JPS6150296A - Semiconductor memory - Google Patents
Semiconductor memoryInfo
- Publication number
- JPS6150296A JPS6150296A JP59172743A JP17274384A JPS6150296A JP S6150296 A JPS6150296 A JP S6150296A JP 59172743 A JP59172743 A JP 59172743A JP 17274384 A JP17274384 A JP 17274384A JP S6150296 A JPS6150296 A JP S6150296A
- Authority
- JP
- Japan
- Prior art keywords
- address
- signal
- switching means
- address decoder
- memory cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Static Random-Access Memory (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、任意のデータの高速書き込み、試験時間の
短縮、記憶データの高速な初期化等を行なう半導体記憶
装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device that performs high-speed writing of arbitrary data, shortening test time, high-speed initialization of stored data, and the like.
一般に、半導体記憶装置のメモリセル選択部は例えば第
2図に示すように構成されている。Generally, a memory cell selection section of a semiconductor memory device is configured as shown in FIG. 2, for example.
図において、11はメモリセルがマトリックス状に配設
されたメモリセルアレイで、このメモリセルアレイ1ノ
の各メモリセルは、Xアドレスデコーダ12およびXア
ドレスデコーダ13の出力によって選択される。上記X
アドレスデコーダ12へは、アドレス信号Ax、〜AX
nが供給されるXアドレスバッファ回路14から、こ1
。ア1,7.。A8、〜□、。よ14.。、っ3゜
1〜BXnおよび逆相の信号覇〜;が供給され、上記X
アドレスデコーダ13へは、アドレス信号Ay+ ”’
A)rmが供給されるYアドレス信号 ツファ回路1
5から、このアドレス信号Ay1〜Ay7Bと同相の信
号B、l〜Bymおよび逆相の信号B、1〜石=がそれ
ぞれ供給される。In the figure, reference numeral 11 denotes a memory cell array in which memory cells are arranged in a matrix, and each memory cell in this memory cell array 1 is selected by the outputs of an X address decoder 12 and an X address decoder 13. Above X
Address signals Ax, ~AX are sent to the address decoder 12.
From the X address buffer circuit 14 to which n is supplied, this 1
. A1,7. . A8, ~□,. Yo14. . , 3゜1~BXn and the opposite phase signal H~; are supplied, and the above X
The address signal Ay+ "' is sent to the address decoder 13.
A) Y address signal supplied with rm Tsufa circuit 1
5, signals B, l to Bym having the same phase as the address signals Ay1 to Ay7B and signals B and 1 to Bym having the opposite phase are supplied from the address signals Ay1 to Ay7B, respectively.
上記のような構成において、Xアドレスがn1ll、Y
アドレスがm個ある場合、メモリセルアレイ11に設け
られた2(m+n)個のメモリセルの内、任意の1個を
選択可能であシ、図示゛しないデータ入力端子あるいは
入出力共通端子から「1」あるいは「0」のデータを入
力するとともに、書き込み信号等を制御することによっ
てこのデータが選択されたメモリセルに書き込まれるb
〔背景技術の問題点〕
ところで、メモリセルアレイ11の甲の全てのメモリセ
ルに任意のデータを書き込むためには、当然のことなが
ら全メモリセルを選択しなら十m)
ければならず、これには2 回アドレスを変化させる
必要がある。このため、データの書き込みに長時間を要
し、今後、集積度の向上に伴なって記憶容量が増大する
と、ますます書き込み時間が長くなる。また、これに伴
なりてメモリセリの試験時間や初期化に要する時間も長
くなる等の問題がある。In the above configuration, the X address is n1ll, Y
When there are m addresses, it is possible to select any one of the 2 (m+n) memory cells provided in the memory cell array 11. " or "0" data is input, and this data is written into the selected memory cell by controlling the write signal, etc. [Problems in the Background Art] By the way, all the memories in the first part of the memory cell array 11 In order to write arbitrary data to a cell, it is of course necessary to select all memory cells, and this requires changing the address twice. For this reason, it takes a long time to write data, and as the storage capacity increases in the future as the degree of integration increases, the writing time will become even longer. Additionally, there are also problems such as an increase in the time required for testing and initializing the memory cell.
この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、高速なデータの書き込みがで
きるとともに、試験時間および初期化に要する時間をも
短縮できる半導体記憶装置を程供することでちる。This invention was made in view of the above circumstances,
The purpose is to provide a semiconductor memory device that can write data at high speed and also shorten the time required for testing and initialization.
