッ化アルミニウl、と特定した金属のフ
ッ化物とを糾合わせた触媒を用いることにより、目的の
トリフルオロメチルヘンザルクロライドまたはその誘導
体が選択的に枠めて高収率て得られ、反応速度も十分に
大きいこ2−を晃出し、本発明を完成するに至ったもの
である。11jち、本発明においては、原料のトリクロ
ルメチルベンザルクロリドまたはその誘導体がトリクロ
ルメチル基およびジクロルメチル基の2梗のフッ素化さ
れ得る活性基を有するが、前者のトリクロルメチル基の
みを選択的に高収率でフッ素化し得る顕著な効果が発揮
される。本発明によれば、フッ化アルミニウムと咥鉛、
クロム、マンガン、鉄、ニッケルからなる群より選ばれ
た1種または2種以−Lの金属のフッ化物との存在下に
、□トリクロロメチルベンザルクロリドまたはその誘導
体とフッ化水素とを気相状態で反応させて対応するトリ
フルオロメチルベンザルクロリドまたはその誘導体を得
ることを特徴とするトリフルオロメチルベンザルクロリ
ド又はその誘導体の製造法が提供される。The present inventor conducted a study on the gas phase catalytic reaction of trichloromethylbenzal chloride or its derivatives with hydrogen fluoride near normal pressure in order to improve the various drawbacks of fF in the conventional method. By using a catalyst in which fluoride of a specified metal is combined with 1, the target trifluoromethyl henzal chloride or its derivatives can be selectively obtained in high yield, and the reaction rate is also sufficient. We have made two major discoveries and have completed the present invention. 11j In the present invention, trichloromethylbenzal chloride or a derivative thereof as a raw material has two active groups that can be fluorinated, a trichloromethyl group and a dichloromethyl group, but only the former trichloromethyl group is selectively fluorinated. A remarkable effect of fluorination on yield is exhibited. According to the present invention, aluminum fluoride and lead chloride,
In the presence of a fluoride of one or more metals selected from the group consisting of chromium, manganese, iron, and nickel, trichloromethylbenzal chloride or a derivative thereof and hydrogen fluoride are mixed in a gas phase. Provided is a method for producing trifluoromethylbenzal chloride or a derivative thereof, which is characterized in that the corresponding trifluoromethylbenzal chloride or a derivative thereof is obtained by reacting the compound under the above conditions.
従来、例えば特開昭54−130524号にはフッ化ア
ルミニウムの存在下にトリクロロメチルベンゼンまたは
その誘導体とフッ化水素とを気相状態で反応させて、対
応するトリフルオロメチルベンセンまたはその誘導体を
精製する製法が開示されている。しかしながら、本発明
の原料であるトリクロルメチルベンザルクロリドまたは
その誘導体を用いた場合には、上記のフッ化アルミニウ
ムなど公知の触媒では、一般にフッ化反応が逐次反応と
して進行するために副生物が生成し易く、トリフルオロ
メチルベンザルクロリドまたはその誘導体を選択的に高
収率で得ることが困難である。Conventionally, for example, in JP-A-54-130524, trichloromethylbenzene or its derivatives are reacted with hydrogen fluoride in the presence of aluminum fluoride to purify the corresponding trifluoromethylbenzene or its derivatives. A manufacturing method is disclosed. However, when trichloromethylbenzal chloride or its derivatives, which are the raw materials of the present invention, are used, with known catalysts such as the above-mentioned aluminum fluoride, the fluorination reaction generally proceeds as a sequential reaction, resulting in by-products. It is difficult to selectively obtain trifluoromethylbenzal chloride or its derivatives in high yield.
