JPS6150144B2 - - Google Patents
Info
- Publication number
- JPS6150144B2 JPS6150144B2 JP4508581A JP4508581A JPS6150144B2 JP S6150144 B2 JPS6150144 B2 JP S6150144B2 JP 4508581 A JP4508581 A JP 4508581A JP 4508581 A JP4508581 A JP 4508581A JP S6150144 B2 JPS6150144 B2 JP S6150144B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- plated
- metal
- laser beam
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 39
- 239000002184 metal Substances 0.000 claims description 39
- 238000007747 plating Methods 0.000 claims description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000007733 ion plating Methods 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/046—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、化学容器や発電プラントの耐食性、
耐摩耗性を要求される管の内面に、金属をレーザ
ー光線を利用して乾式にメツキするプレーテイン
グ装置に関する。[Detailed description of the invention] The present invention provides corrosion resistance for chemical containers and power plants,
This invention relates to a plating device that uses a laser beam to dry plate metal on the inner surface of a tube that requires wear resistance.
従来、異種金属の薄い層を金属表面に付着する
方法としては、湿式メツキ法、化学的メツキ法、
真空蒸着法、イオンプレーテイング法等がある。
そして、これらの方法のうち金属を10-5〜
10-6torr程度の真空度で溶融蒸発させ、真空力に
より他の金属表面に付着させる真空蒸着法や101
〜10-2torr程度の比較的低真空で金属を溶融蒸発
させ、イオン化してクーロン力により他の金属表
面に付着させるイオン・プレーテイング法は、低
公害で任意の金属を付着させることができ、密着
性が良い、等の理由により広く利用されるように
なつてきた。そして例えば特願昭54−2399号(特
開昭55−94474号公報)に示すごとき、レーザー
光線を利用したものも開発されるに至つた。 Traditional methods for attaching thin layers of dissimilar metals to metal surfaces include wet plating, chemical plating,
There are vacuum evaporation methods, ion plating methods, etc.
And among these methods, metals are
Vacuum evaporation method, which melts and evaporates in a vacuum of about 10 -6 torr and adheres to other metal surfaces using vacuum force, and 10 1
The ion plating method, in which metals are melted and vaporized in a relatively low vacuum of ~10 -2 torr, ionized, and attached to other metal surfaces using Coulomb force, can attach any metal with low pollution. It has become widely used due to its good adhesion. For example, a device using a laser beam was developed, as shown in Japanese Patent Application No. 54-2399 (Japanese Patent Application Laid-open No. 55-94474).
しかし、斯かる装置では、付着した溶融金属の
粒子が多少粗く、付着層表面が多少粗雑であり、
又付着粒子層には弾性的歪もあつた。 However, in such a device, the adhered molten metal particles are somewhat rough, and the surface of the adhered layer is somewhat rough;
There was also elastic strain in the adhered particle layer.
本発明は、付着層表面を緻密で且つ均一にし得
る装置を提供することを目的としてなしたもの
で、レーザー光線を透過させる窓を有し気密にさ
れた被プレーテイング管と、被プレーテイング管
内を真空にする装置と、前記被プレーテイング管
内に保持された金属と、前記窓を通して前記被プ
レーテイング管内にレーザー光線を投光するレー
ザー発生装置と、前記レーザー光線を前記金属及
び被プレーテイング管内周に付着した金属に集光
させる凹面鏡とを備えたことを特徴とするもので
ある。 The present invention has been made for the purpose of providing a device capable of making the surface of the adhesion layer dense and uniform. a device for creating a vacuum, a metal held in the tube to be plated, a laser generator for projecting a laser beam into the tube to be plated through the window, and a laser beam for attaching the laser beam to the metal and the inner periphery of the tube to be plated. The device is characterized by comprising a concave mirror that focuses light on the metal.
以下、本発明の実施例を図面を参照しつつ説明
する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図及び第2図は本発明の一実施例で、真空
蒸着を行う例を示す。 FIGS. 1 and 2 show one embodiment of the present invention, in which vacuum evaporation is performed.
被プレーテイング管1の左端部に、レーザー透
過窓2を具備した真空フランジ3を取付け、レー
ザー発生装置4で発生したレーザー光線5を被プ
レーテイング管1内に投光し得るようになつてい
る。レーザー透過窓2はレーザー光線5が吸収し
ない材質が使用され、レーザー光線5が炭酸ガス
レーザーの場合には、食塩(NaC)、ジンク・
セレン(Zn−Se)等の透過率の良いものを使用
する必要がある。 A vacuum flange 3 equipped with a laser transmission window 2 is attached to the left end of the tube to be plated 1, so that a laser beam 5 generated by a laser generator 4 can be projected into the tube to be plated 1. The laser transmitting window 2 is made of a material that does not absorb the laser beam 5, and when the laser beam 5 is a carbon dioxide laser, it is made of a material such as salt (NaC), zinc, etc.