すなわち、この発明においては、上記の目的を達成する
ために、Xアドレスバッファ回路からXアドレスデコー
ダへの!α上位の信号線、およびYアドレス22フフ回
路からXアドレスデコーダへの最上位の信号線それぞれ
にスイッチング手段を設け、これらスイッチング手段の
遮断時にXアドレスデコーダおよびXアドレスデコーダ
への最上位の信号線の電位を所定電位に設定することに
よシ、メモリセルアレイを複数のブロックに分割設定し
、分割された1つのブロック内のメモリセルを全て選択
することによ)、各々のブロックに同時に同じデータを
書き込むようにしたものでちる。That is, in the present invention, in order to achieve the above object, the !X address buffer circuit to the X address decoder! A switching means is provided for each of the uppermost signal line α and the uppermost signal line from the Y address 22fu circuit to the X address decoder, and when these switching means are cut off, the uppermost signal line to the X address decoder and the X address decoder is By setting the potential of the memory cell array to a predetermined potential, dividing the memory cell array into multiple blocks, and selecting all the memory cells in one divided block, the same data can be simultaneously applied to each block. This is the one that writes .
以下、この発明の一実施例について図面を参照して説明
する。第1図において、前記第2図と同一419成部に
は同じ符号を付してその詳細な説明は省略する。Xアド
レスバッファ回路14からXアドレスデコーダ12への
最上位の信号線16..16.上には、Nチャネル型の
MOSトランノスタTx+ + Tx2のソース、ドレ
イン間がそれぞれ接続され、これらMOS )ランノス
タTx+ l Tx2のドレインと接地点間には、Nチ
ャネル型の〜10SトランジスタTx5 * Tx4の
ドレイン、ソース間がそれぞれ接続される。そして、上
記〜10Sトランジスタ’ryct l TX2は、制
御信号C8Kよって導通制御され、上記MO8)ランソ
スタT工3 、 Tx4は上記制御信号C8をインバー
タ17にで反転した信号によって導通制御される。An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, components 419 that are the same as those in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted. The highest signal line 16 from the X address buffer circuit 14 to the X address decoder 12. .. 16. The sources and drains of N-channel MOS trannostars Tx+ + Tx2 are connected above, and the N-channel ~10S transistors Tx5*Tx4 are connected between the drains of these MOS trannostars Tx+l Tx2 and the ground. The drain and source are connected respectively. The conduction of the ~10S transistor TX2 is controlled by the control signal C8K, and the conduction of the MO8) transistor Tx4 is controlled by a signal obtained by inverting the control signal C8 by the inverter 17.
また、同様にYアドレスバッファ回路15からYアドレ
スデコーダ13への)U上位の信号像171.172上
には、Nチャネル型のMOS )ランソスタTyj r
Ty2のンーヌ、ドレイン間がそれぞれ接続され、こ
れらMOS )ランノスタTy、 、 T、2のドレイ
ンと接地点間には、Nチャネル型のMOSトランゾスタ
Ty51 Ty4のドレイン、ソース間がそれぞれ接続
される。そして、上記MOSトランノスタTアj+Ty
2は、制御信号C8によって導通制御され、上記MOS
)ランノスタ’ry5 、 Ty4は上記制御信号C
8をインバータ17yで反転した信号によって導通制御
される。Similarly, on the upper signal images 171 and 172 of U from the Y address buffer circuit 15 to the Y address decoder 13, an N channel type MOS)
The drains and drains of N-channel type MOS transistors Ty51 and Ty4 are connected between the drains and the ground points of these MOS transistors Ty, , T, and 2, respectively. Then, the above MOS transnostar T aj+Ty
2 is conduction-controlled by the control signal C8, and the MOS
) Runnostar'ry5, Ty4 is the above control signal C
The conduction is controlled by a signal obtained by inverting 8 with an inverter 17y.
次に、上記のような構成において動作を説明する。制御
信号C8がハイ(パn″)レベルの場合は、MOS )
ランジスタTXI r Tz2およびTyl 。Next, the operation in the above configuration will be explained. When the control signal C8 is at the high (pan n'') level, the MOS
transistors TXI r Tz2 and Tyl.
Ty2がオン状態となシ、MOSトランジスタTX5
rT工4およびTy5 、 Ty4がオフ状態となる。When Ty2 is on, MOS transistor TX5
rT unit 4, Ty5, and Ty4 are turned off.