本発明で出発原料として用いるトリクロロメチルベンザ
ルクロリドまたはその誘導体としては〇−5m −1p
−)ジクロロメチルベンザルクロリドまたはそれらの
ベンゼン環の水素をフッ素、塩素、臭素、メチル基等の
アルキル基、ニトロ基、シアノ基などで置換したもので
あり、具体例としては2−クロロ−3−トリクロロメチ
ルベンザルクロリド、2−クロロ−4−トリクロロメチ
ルベンザルクロリド、2−クロロ−6−トリクロロメチ
ルヘンザルクロリド、2−クロロ−5−トリクロロメチ
ルベンザルクロリド、3−クロロ−4−トリクロロメチ
ルベンザルクロリド、3−クロロ−6−トリクロロメチ
ルヘンザルクロリド、2−トリクロロメチル−4−クロ
ロベンザルクロリド、2−トリクロロメチル−5−クロ
ロベンザルクロリド、:(−トリクロロメチル−4−ク
ロロベンザルクロリド、:(−クロロ−5−トリクロロ
メチルヘンザルクロリド、2.4−ジクロロ−3−トリ
クロロメチルベンザルクロリド、2.5−ジクロロメチ
ベンザルクロリド、2.4−ジクロロ−6−トリクロロ
メチルヘンザルクロリド、2.6−ジクロロ−3−トリ
クロロメチルベンザルクロリド、2−フルオロ−3−ト
リクロロメチルベンザルクロリド\2−フルオロ−5−
トリクロロメチルベンザルクロリド、2−フルオロ−6
−トリクロロメチルヘンザルクロリド、3−トリクロロ
メチル−4−フルオロベンザルクロリド、3−フルオロ
−5−トリクロロメチルベンザルクロリド、2.5−ジ
フルオロ−3−トリクロロメチルベンザルクロリド、2
−ブロモ−3−トリクロロメチルベンザルクロリド、2
−ブロモ−5−トリクロロメチルベンザルクロリド、2
−ブロモ−6−トリクロロメチルヘンザルクロリド、3
−ブロモ−5−トリクロロメチルベンザルクロリド、2
.5−ジクロロ−4−トリクロロメチルベンザルクロリ
ド、2−フルオロ−4−トリクロロメチルベンザルクロ
リド、2−トリクロロメチル−5−フルオロベンザルク
ロリド、3−フルオロ−4−トリクロロメチルベンザル
クロリド、2.5−ジフルオロ−3−トリクロロメチル
ベンザルクロリド、2−ブロモ−4−トリクロロメチル
ベンザルクロリド、3−ブロモ−4−トリクロロメチル
ベンザルクロリド、2−トリクロメチル−5−ニトロベ
ンザルクロリド、3−トリクロロメチル−5−メチルヘ
ンザルクロリド、2−トリクロロメチル−5−シアノベ
ンザルクロリドなどが挙げられる。Trichloromethylbenzal chloride or its derivative used as a starting material in the present invention is 〇-5m-1p
-) dichloromethylbenzal chloride or those in which hydrogen in the benzene ring is substituted with fluorine, chlorine, bromine, alkyl groups such as methyl groups, nitro groups, cyano groups, etc. Specific examples include 2-chloro-3 -Trichloromethylbenzal chloride, 2-chloro-4-trichloromethylbenzal chloride, 2-chloro-6-trichloromethylbenzal chloride, 2-chloro-5-trichloromethylbenzal chloride, 3-chloro-4-trichloro Methylbenzal chloride, 3-chloro-6-trichloromethylhensal chloride, 2-trichloromethyl-4-chlorobenzal chloride, 2-trichloromethyl-5-chlorobenzal chloride, :(-trichloromethyl-4-chloro Benzal chloride, :(-chloro-5-trichloromethylhenzal chloride, 2,4-dichloro-3-trichloromethylbenzal chloride, 2,5-dichloromethybenzal chloride, 2,4-dichloro-6-trichloro Methylhenzal chloride, 2,6-dichloro-3-trichloromethylbenzal chloride, 2-fluoro-3-trichloromethylbenzal chloride\2-fluoro-5-
Trichloromethylbenzal chloride, 2-fluoro-6
-Trichloromethylbenzal chloride, 3-trichloromethyl-4-fluorobenzal chloride, 3-fluoro-5-trichloromethylbenzal chloride, 2,5-difluoro-3-trichloromethylbenzal chloride, 2
-bromo-3-trichloromethylbenzal chloride, 2
-bromo-5-trichloromethylbenzal chloride, 2
-Bromo-6-trichloromethylhenzal chloride, 3
-bromo-5-trichloromethylbenzal chloride, 2
.. 5-dichloro-4-trichloromethylbenzal chloride, 2-fluoro-4-trichloromethylbenzal chloride, 2-trichloromethyl-5-fluorobenzal chloride, 3-fluoro-4-trichloromethylbenzal chloride, 2. 5-difluoro-3-trichloromethylbenzal chloride, 2-bromo-4-trichloromethylbenzal chloride, 3-bromo-4-trichloromethylbenzal chloride, 2-trichloromethyl-5-nitrobenzal chloride, 3- Examples include trichloromethyl-5-methylhensal chloride, 2-trichloromethyl-5-cyanobenzal chloride, and the like.