It is necessary to use a material with good transmittance, such as selenium (Zn-Se).
被プレーテイング管1の右端部に、真空フラン
ジ6を取付けて被プレーテイング管1内部を外部
から密封し、真空フランジ6に被プレーテイング
管1内部の気体を排出し得るよう真空排気装置7
を真空配管8を介して接続し、真空フランジ6の
中心に、プレーテイング金属保持用の保持軸9を
真空フランジ6に対して気密を保持しながら回転
及び軸線方向に摺動し得るよう貫通せしめる。 A vacuum flange 6 is attached to the right end of the tube to be plated 1 to seal the inside of the tube to be plated 1 from the outside, and a vacuum evacuation device 7 is installed to exhaust the gas inside the tube to be plated 1 to the vacuum flange 6.
are connected through a vacuum piping 8, and a holding shaft 9 for holding the plating metal is passed through the center of the vacuum flange 6 so that it can rotate and slide in the axial direction while maintaining airtightness with respect to the vacuum flange 6. .
保持軸9の先端に凹面鏡10をレーザー光線5
を反射し得るようピン11枢着し、凹面鏡10の
上端に該凹面鏡10をピン11のまわりに付勢せ
しめ得るようスプリング12を取付け、保持軸9
の下面にソレノイド13を配設し、該ソレノイド
13に連結したリンク14を前記凹面鏡10の下
端に連結し、保持軸9から突出せしめた保持アー
ム15先端に、凹面鏡10により反射されたレー
ザー光線5により溶融させるためのプレーテイン
グ金属16を取付ける。このプレーテイング金属
としては、金、白金、銀、チタン、銅等が使用さ
れる。 A concave mirror 10 is attached to the tip of the holding shaft 9 with a laser beam 5.
A pin 11 is pivotally mounted so that the concave mirror 10 can be reflected, and a spring 12 is attached to the upper end of the concave mirror 10 so as to bias the concave mirror 10 around the pin 11.
A solenoid 13 is disposed on the lower surface, a link 14 connected to the solenoid 13 is connected to the lower end of the concave mirror 10, and the laser beam 5 reflected by the concave mirror 10 is directed to the tip of a holding arm 15 that projects from the holding shaft 9. Attach plating metal 16 for melting. Gold, platinum, silver, titanium, copper, etc. are used as the plating metal.
なお、図中17,18は凹面鏡10の角度を所
定の角度に押えるストツパー、19は押しスイツ
チ、20は押しスイツチ19を作動させるリング
状のストツパである。 In the figure, 17 and 18 are stoppers that press the angle of the concave mirror 10 to a predetermined angle, 19 is a push switch, and 20 is a ring-shaped stopper that operates the push switch 19.
真空蒸着時は真空排気装置7により被プレーテ
イング管1内の気体を排出して所定の真空度に保
持させ、ソレノイド13を作動させて凹面鏡10
をピン11のまわりに回転させ、その焦点をプレ
ーテイング金属16の表面に合致させ、レーザー
発生装置4よりレーザー光線5を投光させる。 During vacuum deposition, the vacuum evacuation device 7 exhausts the gas inside the tube to be plated 1 to maintain a predetermined degree of vacuum, and the solenoid 13 is activated to remove the concave mirror 10.
is rotated around the pin 11 so that its focal point matches the surface of the plating metal 16, and the laser beam 5 is emitted from the laser generator 4.
レーザー光線5はレーザー透過窓2を通つて凹
面鏡10により反射し、プレーテイング金属16
に集光し、プレーテイング金属16を溶融蒸発さ
せ、蒸発した溶融金属は被プレーテイング管1内
面に蒸着される。 The laser beam 5 passes through the laser-transmitting window 2 and is reflected by the concave mirror 10 to the plated metal 16.
The plating metal 16 is focused and evaporated, and the evaporated molten metal is deposited on the inner surface of the tube 1 to be plated.
