JPS6150156B2 - - Google Patents

Info

Publication number
JPS6150156B2
JPS6150156B2 JP7185382A JP7185382A JPS6150156B2 JP S6150156 B2 JPS6150156 B2 JP S6150156B2 JP 7185382 A JP7185382 A JP 7185382A JP 7185382 A JP7185382 A JP 7185382A JP S6150156 B2 JPS6150156 B2 JP S6150156B2
Authority
JP
Japan
Prior art keywords
wire
metal
metal plate
nozzle plate
phosphor bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7185382A
Other languages
Japanese (ja)
Other versions
JPS58189385A (en
Inventor
Shigeru Nagai
Yasuo Kawabuchi
Akira Kasuya
Shigeru Yamamoto
Juzo Kaniko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7185382A priority Critical patent/JPS58189385A/en
Publication of JPS58189385A publication Critical patent/JPS58189385A/en
Publication of JPS6150156B2 publication Critical patent/JPS6150156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 発明の技術分野 本発明は複数個の微小孔を有する金属板の製造
方法に係り、特に多数の微小孔を有する場合にお
いて、高精度で量産に好適な製造法の提供に関す
る。 (b) 従来の技術と問題点 最近無音プリンタの1つとして、インクジエツ
トプリンタ、特にドロツプオンデマンド方式のイ
ンクジエツトプリンタが盛に開発、実用化されて
いる。 この方式のインクジエツトヘツドには例えば直
径0.05mm,深さ0.2mm程度の孔を一定間隔で多数
個配設した金属薄板をインク吐出部に固定し、イ
ンクノズル板として使用するのが一般的である。 上記微小孔の加工法については、従来から放電
加工法、マイクロドリル法、或いはレーザービー
ム法などがある。 放電加工法においては、放電電極に使う金属細
線が曲り易くその安定保持が難しいので、寸法の
バラツキが多い上に、孔内の面が粗く、量産性も
低いという欠点がある。 マイクロドリル法では、ドリル直径が小さいの
で折れ易い欠点がある。 レーザービーム法は、レーザーエネルギーで金
属の照射部を溶解して加工するので、孔内の表面
の凹凸が多く、又孔断面の形が不揃いになり易い
欠点がある。 以上の様に従来の微小孔加工法にはそれぞれの
欠点があり特に精度と量産性に問題があつた。 (c) 発明の目的 本発明は前述の点に鑑みなされたもので、電鋳
法を用いて、微小孔を成形することにより、高精
度で量産に好適な製造方法を提供することを目的
としたものである。 (d) 発明の構成 上記の目的を達成するために、本発明は微小孔
径と同一の外形の線材を、該線材とは異なる材質
の金属基板上に所定の位置を保つて配設固定し、
電着法によつて該線材と金属基板を一体に電鋳し
その電鋳金属塊を線材と直角の方向に切断して所
定厚さの板状となし、然かる後かかる金属板の内
部の線材を除去することにより所望の微小孔を当
該金属板に形成するようにしたことを特徴とする
ものである。 (e) 発明の実施例 以下本発明の好ましい実施例につき、図面を参
照して説明する。 第1図は前記インクジエツトヘツドのインクノ
ズル板1の一例を概念的に示す斜視図で、該ノズ
ル板は厚さtの金属薄板2に7個の内径dの孔3
をピツチpで一列に配設している。これ等の寸法
の一例を挙げると、t=0.2mm,d=0.05mm,p
=0.4mmである。 第2図〜第7図は、本発明による前記ノズル板
1用の多数の微小孔を有する金属板の製作工程を
工程順に従つて示す概念的な略示図および斜視図
である。 先ず第2図の斜視図で示すように、ステンレス
鋼(sus304)の基板11の上に前記ノズル板1
のノズル孔3の内径dと同一の外形寸法でかつノ
ズル孔3の個数と同数の燐青銅線13をノズル孔
3のピツチpと同一ピツチで配列してからアラル
ダイトなどの合成樹脂接着剤14を用いて固着
し、被電着物10を形成する。 次に電着の前処理工程に移る。すなわち金属基
板11と電鋳塊31(第5図参照)とは十分に密
着させる為に十分な浄化処理が必要で、本実施例
の場合、脱脂液として水酸化ナトリウム30gr/
,炭酸ナトリウム30gr/,硅酸ナトリウム
20gr/,界面活性剤1gr/の混合液を用
いて70℃,10分間脱脂の後、水洗、酸処理、水洗
の諸工程を経てニツケルストライクメツキを施
す。 次に第3図の略示図および第4図の斜視図に示
ように、前処理を終つた被電着物10を陰極ハン
ガー22に固定し、同時に電着の厚さの不均一を
軽減するために塩化ビニール板よりなる遮蔽板2
3を第3図に図示のよう取りつける。両者の間隔
は予定される電鋳塊の厚さの2〜3倍が適当であ
る。一方電着しようとする金属、この場合にはニ
ツケルの金属塊を陽極24とし、直流電源25に
接続する。 この実施例の場合のメツキ液の組成と電着条件
は第1表の通りである。
(a) Technical Field of the Invention The present invention relates to a method of manufacturing a metal plate having a plurality of microholes, and particularly to providing a manufacturing method that is highly accurate and suitable for mass production when the metal plate has a large number of microholes. (b) Prior Art and Problems Recently, inkjet printers, especially drop-on-demand type inkjet printers, have been actively developed and put into practical use as silent printers. In this type of ink jet head, a thin metal plate with a number of holes of about 0.05 mm in diameter and 0.2 mm in depth arranged at regular intervals is fixed to the ink ejection part and used as an ink nozzle plate. be. Conventional methods for machining the microholes include electric discharge machining, micro-drilling, and laser beam methods. In the electrical discharge machining method, the fine metal wire used for the discharge electrode is easily bent and it is difficult to maintain it stably, so there is a drawback that there is a lot of variation in dimensions, the surface inside the hole is rough, and mass productivity is low. The micro-drill method has