これらの中で特に0−トリクロロメチルベンザルクロリ
ド又はその誘導体を原料として用いる時、本発明の目的
とする反応をより選択的に実施しうる。誘導体としては
ハロゲン原子、特に塩素の置換体の場合に好ま【lい効
果が得られる。Among these, when 0-trichloromethylbenzal chloride or its derivatives are used as a raw material, the reaction targeted by the present invention can be carried out more selectively. As a derivative, a preferable effect can be obtained in the case of a substituted derivative of a halogen atom, especially a chlorine atom.
本発明では触媒としてフッ化アルミニウムと共に曲鉛、
クロノいマンガン、鉄、ニッケルからなる群より選ばれ
た少なくとも1種、好ましくは鉄のフッ化物を用いるこ
とが極めて重要で、これによらない場合は仙の条件が本
発明に従ったとしても原料のトリクロロメチルヘンザル
クロリドまたはその誘導体の反応率(転化率)、生成物
中にしめるト1的物であるトリクロロメチルベンザルク
ロ1.71・またはその誘導体の割合(選択率)あるい
はその両方が著しく低くなり、ひいては収率の低下を招
く。本発明の上記したフッ化アルミニウムと共に特定し
た金属フッ化物の糾合わせ触媒を用いることにより、高
い転化率と選択率で目的のトリフルオロメチルベンザル
クロリドまたはその誘導体を得ることができる理由につ
いて、詳細は分からないが、目的のフッ素化生成物を得
る反応が、何段階かのフッ化反応、トリクロルメチル基
およびジクロルメチル基の官能基(活性基)が部分フッ
素化されたものの分子間および/または分子内の不均一
化反応なとの前反応からなり、特定した金属フッ化物が
触媒的に促進に寄与する前反応の秤類な菫にすることに
起因するものと推測される。In the present invention, bent lead is used as a catalyst together with aluminum fluoride.
It is extremely important to use at least one fluoride selected from the group consisting of manganese, iron, and nickel, preferably iron fluoride. The reaction rate (conversion rate) of trichloromethylbenzalchloride or its derivatives, the ratio of trichloromethylbenzalchloride 1.71 or its derivatives (selectivity), which is a primary substance in the product, or both are extremely low. This results in a decrease in yield. The reason why the desired trifluoromethylbenzal chloride or its derivatives can be obtained with high conversion rate and selectivity by using the above-mentioned aluminum fluoride and the specified metal fluoride condensation catalyst of the present invention will be explained in detail. Although it is not known, the reaction to obtain the desired fluorinated product is a multi-step fluorination reaction, an intermolecular and/or intermolecular reaction of partially fluorinated functional groups (active groups) of the trichloromethyl group and dichloromethyl group. This is thought to be due to the fact that the specified metal fluoride catalytically contributes to the promotion of the pre-reaction, which consists of a pre-reaction with a heterogenization reaction.
本発明で用いるフッ化アルミニウムは、結晶型等によっ
て制限を受けず、α−1β−1γ−フッ化アルミニウム
またはこれらの混合物が用いられる。これらの中ではα
型が特に好ましい。本発明で用いる亜鉛、クロム、マン
ガン、鉄、ニッケルのフッ化物としてはそれぞれフッ化
昨鉛(7,n’ F2)、ニフッ化クロム(CnFz)
、””:フッ化クロム((’: r+ +’3) 、四
ツ・ソ止クロis (Cn i”4) 、フッ化第−マ
ンガン(M n Ii’z) 、フッ化第二マンガンく
Mr+ F3) 、四フッ化マンガン(M n F今)
、フッ化第−・鉄(F’ e F2) 、フッ化第二鉄
(FeFj) 、−7−vイト第・ニッケル(N i
+’2) 、フッ化第二ニッケル(N i li゛))
などが挙げられ、それら化合物の水和物゛Cも用いられ
る。The aluminum fluoride used in the present invention is not limited by crystal type or the like, and α-1β-1γ-aluminum fluoride or a mixture thereof can be used. Among these, α
Particularly preferred are molds. The fluorides of zinc, chromium, manganese, iron, and nickel used in the present invention include lead fluoride (7,n'F2) and chromium difluoride (CnFz), respectively.