蒸着に際しては、保持軸9を被プレーテイング
管1の軸線方向に摺動させてプレーテイング金属
16を被プレーテイング管1の長手方向に移動さ
せると共に保持軸9を回転させる。これによつて
被プレーテイング管1の内面全体にプレーテイン
グ金属が蒸着される。保持軸9が回転しつつ後退
し、押しスイツチ19がストツパ20に衝突する
と保持軸9はその摺動及び回転を停止する。 During vapor deposition, the holding shaft 9 is slid in the axial direction of the tube to be plated 1 to move the plating metal 16 in the longitudinal direction of the tube to be plated 1, and the holding shaft 9 is rotated. As a result, the plating metal is deposited on the entire inner surface of the tube 1 to be plated. When the holding shaft 9 rotates and retreats and the push switch 19 collides with the stopper 20, the holding shaft 9 stops sliding and rotating.
蒸着が終了したら、ソレノイド13を切り、ス
プリング12によつて凹面鏡10を第2図の実線
位置から二点鎖線位置へ切り換える。この切り換
えによつて凹面鏡10の焦点は被プレーテイング
管1内面の蒸着されたプレーテイング金属表面近
傍に合致する。そこでレーザー光線5をレーザー
発生装置4から発光させつつ保持軸9を回転させ
つつ摺動させる。そうすると、レーザー光線5は
被プレーテイング管1内面に蒸着されたプレーテ
イング金属に集光してこれを溶融あるいは加熱さ
せ、その結果、プレーテイング金属の粒子は滑ら
かになり、弾性的歪は減少して付着層が緻密にな
り且つ付着力が向上する。 When the vapor deposition is completed, the solenoid 13 is turned off, and the concave mirror 10 is switched by the spring 12 from the solid line position to the two-dot chain line position in FIG. By this switching, the focal point of the concave mirror 10 coincides with the vicinity of the surface of the plating metal on the inner surface of the tube 1 to be plated. Therefore, while the laser beam 5 is emitted from the laser generator 4, the holding shaft 9 is rotated and slid. Then, the laser beam 5 focuses on the plating metal deposited on the inner surface of the plated tube 1 and melts or heats it. As a result, the particles of the plating metal become smooth and the elastic strain is reduced. The adhesion layer becomes denser and the adhesion is improved.
第3図及び第4図は本発明の他の実施例で、イ
オンプレーテイングを行う例を示す。 FIGS. 3 and 4 show other embodiments of the present invention, in which ion plating is performed.
アルゴンガス21を供給する導孔22を保持軸
9に穿設し、該導孔22に導管23を接続し、プ
レーテイング金属16を取付ける保持アーム15
を導管23に取付け、プレーテイング金属16を
プラズマ化し被プレーテイング管1内面をマイナ
スに帯電させるための直流電源24を、保持軸9
及び被プレーテイング管1にコードを介して接続
する。図中第1図及び第2図に示す符号と同一の
符号のものは同一のものを示す。 A holding shaft 9 is provided with a guide hole 22 for supplying argon gas 21, a conduit 23 is connected to the guide hole 22, and a holding arm 15 is fitted with a plating metal 16.
is attached to the conduit 23, and a DC power supply 24 for turning the plating metal 16 into plasma and negatively charging the inner surface of the plated tube 1 is connected to the holding shaft 9.
and is connected to the plated tube 1 via a cord. In the drawings, the same reference numerals as those shown in FIGS. 1 and 2 indicate the same components.
イオンプレーテイングを行うに際しては、前記
実施例と同様、レーザー発生装置4よりのレーザ
ー光線5の投光、保持軸9の摺動、回転によるプ
レーテイング金属16の移動、回転を行う他、導
孔22、導管23を通してアルゴンガスを凹面鏡
10に向けて吹き出し、溶融蒸発した金属から凹
面鏡10を保護すると共に被プレーテイング管1
内を真空排気装置7により10-1〜10-2torrのアル
ゴン雰囲気に保持する。なおプレーテイング金属
16が窒化物の場合には、アルゴンガスに代えて
窒素ガスが用いられる。 When performing ion plating, in addition to emitting the laser beam 5 from the laser generator 4 and moving and rotating the plating metal 16 by sliding and rotating the holding shaft 9, as in the previous embodiment, the plating metal 16 is moved and rotated. , argon gas is blown toward the concave mirror 10 through the conduit 23 to protect the concave mirror 10 from the melted and vaporized metal and to protect the plated tube 1.
An argon atmosphere of 10 -1 to 10 -2 torr is maintained inside by a vacuum evacuation device 7. Note that when the plating metal 16 is nitride, nitrogen gas is used instead of argon gas.