これ1 によ・て、Xアト・・・・2フ・回路74
の出力Bx1〜BxnおよびBx1〜Bxnは全てXア
ドレスデコーri;tVc供給され、Yアドレスバッフ
ァ回路15の出力By1〜B7mおよびBy1〜Bym
は全てYアドレスデコーダ13に供給される。従って、
前記第2図の回路と同じ動作を行なう。According to this 1, X at...2 f circuit 74
The outputs Bx1 to Bxn and Bx1 to Bxn are all supplied with the X address decoder ri;tVc, and the outputs By1 to B7m and By1 to Bym of the Y address buffer circuit 15
are all supplied to the Y address decoder 13. Therefore,
The same operation as the circuit shown in FIG. 2 is performed.
一方、;h1]御信号CSがロー(’L“)レベルとな
ると、MOS トランジスタTX1+ TX2およびT
yl r ’]’y2はオフ状態、MOS )ランジヌ
タTx5 。On the other hand, when ;h1] control signal CS goes low ('L'') level, MOS transistors TX1+TX2 and T
yl r']'y2 is off state, MOS) Languta Tx5.
Tx4およびTy3 、Ty4はオン状態となる。これ
によって、Xアドレスデコーダ12の最上位の入力信号
BXn l ”XnおよびYアドレスデコーダ13のJ
々上位の入力信号87m l B)’mはそれぞれ接地
電位(” L ’レベル)に設定される。この状態で最
下位のXアドレス信号1から最上位から1つ手前までの
Xアドレス信号n−1を変化させるとともに、最下位の
Yアドレス信号、から最上位から1つ手前までのYアド
レス信号n−1を変化させると、全てのメモリセルを選
択できる。この際、メモリセルアレイ11は4分割され
るのと同じ状態となシ、分割された各ブロックのメモリ
セルアレイlla〜116には、アドレス信号AXI
−Azn−1+ Ay1〜A、n−1の変化に応じて同
じr−夕がそれぞれ書き込まれる。従って、データの書
き込み時間を1/4に短縮できる。Tx4, Ty3, and Ty4 are turned on. As a result, the highest input signal BXn l"Xn of the X address decoder 12 and the J of the Y address decoder 13
The upper input signals 87mlB)'m are respectively set to the ground potential ("L" level).In this state, the X address signals n- from the lowest X address signal 1 to the one before the highest 1 and also change the Y address signal n-1 from the lowest Y address signal to the one before the highest, all memory cells can be selected.At this time, the memory cell array 11 is divided into four. The memory cell arrays lla to 116 of each divided block are in the same state as the address signal AXI.
-Azn-1+ The same r-t is written in accordance with changes in Ay1 to A and n-1, respectively. Therefore, the data writing time can be reduced to 1/4.
これは特に、メモリセルに記憶されたデータの初期化や
試験データの書き込み等のように、全てのメモリセルに
同一のデータを書き込む場合に有利でちる。This is particularly advantageous when writing the same data to all memory cells, such as initializing data stored in memory cells or writing test data.
なお、上記実施例ではメモリセルアレイ1ノを4分割す
る場合について説明したが、XおよびYアビレフ3フフ
フ回路14 t 15の最上位から1つ手前の信号線に
も同様な回路を設けることKよシ16分割することもで
きる。壕だ、MOS )ランノスタTx5 r Tx4
およびTy6r Ty4のソースを接地したが、X、Y
アドレスデコーダ12.13の樋底に応じて電源に接続
しても良い。この場合MO8)ランジスタのしきい値電
圧によるパH#レベルの低下を防ぐだめ、P/rOSト
ランジスタ’rx31 TX4およびTy3* Ty4
にはPチャネル型のものを用いれば良く、インバータ1
7x、 J 7yは不要である。さらに、MOS )ラ
ンノスタTx、 、 Tx2およびTyl r Ty2
をNチャネル型で説明したがPチャネル型でありでも良
いのはもちろんであシ、システム構成に応じて適宜選定
すれば良い。Although the above embodiment describes the case where the memory cell array 1 is divided into four parts, it is also possible to provide a similar circuit on the signal line one line before the top of the It is also possible to divide the file into 16 parts. It's a moat, MOS) Lannostar Tx5 r Tx4
and Ty6r Ty4 source is grounded, but X, Y
Depending on the bottom of the address decoder 12, 13, it may be connected to a power source. In this case, MO8) In order to prevent the PH# level from decreasing due to the threshold voltage of the transistor, the P/rOS transistor 'rx31 TX4 and Ty3*Ty4
It is sufficient to use a P-channel type for the inverter 1.
7x and J 7y are unnecessary. Furthermore, MOS) Rannosta Tx, , Tx2 and Tyl r Ty2
Although the N-channel type has been described, it is of course possible to use a P-channel type, and the type may be selected as appropriate depending on the system configuration.