,"": Chromium fluoride ((': r+ +'3), Yotsu-Sotokurois (Cn i"4), manganese fluoride (MnIi'z), manganese fluoride Mr+ F3), manganese tetrafluoride (M n F now)
, ferric fluoride (F' e F2), ferric fluoride (FeFj), -7-vito nickel (N i
+'2), nickel fluoride (Ni li゛))
etc., and hydrates of these compounds can also be used.
フッ化アルミニウムζこ対して用いる鉄、クロム、ニラ
)1ル、II++鉛、マンガンからなる群より選ばれた
1秤または2挿以トの金属の割合は、フッ化アルミニウ
ムの竜に対1ノ通常の0.2〜20重量%、りfま1ノ
<は0,5〜10重量%であり、微細tこ分散している
必要がある。金属フッ化物の割合がL記範囲より外れる
と反応の転化率、選択率の1「+1で本発明の特徴であ
る2挿以トの金属フッ化物の複合による効果力見;]待
てきない。このような本発明にお()る触媒を調製する
最も良い方法は、多孔性のフッ化アルミニウノ、粒子の
内部に上記特定【ノた金属の塩を水溶液の形で、あるい
は加熱により飛散さぜうる水以外の溶媒を用いた溶液の
形たとえば、その硝酸塩や塩化物の水溶液の形で吸収さ
せ加熱後、得られた金属塩を担持したフッ化アルミニウ
ム粒子を必要に応じてチッ素その仙の不活性ガス又は空
気で希釈したフッ化水素ガス気流の中で通常500 q
:までの温度範囲で加熱する乙により金属塩を金属フッ
化物に変換する方法である。The ratio of 1 scale or 2 or more metals selected from the group consisting of iron, chromium, leek) 1 l, II++ lead, and manganese to aluminum fluoride is 1 no. The usual content is 0.2 to 20% by weight, and the content is 0.5 to 10% by weight, and must be finely dispersed. If the proportion of metal fluoride is out of the range specified by L, the conversion rate and selectivity of the reaction will be +1, indicating the effectiveness of the combination of two or more metal fluorides, which is a feature of the present invention. The best way to prepare such a catalyst according to the present invention is to disperse the above-mentioned metal salts in the form of an aqueous solution or by heating them inside the particles of porous aluminum fluoride. After absorption and heating in the form of a solution using a solvent other than water, such as an aqueous solution of the nitrate or chloride, the resulting metal salt-supported aluminum fluoride particles are optionally treated with nitrogen or chloride. Usually 500 q in a stream of hydrogen fluoride gas diluted with inert gas or air
This is a method of converting metal salts into metal fluorides by heating in a temperature range of up to .
この場合、必ずしも上記フッ化物以外の塩化物などの金
属塩を全てフッ化物に変換する必要はなく、該金属塩を
担持したままのフッ化アルミニウムを反応に供すること
も可能であり、反応の初期において該金属塩がフッ化物
に変換されて、所期の目的を達成することができる。こ
の際、フッ化アルミニ011粒子としては空隙率が25
〜80%てBE′「法により測定される表面積が15m
/g以りりI”! tノ< ハ:30 m / g 以
上、孔径が20〜2000Aのものが好適に用いられ、
反応時の取り扱い等の1fiより平均の粒径としては2
0〜l OOOBm好ましくは50〜500 It m
のものが好適である。このようなフッ化アルミニウムの
粒子の製法については特に限定されず公知のいかなる方
法な用いても良い。仙の触媒の調製法としては、適当な
空隙率、表面積、粒径を有する活性アルミナにあらかじ
めフッ化アルミニウムに変換することなく、前記したと
同様の方法で他の金属の塩を担持させ、その後活性アル
ミナとこれに担持された金属塩の両方を同時にフッ化水
素でフッ素化する方法も用いられる。In this case, it is not necessarily necessary to convert all metal salts such as chlorides other than the above-mentioned fluoride into fluorides, and it is also possible to use aluminum fluoride carrying the metal salts in the reaction. The metal salt can be converted into fluoride in order to achieve the intended purpose. At this time, the porosity of the aluminum fluoride 011 particles was 25.
~80% and the surface area measured by BE' method is 15 m
/g or more I"!tno<c: 30 m/g or more, and those with a pore diameter of 20 to 2000 A are preferably used,
The average particle size is 2 from 1fi for handling during reaction, etc.