the disadvantage that the drill diameter is small, making it easy to break. The laser beam method processes the metal by melting the irradiated part with laser energy, so it has the drawback that the surface inside the hole is often uneven and the cross-sectional shape of the hole tends to be irregular. As mentioned above, each of the conventional microhole processing methods has its own drawbacks, and in particular, there have been problems with precision and mass production. (c) Purpose of the Invention The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a manufacturing method with high precision and suitable for mass production by forming micropores using electroforming. This is what I did. (d) Structure of the Invention In order to achieve the above-mentioned object, the present invention arranges and fixes a wire rod having the same external shape as the micropore diameter on a metal substrate made of a material different from that of the wire rod while maintaining a predetermined position.
The wire rod and the metal substrate are electroformed into one body by electrodeposition, and the electroformed metal block is cut in a direction perpendicular to the wire rod to form a plate with a predetermined thickness. This is characterized in that desired microholes are formed in the metal plate by removing the wire. (e) Embodiments of the invention Preferred embodiments of the invention will be described below with reference to the drawings. FIG. 1 is a perspective view conceptually showing an example of the ink nozzle plate 1 of the ink jet head.
are arranged in a line with pitch p. An example of these dimensions is t=0.2mm, d=0.05mm, p
=0.4mm. FIGS. 2 to 7 are conceptual schematic diagrams and perspective views showing the manufacturing process of a metal plate having a large number of microholes for the nozzle plate 1 according to the present invention in accordance with the process order. First, as shown in the perspective view of FIG. 2, the nozzle plate 1 is placed on a substrate 11 made of stainless steel (SUS304).
Phosphor bronze wires 13 having the same external dimensions as the inner diameter d of the nozzle holes 3 and the same number as the number of nozzle holes 3 are arranged at the same pitch as the pitch p of the nozzle holes 3, and then a synthetic resin adhesive 14 such as Araldite is applied. The electrodeposited material 10 is formed by fixing the electrodeposited material 10 using the electrodeposited material. Next, the process moves to a pretreatment process for electrodeposition. In other words, sufficient purification treatment is required to bring the metal substrate 11 and the electroformed ingot 31 (see Fig. 5) into close contact with each other.
, Sodium carbonate 30g/, Sodium silicate
After degreasing at 70°C for 10 minutes using a mixture of 20 gr/g/surfactant and 1 gr/surfactant, nickel strike plating is applied through the various steps of water washing, acid treatment, and water washing. Next, as shown in the schematic view of FIG. 3 and the perspective view of FIG. 4, the pretreated electrodeposited material 10 is fixed to the cathode hanger 22, and at the same time, unevenness in the thickness of the electrodeposition is reduced. Shielding plate 2 made of vinyl chloride board
3 as shown in Figure 3. The appropriate distance between the two is 2 to 3 times the expected thickness of the electroformed ingot. On the other hand, the metal to be electrodeposited, in this case a nickel metal lump, is used as an anode 24 and connected to a DC power source 25. The composition of the plating solution and electrodeposition conditions in this example are shown in Table 1.