又、直流電源24により、安定したグロー放電
が得られ、その結果、レーザー光線5により溶融
蒸発したプレーテイング金属16の金属蒸気がイ
オン化し、陰極である被プレーテイング管1の内
面にイオンプレーテイングが行われる。導管23
から吹き出されるアルゴンガスは、白金、モリブ
デン、タングステン等の高融点金属のイオンプレ
ーテイングに効果があり、グロー放電の安定化と
物理的洗浄効果(イオンボンバーリング)のため
に良い。又、ガスとしは、アルゴンガスや窒素ガ
スの他に、アセチレンガス等を使用することも可
能である。 Further, a stable glow discharge is obtained by the DC power supply 24, and as a result, the metal vapor of the plating metal 16 melted and vaporized by the laser beam 5 is ionized, and ion plating occurs on the inner surface of the plated tube 1, which is the cathode. It will be done. Conduit 23
The argon gas blown out is effective for ion plating of high-melting point metals such as platinum, molybdenum, and tungsten, and is good for stabilizing glow discharge and having a physical cleaning effect (ion bombardment). Further, as the gas, it is also possible to use acetylene gas or the like in addition to argon gas or nitrogen gas.
なお、本発明は前述の実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲内で
種々変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.
本発明のレーザー光線を利用した管内面のプレ
ーテイング装置は前述のごとき構成であるから、
下記のごとき種々の優れた効果を奏し得る。 Since the device for plating the inner surface of a tube using a laser beam of the present invention has the above-mentioned configuration,
Various excellent effects can be achieved as described below.
被プレーテイング管内面に付着したプレーテ
イング金属が再度溶融あるいは加熱されるた
め、金属粒子が細かくなり内表面が緻密になり
且つ付着力が増大する。 Since the plating metal adhering to the inner surface of the tube to be plated is melted or heated again, the metal particles become finer, the inner surface becomes denser, and the adhesion force increases.
レーザー発生装置より発生したレーザーは波
長が揃つてビーム径が細く、大気中でも直進的
に伝送することができるので、細径管のプレー
テイングでも熱源を管外においたままで可能と
なる。 The laser generated by the laser generator has a uniform wavelength, a narrow beam diameter, and can be transmitted straight through the atmosphere, making it possible to plate small-diameter tubes without leaving the heat source outside the tube.
集光レンズによつて集光されたレーザーは高
エネルギー密度であり、高融点金属でも容易に
溶融蒸発させることが可能である。 The laser focused by the condenser lens has a high energy density and can easily melt and evaporate even high-melting point metals.
るつぼ等を使用しないため不純物の混入も少
なく、被プレーテイング管そのものを真空容器
としているため大型の真空装置も必要とせず、
レーザーが直進性であるため数メートルないし
数十メートルに及ぶ長尺物の管内面のイオンプ
レーテイングを均一に行うことが可能である。 Since no crucible is used, there is less contamination by impurities, and since the tube to be plated itself is a vacuum container, there is no need for large vacuum equipment.
Since the laser travels in a straight line, it is possible to perform uniform ion plating on the inner surface of a long tube spanning several meters to several tens of meters.
第1図は本発明の一実施例の説明図、第2図は
第1図の凹面鏡の部分の詳細図、第3図は本発明
の他の実施例の説明図、第4図は第3図の凹面鏡
の部分の詳細図である。
図中1は被プレーテイング管、2はレーザー透
過窓、4はレーザー発生装置、5はレーザー光
線、7は真空排気装置、8は真空配管、9は支持
軸、10は凹面鏡、13はソレノイド、14はリ
ンク、15は保持アーム、16はプレーテイング
金属、21はアルゴンガス、22は導孔、23は
導管、24は直流電源を示す。
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is a detailed diagram of the concave mirror portion of FIG. 1, FIG. 3 is an explanatory diagram of another embodiment of the present invention, and FIG. It is a detailed view of the concave mirror part of the figure. In the figure, 1 is a tube to be plated, 2 is a laser transmission window, 4 is a laser generator, 5 is a laser beam, 7 is a vacuum exhaust device, 8 is a vacuum pipe, 9 is a support shaft, 10 is a concave mirror, 13 is a solenoid, 14 15 is a link, 15 is a holding arm, 16 is a plating metal, 21 is an argon gas, 22 is a guide hole, 23 is a conduit, and 24 is a DC power source.