0-l OOOBm preferably 50-500 It m
Preferably. The method for producing such aluminum fluoride particles is not particularly limited, and any known method may be used. To prepare Sen's catalyst, activated alumina having appropriate porosity, surface area, and particle size is supported with salts of other metals in the same manner as described above without being converted into aluminum fluoride in advance, and then A method in which both the activated alumina and the metal salt supported thereon are simultaneously fluorinated with hydrogen fluoride is also used.
本発明の出発j京利であるトリクロロメチルベンザルク
ロリドまたはその誘導体とフッ化水素との供給割合は前
者1モルに対して後者を3〜6モル、好ましくは;3.
2〜4.8モルにコントロールすることが必要゛Cあり
、該フッ化水素の供給量が上記vI!l+i4の[限よ
り少なくなると転化率が低くなり1−6限より多くなる
と選択率が急激に低下する。なお、本発明においてチッ
素、アルゴン等のガスや反応に関与しない低沸点の有機
化合物を希釈剤と1/て反応系に転化することは何らさ
しつかえない。The starting ratio of trichloromethylbenzal chloride or a derivative thereof and hydrogen fluoride, which is the starting point of the present invention, is preferably 3 to 6 moles per 1 mole of the former; 3.
It is necessary to control the amount of hydrogen fluoride to 2 to 4.8 moles, and the amount of hydrogen fluoride to be supplied is the above vI! When l+i4 is less than the limit, the conversion rate decreases, and when it is more than the 1-6 limit, the selectivity decreases rapidly. In the present invention, there is no problem in converting a gas such as nitrogen or argon or a low-boiling organic compound that does not participate in the reaction into the reaction system as a diluent.
また、本発明における反応温度は180〜400℃好ま
」)<は200〜:350℃で、反応温度がこの範1力
1より低くなると反応速度が小さくなり工業的に不イリ
であり、反応温度ソバ高くなりすぎると反応の選択率が
低下したり触媒の劣化が激しくなったりする。反応の圧
力については特に制限はなく加圧下でも減圧下でも行い
うるが通常は常圧付近で行われる。In addition, the reaction temperature in the present invention is preferably 180 to 400°C. If the buckwheat temperature becomes too high, the selectivity of the reaction will decrease and the catalyst will deteriorate significantly. The reaction pressure is not particularly limited and can be carried out under increased pressure or reduced pressure, but it is usually carried out around normal pressure.
本発明を実施する際の空間速度は反応温度、触媒の活性
等により異なるが200〜5000 hr。The space velocity when carrying out the present invention varies depending on the reaction temperature, catalyst activity, etc., but is 200 to 5000 hr.
好ましくは400〜4000 hr’であり、この範囲
の下限より小さくすると選択率が低下し、上限より大き
くすると転化率が低下する。なお、触媒を長期に使用し
て活性が低下した時には、350〜500 ℃の温度に
おいて必要に応ジノでチッ素等で希釈した酸素または空
気を用いて活性を回復し得る。Preferably it is 400 to 4000 hr'; if it is less than the lower limit of this range, the selectivity will decrease, and if it is greater than the upper limit, the conversion rate will decrease. In addition, when the activity of the catalyst decreases due to long-term use, the activity can be restored by using oxygen or air diluted with nitrogen or the like at a temperature of 350 to 500° C. as necessary.
本発明方法を実施するに当たっては、トリクロロメチル
ベンザルクロリドまたはその誘導体およびフッ化水素、
必昭に応じて希釈剤と共心こ加熱接触反応管内に導入し
所定の反応を行う。反応は固定触媒層のほか流動層等を
用いることも可能である。通常これらの原料物質は、予
め予備加熱器を通すことにより加熱、気化させてから前
記の反応管に供する。反応後、反応管より反応生成物と
共むご出てくるフッ化水素、塩化水素は目的化合物との
沸点差をイ11用()て簡単に分離される。得られる和
牛酸物は蒸留、抽出、その(lt+の手段を用いて精製
される。In carrying out the method of the present invention, trichloromethylbenzal chloride or its derivative and hydrogen fluoride,
Depending on the situation, a diluent and a concentric mixture are introduced into a heated contact reaction tube and a predetermined reaction is carried out. In addition to a fixed catalyst bed, a fluidized bed or the like can be used for the reaction. Usually, these raw materials are heated and vaporized by passing them through a preheater before being supplied to the reaction tube. After the reaction, the hydrogen fluoride and hydrogen chloride that come out of the reaction tube along with the reaction products are easily separated based on the boiling point difference between them and the target compound. The resulting Wagyu acid product is purified using distillation, extraction, and other methods.