【表】 前記の電着により第5図に示すように基板11
の上に折出したニツケル電鋳塊31を水洗乾燥
後、切削加工により第6図のような直方体32に
加工し、更に第7図に示すようにワイヤカツト放
電加工等により厚さtに切断して、ノズル板1用
の部材1aを得る。 これをラツピング加工により所定の寸法と面粗
さに仕上げ、過酸化水素を含有した銅合金化学研
磨剤に20〜25℃にて10〜30分間浸漬して、埋めこ
まれた燐青銅線13を溶解除去して孔とすれば、
ノズル板1が完成する。 以上に説明した工程は実施例の一例であつて、
線材13の材質は燐青銅合金に限らず、金属基板
11の材質との組み合わせで、最後のノズル板用
部材1aより線材のみが化学的に溶解できるよう
な組合せであれば、何でもよい。更に燐青銅線1
3は合成樹脂線例えばナイロン線でもよい。この
際にはノズル板用部材Iaより線材を除去するに
は、空気炉で加熱するだけでよく、例えばナイロ
ン線を使用する場合は、電気炉内で800℃,30分
加熱すれば十分である。 尚、前記の実施例の最初の工程の燐青銅線13
を金属基板11に固定する方法について述べる。 第8図に示す方法は金属基板を2板合わせて図
には示していないチヤツクで小形捲線機に取りつ
け、X―Xを軸として回転し、燐青銅線13を所
定ピツチpで捲取つた後、合成樹脂接着剤14を
点線で示した位置14aに塗布する方法である。
この方法は図より想像し得るように量産性の優れ
た方法で容易に多数個取りに拡張できる。 第9図に示す方法は、ノズル孔3のピツチpの
精度が厳しく要求される場合、治具41の両端部
に高い精度でピツチpのガイド溝42を設け、こ
れを案内として燐青銅線13を展張したもので、
金属基板11は、この線と治具41の間Aに挿入
され、該燐青銅線13を接着剤14で金属基板1
1に固定した後、治具41により切り離す。従つ
てこの場合治具は反覆して使用できる。 ノズル板1のノズル孔3が2列に配列されてい
る場合は、金属基板11の厚さを、両孔列間の寸
法と同一とし、燐青銅線13を基板の両面に固定
して前記の工程に従えばよい。ノズル孔3が3列
以上の場合には、燐青銅線を空間に治具を用いて
所定相対位置に展張すれば容易に目的を達するこ
とができる。 以上の説明では線の材質例として燐青銅線を採
りあげているが、他の種類の金属線あるいは合成
樹脂線でもよい。 これ迄は、専らインクジエツトヘツドのインク
吐出ノズル板の製作方法を例として説明してきた
が、本発明は他の用途に使用される、微小孔を有
する金属板の製作にひろく適用できる。 (f) 発明の効果 微小孔例えば0.05mm程度の孔を有する金属板を
製作するにあたり、本発明を適用すれば従来の加
工法に比べ、遥かに高い精度で、内面の滑らかな
高品質の微小孔を加工することができる上に、該
加工方法又は極めて量産性に富み、高い歩留りを
与え原価を低減させるという効果がある。
[Table] As shown in FIG. 5, the substrate 11 is formed by the electrodeposition described above.
After washing and drying the nickel electroformed ingot 31 deposited above, it is machined into a rectangular parallelepiped 32 as shown in FIG. Thus, a member 1a for the nozzle plate 1 is obtained. This is finished to the predetermined dimensions and surface roughness by wrapping processing, and then immersed in a copper alloy chemical polishing agent containing hydrogen peroxide for 10 to 30 minutes at 20 to 25°C to remove the embedded phosphor bronze wire 13. If it is dissolved and removed to form a hole,
Nozzle plate 1 is completed. The process explained above is an example of an embodiment, and
The material of the wire 13 is not limited to phosphor bronze alloy, but any material may be used as long as it is combined with the material of the metal substrate 11 so that only the wire can be chemically dissolved from the last nozzle plate member 1a. Furthermore, phosphor bronze wire 1
3 may be a synthetic resin wire, such as a nylon wire. In this case, to remove the wire from the nozzle plate member Ia, it is sufficient to heat it in an air oven; for example, if nylon wire is used, heating it at 800°C for 30 minutes in an electric oven is sufficient. . In addition, the phosphor bronze wire 13 in the first step of the above embodiment
A method for fixing the metal substrate 11 to the metal substrate 11 will be described. The method shown in FIG. 8 is to fit two metal substrates together, attach them to a small winding machine with a chuck not shown in the figure, rotate them around X-X, and wind up the phosphor bronze wire 13 at a predetermined pitch p. , a method in which the synthetic resin adhesive 14 is applied to a position 14a indicated by a dotted line.
As can be imagined from the figure, this method is excellent in mass production and can be easily expanded to produce multiple pieces. In the method shown in FIG. 9, when the precision of the pitch p of the nozzle hole 3 is strictly required, guide grooves 42 of the pitch p are provided at both ends of the jig 41 with high precision, and the phosphor bronze wire 13 is guided using the guide grooves 42 as guides. It is an expansion of