以上説明したようにこの発明によれば、高速なデータの
書き込みができるとともに、試験時間やf、rJ期化に
iする時間をも短縮できる半導体記憶装置が得られる。As described above, according to the present invention, it is possible to obtain a semiconductor memory device that can write data at high speed and also shorten the test time and the time for f and rJ periodization.
第1図はこの発明の一実施例に係わる半導体記憶装置1
Tのメモリセル選択部を示す回路図、第2図は従来の半
導体記憶装置のメモリセル選択部を示す回路図である。
ツノ・・・メモリセルアレイ、12・・・Xアドレスデ
コーダ、13・・・Yアドレスデコーダ、14・・・X
アドレスバッファ回路、15・・・771718277
回路、161 1J62 +I71 r172・・
・最上位の信号線、A11〜AXn・・・Xアドレス信
号、A I 〜Aym・Yアドレス信号、TX1+ T
M0・・・MOS )ランジスタ(第1のスイッチング
手段)、TX3 r TX4・・・MOS )ランノス
タ(第2のスイッチング手段)、Tyl 、 Ty2・
・・MOS )ランノスタ(第3のスイッチング手段)
、Tys 、 ’ry、、・・・MOS )ランノスタ
(第4のスイッチング手段)、C3・・・+1ilI御
信号。FIG. 1 shows a semiconductor memory device 1 according to an embodiment of the present invention.
FIG. 2 is a circuit diagram showing a memory cell selection section of a conventional semiconductor memory device. Horn...Memory cell array, 12...X address decoder, 13...Y address decoder, 14...X
Address buffer circuit, 15...771718277
Circuit, 161 1J62 +I71 r172...
・Top signal line, A11 to AXn...X address signal, A I to Aym・Y address signal, TX1+T
M0...MOS) transistor (first switching means), TX3 r TX4...MOS) rannostar (second switching means), Tyl, Ty2.
...MOS) Runnostar (third switching means)
, Tys, 'ry,...MOS) Runnostar (fourth switching means), C3...+1ilI control signal.
Claims (4)
アドレスを選択するXアドレスデコーダと、上記メモリ
セルアレイのYアドレスを選択するYアドレスデコーダ
と、Xアドレス信号が供給されこのXアドレス信号と同
相の信号および逆相の信号を上記Xアドレスデコーダに
供給するXアドレスバッファ回路と、Yアドレス信号が
供給されこのYアドレス信号と同相の信号および逆相の
信号を上記Yアドレスデコーダに供給するYアドレスバ
ッファ回路と、上記Xアドレスバッファ回路からXアド
レスデコーダへの最上位の信号線上に設けられ制御信号
でスイッチング制御される第1のスイッチング手段と、
この第1のスイッチング手段の遮断時、上記Xアドレス
デコーダへの最上位の信号線を電位供給源に接続する第
2のスイッチング手段と、上記Yアドレスバッファ回路
からYアドレスデコーダへの最上位の信号線上に設けら
れ上記制御信号でスイッチング制御される第3のスイッ
チング手段と、この第3のスイッチング手段の遮断時、
上記Yアドレスデコーダへの最上位の信号線を電位供給
源に接続する第4のスイッチング手段とを具備したこと
を特徴とする半導体記憶装置。(1) Memory cell array and the X of this memory cell array
An X address decoder that selects an address, a Y address decoder that selects a Y address of the memory cell array, and an X address signal is supplied to the X address decoder, and a signal that is in phase with the X address signal and a signal that is in reverse phase are supplied to the X address decoder. an X address buffer circuit, a Y address buffer circuit to which a Y address signal is supplied and which supplies a signal in phase with the Y address signal and a signal in opposite phase to the Y address decoder, and a signal from the X address buffer circuit to the X address decoder. a first switching means provided on the uppermost signal line and whose switching is controlled by a control signal;
When the first switching means is cut off, a second switching means connects the highest signal line to the X address decoder to a potential supply source, and a second switching means connects the highest signal line from the Y address buffer circuit to the Y address decoder. a third switching means provided on the line and whose switching is controlled by the control signal; and when the third switching means is cut off;
and fourth switching means for connecting the highest signal line to the Y address decoder to a potential supply source.
れ、MOSトランジスタから成ることを特徴とする特許
請求の範囲第1項記載の半導体記憶装置。(2) The semiconductor memory device according to claim 1, wherein each of the first to fourth switching means comprises a MOS transistor.
Nチャネル型のMOSトランジスタから成り、前記電位
供給源は接地電位であることを特徴とする特許請求の範
囲第1項記載の半導体記憶装置。(3) The second and fourth switching means each include:
2. The semiconductor memory device according to claim 1, comprising an N-channel MOS transistor, and wherein the potential supply source is a ground potential.