本発、明ζこ従★t;tl極めて高い転化率と選択率で
反応を行うことができ、この結果、オルトトリフルオし
Iメチルヘンザルクロリドまたはその誘導体の場合は1
沸5%以ト、好まl)い条件では90%以トの収率(汀
;供給j9利に対し)で得られる目的物のモル比)で、
またメタまたはパラトリフルオロメチルヘンザクロリド
またはその誘導体の場合は8()%以ヒ、奸ま()い条
件ドでは85%以ヒの収率て製造しt!する。According to the present invention, the reaction can be carried out with extremely high conversion and selectivity, and as a result, in the case of ortho-trifluoride and I-methylhenzal chloride or its derivatives, 1
The molar ratio of the target product obtained at a boiling point of 5% or more, preferably at a yield of 90% or more under poor conditions (based on the feed rate),
In the case of meta- or para-trifluoromethylhenzachloride or its derivatives, it can be produced with a yield of 8% or more, or 85% or more under extreme conditions! do.
実施例1゜
゛1何′・ロ′〜ン径200ノ1.m、)口(1゛法に
より測定した人1fI口1°[i 0 n’i/ g、
空隙率/4.5%、水銀ポロシメーターで測定1)か中
均の孔径25 OAであるα型のフ・ソ化゛?ルミニウ
ム粒子を50gずつ採り、それぞれ別々の3 (10m
lのフラスコに入れ真空に引いた後、各フラスコに次の
溶液を150m1ずつ注いだ。Example 1 ゜゛1'・Roll diameter 200mm. m,) mouth (person 1fI mouth 1° measured by the 1゛ method [i 0 n'i/ g,
Porosity: 4.5%, measured with a mercury porosimeter 1) Or an α-type fluoride with an average pore size of 25 OA? Take 50g of aluminum particles and separate 3 (10m
After placing the flasks in 1-liter flasks and evacuating them, 150 ml of the following solution was poured into each flask.
■ F e C13の20%(重量比)水溶液■ Cr
C’lzの12%(重量比)水溶液■ N i CI
2の2:3%(重量比)水溶液■ Zn C12の12
%(重量比)水溶液■ M n C: I上の23%(
重量比)水溶液真孕下で2時間でそれぞれ溶液を覚拌し
た後、」−記の金属塩化物な含浸させたフッ化アルミニ
ウム粒子を濾別した。これを減圧下で130℃で5時間
加熱乾燥【ノた後、直径;1/4インチのモネル管に充
填し、Z n、 CI2、MrlClzを担持そせたも
のについては:(30℃、その仙のものについては20
0℃に保ちつつ、いずれもフッ化水素とチッ素をそれぞ
れ200m1/minの流速で4時間導入してフッ化ア
ルミニウムに担持された塩化物をフッ化物に変えた。)
1(持されたそれぞれ金属フッ化物のフッ化アルミニウ
ムに対する重量割合は重傷変化より次のように計算され
た。■ 20% (weight ratio) aqueous solution of Fe C13 ■ Cr
12% (weight ratio) aqueous solution of C'lz ■ N i CI
2:3% (weight ratio) aqueous solution■ Zn C12-12
% (weight ratio) aqueous solution ■ M n C: 23% (by weight) of I
After each solution was stirred for 2 hours under an aqueous solution (weight ratio), the aluminum fluoride particles impregnated with the metal chloride were filtered off. After heating and drying this at 130°C for 5 hours under reduced pressure, it was filled into a Monel tube with a diameter of 1/4 inch, and for those carrying Zn, CI2, and MrlClz: (30°C, 20 for Sen's
While maintaining the temperature at 0° C., hydrogen fluoride and nitrogen were each introduced at a flow rate of 200 ml/min for 4 hours to convert chloride supported on aluminum fluoride into fluoride. )
1 (The weight ratio of each metal fluoride to aluminum fluoride was calculated from the serious injury change as follows.
(1) Fe1i’J Fi、3?ai%(2)
Cr F2 2.9重量%
(3) N i FL Fi、9重量%171)
7.nFz 2.7重量%(5)Mnl−″λ5
.8重量%
なお、この時点でフッ化アルミニウムはα型のままであ
ることをX線回析分析法により確認した。(1) Fe1i'J Fi,3? ai% (2)
Cr F2 2.9% by weight (3) N i FL Fi, 9% by weight 171)
7. nFz 2.7% by weight (5) Mnl-″λ5
.. 8% by weight It was confirmed by X-ray diffraction analysis that aluminum fluoride remained in the α-type at this point.