The metal substrate 11 is inserted between this wire and the jig 41 A, and the phosphor bronze wire 13 is attached to the metal substrate 1 with an adhesive 14.
1 and then separated using a jig 41. Therefore, in this case, the jig can be used repeatedly. When the nozzle holes 3 of the nozzle plate 1 are arranged in two rows, the thickness of the metal substrate 11 is made the same as the dimension between both hole rows, and the phosphor bronze wires 13 are fixed to both sides of the substrate. Just follow the process. When there are three or more rows of nozzle holes 3, the purpose can be easily achieved by stretching the phosphor bronze wire in the space at a predetermined relative position using a jig. In the above description, phosphor bronze wire is used as an example of the material of the wire, but other types of metal wire or synthetic resin wire may be used. Up to this point, the method of manufacturing an ink ejection nozzle plate for an ink jet head has been described as an example, but the present invention can be widely applied to the manufacture of metal plates having micropores used for other purposes. (f) Effects of the invention When manufacturing metal plates with micro holes, for example, about 0.05 mm, the present invention can be applied to produce high quality micro holes with smooth inner surfaces with much higher precision than conventional processing methods. In addition to being able to process holes, this processing method is highly suitable for mass production, provides high yields, and has the effect of reducing cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインクジエツトプリンタにおけるイン
ク吐出部のノズル板を示す斜視図、第2図〜第7
図は本発明の1実施例に基づく工程を工程順に示
したもので、第2図は被電着部の斜視図、第3図
は電着装置の略示図、第4図は陰極の構成を示す
斜視図、第5図は電着完了後の鋳塊、第6図は切
削加工により鋳塊より切り出した長方形のノズル
板母材を示す斜視図、第7図はノズル板用部材の
切断の状況を示す斜視図である。第8図と第9図
は燐青銅線を金属基板に固定する方法についての
変形例を示す斜視図である。図において、1はノ
ズル板、1aはノズル板用部材、3はノズル孔、
10は被電着部分の組立、11は金属基板、12
は陰極ハンガーへの取付け用孔、13は燐青銅
線、14は固定用合成樹脂、21はメツキ槽、2
2は陰極ハンガー、23は電着遮蔽板、24は電
着せんとする金属よりなる陽極、25は電着用電
源、26は絶縁被覆層、31は電着された鋳塊、
32は長方体、41は治具、42はピツチのガイ
ド溝をそれぞれ示す。
Figure 1 is a perspective view showing the nozzle plate of the ink ejection part in an inkjet printer, and Figures 2 to 7.
The figures show the steps according to an embodiment of the present invention in the order of steps, and FIG. 2 is a perspective view of the electrodeposited part, FIG. 3 is a schematic diagram of the electrodeposition apparatus, and FIG. 4 is the structure of the cathode. Fig. 5 is a perspective view showing the ingot after electrodeposition is completed, Fig. 6 is a perspective view showing a rectangular nozzle plate base material cut out from the ingot by cutting, and Fig. 7 is a cut of the nozzle plate member. FIG. FIGS. 8 and 9 are perspective views showing a modification of the method of fixing the phosphor bronze wire to the metal substrate. In the figure, 1 is a nozzle plate, 1a is a nozzle plate member, 3 is a nozzle hole,
10 is the assembly of the electrodeposited part, 11 is the metal substrate, 12
13 is a phosphor bronze wire, 14 is a synthetic resin for fixing, 21 is a plating tank, 2 is a hole for attaching to a cathode hanger,
2 is a cathode hanger, 23 is an electrodeposition shielding plate, 24 is an anode made of the metal to be electrodeposited, 25 is a power source for electrodeposition, 26 is an insulating coating layer, 31 is an electrodeposited ingot,
32 is a rectangular parallelepiped, 41 is a jig, and 42 is a pitch guide groove.