Claims (1)
れた被プレーテイング管と、被プレーテイング管
内を真空にする装置と、前記被プレーテイング管
内に保持された金属と、前記窓を通して前記被プ
レーテイング管内にレーザー光線を投光するレー
ザー発生装置と、前記レーザー光線を前記金属及
び被プレーテイング管内周に付着した金属に集光
させる凹面鏡とを備えたことを特徴とするレーザ
ー光線を利用した管内面のプレーテイング装置。1. A tube to be plated that is airtight and has a window that transmits a laser beam, a device that evacuates the inside of the tube to be plated, a metal held in the tube to be plated, and a tube to be plated that passes through the window into the tube to be plated. A device for plating the inner surface of a tube using a laser beam, comprising: a laser generator that emits a laser beam onto the metal; and a concave mirror that focuses the laser beam on the metal and the metal attached to the inner periphery of the tube to be plated. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4508581A JPS57158377A (en) | 1981-03-27 | 1981-03-27 | Plating device for inside surface of pipe utilizing laser beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4508581A JPS57158377A (en) | 1981-03-27 | 1981-03-27 | Plating device for inside surface of pipe utilizing laser beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57158377A JPS57158377A (en) | 1982-09-30 |
JPS6150144B2 true JPS6150144B2 (en) | 1986-11-01 |
Family
ID=12709478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4508581A Granted JPS57158377A (en) | 1981-03-27 | 1981-03-27 | Plating device for inside surface of pipe utilizing laser beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57158377A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194067A (en) * | 1984-03-16 | 1985-10-02 | Agency Of Ind Science & Technol | Formation of hard film |
JPS60194066A (en) * | 1984-03-16 | 1985-10-02 | Agency Of Ind Science & Technol | Production of hard film-coated material |
FR2607830B1 (en) * | 1986-12-08 | 1993-04-09 | Univ Limoges | METHOD AND DEVICE FOR VAPORIZATION DEPOSITION INSIDE A TUBE |
JP3742462B2 (en) * | 1996-07-09 | 2006-02-01 | 株式会社イオン工学研究所 | Coating method and coating apparatus |
GB2517436A (en) * | 2013-08-19 | 2015-02-25 | Pct Protective Coating Technologies Ltd | Coating or sealing an internal surface of a workpiece |
JP6143007B2 (en) * | 2014-03-25 | 2017-06-07 | 三井造船株式会社 | Film forming apparatus and film forming method |
-
1981
- 1981-03-27 JP JP4508581A patent/JPS57158377A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57158377A (en) | 1982-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5411797A (en) | Nanophase diamond films | |
JP3203249B2 (en) | Amorphous diamond material produced by laser plasma deposition | |
US4619691A (en) | Method of manufacturing ultra-fine particles | |
US4310614A (en) | Method and apparatus for pretreating and depositing thin films on substrates | |
JP2614457B2 (en) | Laser plasma X-ray generator and X-ray exit opening / closing mechanism | |
KR20030045082A (en) | Deposition of thin films by laser ablation | |
NO180739B (en) | Methods and apparatus for removing surface contaminants by irradiation from a high energy source | |
US6320937B1 (en) | Method and apparatus for continuously generating laser plasma X-rays by the use of a cryogenic target | |
JPS6150144B2 (en) | ||
US4351855A (en) | Noncrucible method of and apparatus for the vapor deposition of material upon a substrate using voltaic arc in vacuum | |
EP0633823B1 (en) | Removal of surface contaminants by irradiation | |
US5422456A (en) | Orbital head laser welder | |
US5372862A (en) | Coating technique for synchrotron beam tubes | |
JP2782247B2 (en) | Laser irradiation torch | |
TWI393486B (en) | Method and apparatus for generating radiation in the wavelength range from about 1 nm to about 30nm, and use in a lithography device or in metrology | |
JPS6352108B2 (en) | ||
IL40703A (en) | Method and apparatus for welding with a high power laser beam | |
JP3897380B2 (en) | Processing method and apparatus | |
KR102585453B1 (en) | Filtered cathodic arc source device operating system and Filtered cathodic arc source operating method using the same | |
US11148945B2 (en) | Method assisted by a laser and high-intensity electric fields for the synthesis and collection of nanoparticles and the generation of coatings | |
JPH08162286A (en) | Laser plasma source | |
JPH04200889A (en) | Cutting method by laser beam | |
JPH01109646A (en) | Laser plasma x-ray source | |
JPS6195794A (en) | Laser beam machine | |
JP2011074442A (en) | Vacuum vapor-deposition apparatus |