1−記でt!4か(1)〜(5)の金属フッ化物を相持
したフッ化アルミニウムをそれぞれ触媒として、直径;
(74インチのモネル製の反応管に充填した。1-t in writing! 4 or (1) to (5) each using aluminum fluoride with a metal fluoride as a catalyst, the diameter;
(A 74-inch Monel reaction tube was filled.
次いて、反応管の温度を250℃に保ちつつ、〇−トリ
クロロメチルベンザルクロリドを50g/hrの割合て
、またフッ化水素およびチッ素なそれぞれ0−トリクロ
ロメチルベンザルクロリドに対【)てモル比て4倍量お
よび7倍量の割合で同伴さゼて反応管に導入したく空間
速度;約900 hr’)。Next, while maintaining the temperature of the reaction tube at 250°C, 0-trichloromethylbenzal chloride was added at a rate of 50 g/hr, and hydrogen fluoride and nitrogen were each added to 0-trichloromethylbenzal chloride (). They were introduced into the reaction tube at a ratio of 4 times and 7 times the molar amount (space velocity; approximately 900 hr').
jシ応が定常状態に達した後、5時間HF用ガスを0に
のコンデンサーに従ってガス中のチッ素、塩化水素、過
剰のフッ化水素を分離して液体成分を得た。これを減j
4熱悄により精製して、0−トリフルオロメチルベンザ
ルクロリドを得た。生成物の確認は元素分析、ガスクロ
マトグラフ分析、IRスペクトル、13C−NMRスペ
クトルおよびGC−マススペクトルの測定により行った
。L記の(1)〜(5)の金属フッ化物な担持【ノか触
媒について得られた生成物トリフルオロメチルベンザル
クロリドの収fl(g)と収率(%)を以下に示す。After the reaction reached a steady state, nitrogen, hydrogen chloride, and excess hydrogen fluoride in the gas were separated using a condenser in which the HF gas was kept at zero for 5 hours to obtain a liquid component. Reduce this
Purification by centrifugation gave 0-trifluoromethylbenzal chloride. The product was confirmed by elemental analysis, gas chromatography analysis, IR spectrum, 13C-NMR spectrum, and GC-mass spectrum. The yield fl (g) and yield (%) of the product trifluoromethylbenzal chloride obtained for the metal fluoride-supported catalysts (1) to (5) in Section L are shown below.
(1)189g (92%)
(2)175g (85%)
(3)179g (87%)
(4)177g (86%)
(5)174.g (85%)
実施例2゜
0−)リクロロメチルベンザルクロリトの代わりにp−
トリクロロメチルベンザルクロリドを用いた以外は、実
施例1の場合と全く同様に行いp−トリフルオロメチル
ベンザルクロリドを得た。(1) 189g (92%) (2) 175g (85%) (3) 179g (87%) (4) 177g (86%) (5) 174. g (85%) Example 2゜0-) p- instead of dichloromethylbenzalchloride
p-Trifluoromethylbenzal chloride was obtained in exactly the same manner as in Example 1 except that trichloromethylbenzal chloride was used.
それぞれの触媒を用いた時の収4B(g)と収率(%)
を実施例1の場合と同様に担持された上記した金属フッ
化物の秤類(1)〜(5)ごとに以下に示ず。Yield 4B (g) and yield (%) when using each catalyst
are not shown below for each of the metal fluoride scales (1) to (5) supported in the same manner as in Example 1.