Pチャネル型のMOSトランジスタから成り、前記電位
供給源は電源電位であることを特徴とする特許請求の範
囲第1項記載の半導体記憶装置。(4) The second and fourth switching means each include:
2. The semiconductor memory device according to claim 1, comprising a P-channel MOS transistor, and wherein the potential supply source is a power supply potential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59172743A JPS6150296A (en) | 1984-08-20 | 1984-08-20 | Semiconductor memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59172743A JPS6150296A (en) | 1984-08-20 | 1984-08-20 | Semiconductor memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6150296A true JPS6150296A (en) | 1986-03-12 |
Family
ID=15947492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59172743A Pending JPS6150296A (en) | 1984-08-20 | 1984-08-20 | Semiconductor memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6150296A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63160096A (en) * | 1986-12-22 | 1988-07-02 | Nec Corp | Semiconductor memory circuit |
JPS63311551A (en) * | 1987-06-15 | 1988-12-20 | Fujitsu Ltd | Memory initializing system |
JPH02116161A (en) * | 1988-10-25 | 1990-04-27 | Nec Corp | Semiconductor memory |
US5285240A (en) * | 1991-05-20 | 1994-02-08 | Sharp Kabushiki Kaisha | Image forming machine comprising three separable frames with opening/closing mechanisms between each frame |
US6156681A (en) * | 1996-01-16 | 2000-12-05 | Daikin Industries, Ltd. | Multi layered felt, member formed of same, and method of manufacturing same |
JP2008198297A (en) * | 2007-02-14 | 2008-08-28 | System Fabrication Technologies Inc | Semiconductor storage device |
-
1984
- 1984-08-20 JP JP59172743A patent/JPS6150296A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63160096A (en) * | 1986-12-22 | 1988-07-02 | Nec Corp | Semiconductor memory circuit |
JPS63311551A (en) * | 1987-06-15 | 1988-12-20 | Fujitsu Ltd | Memory initializing system |
JPH02116161A (en) * | 1988-10-25 | 1990-04-27 | Nec Corp | Semiconductor memory |
US5285240A (en) * | 1991-05-20 | 1994-02-08 | Sharp Kabushiki Kaisha | Image forming machine comprising three separable frames with opening/closing mechanisms between each frame |
US6156681A (en) * | 1996-01-16 | 2000-12-05 | Daikin Industries, Ltd. | Multi layered felt, member formed of same, and method of manufacturing same |
JP2008198297A (en) * | 2007-02-14 | 2008-08-28 | System Fabrication Technologies Inc | Semiconductor storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100320266B1 (en) | Memory circuit | |
US5031146A (en) | Memory apparatus for multiple processor systems | |
US5615162A (en) | Selective power to memory | |
US8305828B2 (en) | Memory control with selective retention | |
US5801547A (en) | Embedded memory for field programmable gate array | |
US5438549A (en) | Nonvolatile memory with volatile memory buffer and a backup power supply system | |
US5504875A (en) | Nonvolatile memory with a programmable output of selectable width and a method for controlling the nonvolatile memory to switch between different output widths | |
US5343437A (en) | Memory having nonvolatile and volatile memory banks | |
US5287485A (en) | Digital processing system including plural memory devices and data transfer circuitry | |
US5893135A (en) | Flash memory array with two interfaces for responding to RAS and CAS signals | |
EP1052646B1 (en) | Non-volatile semiconductor memory device permitting data-read operation performed during data-write/erase operation | |
JPH06309868A (en) | Semiconductor storage device | |
US20010000692A1 (en) | VPX bank architecture | |
US20190147944A1 (en) | Static random-access memory with virtual banking architecture, and system and method including the same | |
KR940022845A (en) | Semiconductor memory and redundant address writing method | |
US4631707A (en) | Memory circuit with power supply voltage detection means | |
US5193071A (en) | Memory apparatus for multiple processor systems | |
JPS62287499A (en) | Semiconductor memory device | |
JPS6150296A (en) | Semiconductor memory | |
EP1297529A2 (en) | Block-level read while write method and apparatus | |
US5836007A (en) | Methods and systems for improving memory component size and access speed including splitting bit lines and alternate pre-charge/access cycles | |
US6115294A (en) | Method and apparatus for multi-bit register cell | |
US5701436A (en) | Information processing apparatus including synchronous storage having backup registers for storing the latest sets of information to enable state restoration after interruption | |
KR20000062888A (en) | Semiconductor integrated circuit device | |
US4845673A (en) | Dynamic memory with single-cycle writing of a field of logic states |