Claims (1)

【特許請求の範囲】[Claims] 1 微小孔を有する金属板の製作において、微小
孔の内径と同一の外形を有する線材を、該線材の
材質とは異なる材質の金属基板に所定の位置に保
つて配設固定し、次いで前記線材の材質とは異な
る材質の金属を基板上に厚く電着してその電鋳金
属塊により前記線材と金属基板を一体となし、次
いで該電鋳金属塊を線材と直角方向に所定の寸法
に板状に切断し、次いで切断により形成された金
属板の内部に含まれる線材を除去することにより
当該金属板に所望の微小孔を形成するようにした
ことを特徴とする微小孔を有する金属板の製作方
法。
1. In manufacturing a metal plate having microholes, a wire having the same outer diameter as the inner diameter of the microhole is placed and fixed in a predetermined position on a metal substrate made of a material different from that of the wire, and then the wire is A metal of a material different from the material of is thickly electrodeposited on the substrate, the wire rod and the metal substrate are integrated with the electroformed metal lump, and then the electroformed metal lump is plated into a predetermined size in the direction perpendicular to the wire rod. A metal plate having micropores, characterized in that desired micropores are formed in the metal plate by cutting the metal plate into shapes and then removing the wire contained inside the metal plate formed by cutting. Production method.
JP7185382A 1982-04-28 1982-04-28 Manufacture of metallic plate having very small pore Granted JPS58189385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7185382A JPS58189385A (en) 1982-04-28 1982-04-28 Manufacture of metallic plate having very small pore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7185382A JPS58189385A (en) 1982-04-28 1982-04-28 Manufacture of metallic plate having very small pore

Publications (2)

Publication Number Publication Date
JPS58189385A JPS58189385A (en) 1983-11-05
JPS6150156B2 true JPS6150156B2 (en) 1986-11-01

Family

ID=13472505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7185382A Granted JPS58189385A (en) 1982-04-28 1982-04-28 Manufacture of metallic plate having very small pore

Country Status (1)

Country Link
JP (1) JPS58189385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579472Y2 (en) * 1993-11-12 1998-08-27 セイレイ工業株式会社 Swiveling excavator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579472Y2 (en) * 1993-11-12 1998-08-27 セイレイ工業株式会社 Swiveling excavator

Also Published As

Publication number Publication date
JPS58189385A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
CA1183402A (en) Orifice plate for ink jet printing machines
US5249358A (en) Jet impingment plate and method of making
JPS63153292A (en) Electroforming apparatus and method
US3022230A (en) Process for electroforming grooved and channeled bodies
US3853714A (en) Process for electroforming microparts having hollow interiors
US3727489A (en) Die-making process
US5569394A (en) Electric discharge machining method for insulating material using electroconductive layer formed thereon
JPS6150156B2 (en)
JPH0665779A (en) Method for electrodepositing metal
JP2013007069A (en) Drum electrode, and method of manufacturing the same
US3574075A (en) Method of producing an electrode for use in electro machining
US20090277794A1 (en) Dimensional control in electroforms
JPH0633291A (en) Production of porous forming die by electroforming
JP2716324B2 (en) Method for manufacturing porous mold by electroforming
JP2003340648A (en) Electrochemical machining electrode and dynamic pressure bearing manufactured using the electrode
JP3724364B2 (en) Manufacturing method of metal products
JP2962662B2 (en) Method for producing electroformed body having micro holes
JPH0688285A (en) Electrodeposition method of metal
JP2005231023A (en) Electrode tool for electrochemical machining and its manufacturing method
JPS63162122A (en) Manufacture of electrode guide for electric discharge process device
JPS5842784A (en) Formation of micro-holes and core wire rods used for said
KR100313685B1 (en) How to make a jet-flow collision plate
WO2024038479A1 (en) Molding die, method for manufacturing molding die, and method for manufacturing molded product
CN217077789U (en) Energy-saving heating device for surface treatment bath solution
JP4357061B2 (en) Porous metal cylinder used for electroforming