Claims (1)
およびニッケルからなる群より選ばれた少なくとも1種
の金属のフッ化物との存在下に、トリクロロメチルベン
ザルクロリドまたはその誘導体とフッ化水素とを気相状
態で反応させることを特徴とするトリフルオロメチルベ
ンザルクロリドまたはその誘導体の製造方法1) Trichloromethylbenzal chloride or a derivative thereof and hydrogen fluoride in the presence of aluminum fluoride and a fluoride of at least one metal selected from the group consisting of zinc, chromium, manganese, iron and nickel. A method for producing trifluoromethylbenzal chloride or its derivatives, which is characterized by reacting in a gas phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59122963A JPS615033A (en) | 1984-06-16 | 1984-06-16 | Preparation of trifluoromethyl benzal chloride or derivative thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59122963A JPS615033A (en) | 1984-06-16 | 1984-06-16 | Preparation of trifluoromethyl benzal chloride or derivative thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS615033A true JPS615033A (en) | 1986-01-10 |
JPH0339496B2 JPH0339496B2 (en) | 1991-06-14 |
Family
ID=14848951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59122963A Granted JPS615033A (en) | 1984-06-16 | 1984-06-16 | Preparation of trifluoromethyl benzal chloride or derivative thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS615033A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212131A (en) * | 2001-01-12 | 2002-07-31 | Bayer Ag | Method for producing trifluoromethyl-substituted biphenylcarboxylic acid and new trichloromethyl- and trifluoromethyl-substituted biphenylcarbonitrile |
JP2006265133A (en) * | 2005-03-23 | 2006-10-05 | Central Glass Co Ltd | Method for producing 4-methyl-3-trifluoromethylbenzoic acid |
CN102603471A (en) * | 2012-02-21 | 2012-07-25 | 南通市东昌化工有限公司 | Production method of p-trifluoromethyl chlorobenzene |
-
1984
- 1984-06-16 JP JP59122963A patent/JPS615033A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212131A (en) * | 2001-01-12 | 2002-07-31 | Bayer Ag | Method for producing trifluoromethyl-substituted biphenylcarboxylic acid and new trichloromethyl- and trifluoromethyl-substituted biphenylcarbonitrile |
JP2006265133A (en) * | 2005-03-23 | 2006-10-05 | Central Glass Co Ltd | Method for producing 4-methyl-3-trifluoromethylbenzoic acid |
CN102603471A (en) * | 2012-02-21 | 2012-07-25 | 南通市东昌化工有限公司 | Production method of p-trifluoromethyl chlorobenzene |
Also Published As
Publication number | Publication date |
---|---|
JPH0339496B2 (en) | 1991-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3158440B2 (en) | Method for producing 1,1,1,2,3-pentafluoropropene and method for producing 1,1,1,2,3-pentafluoropropane | |
US4147733A (en) | Fluorination of chlorinated hydrocarbons | |
JP6673413B2 (en) | Method for producing fluoroolefin | |
CN102105422B (en) | Process for preparing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene | |
US5171901A (en) | Process for the preparation of 1,1,1,3,3,3-hexafluoropropane and 2-chloro-1,1,1,3,3,3-hexafluoropropane | |
RU1838288C (en) | Method of 1,1,2,2-tetrafluoroethane synthesis | |
JP2672191B2 (en) | Method for producing 1,1,1,3,3,3-hexafluoropropane and 2-chloro-1,1,1,3,3,3-hexafluoropropane | |
JP2001505893A (en) | Process for producing aromatic amines by gas-phase hydrogenation | |
US5120883A (en) | Catalytic process for producing CCl3 CF3 | |
EP1165474B1 (en) | Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane | |
JPH03109336A (en) | Preparation of 1, 1, 1, 2-tetrafluoroethylene | |
US4827055A (en) | Process for preparing vinylidene fluoride by the direct fluorination of vinylidene chloride | |
JPS632939B2 (en) | ||
JPS615033A (en) | Preparation of trifluoromethyl benzal chloride or derivative thereof | |
JP2690878B2 (en) | 1,1,1-Trifluoro-2,2-dichloroethane fluorination catalyst and process for producing the same | |
JP7553758B2 (en) | Method for producing vinyl compounds | |
JP5138605B2 (en) | Method for producing pentafluoroethane | |
JP3552887B2 (en) | Method for producing 1,1,1,2,2-pentafluoroethane | |
JPH0368526A (en) | Preparation of mixture containing 1-chloro-1- fluoroethylene and vinylidene fluoride by gas-phase contacting disproportionate reaction of 1-chloro-1, 1-difluoroethane | |
JPH0776534A (en) | Preparation of pentafluoroethane | |
US4215063A (en) | Oxidation catalyst and use in the production of anthraquinone | |
KR101419070B1 (en) | Method for producing pentafluoroethane | |
JPH0692355B2 (en) | Ammoxidation method for saturated hydrocarbons | |
US5602288A (en) | Catalytic process for producing CF3 CH2 F | |
JP3261165B2 (en) | Methylene chloride fluorination method |