JPS6150127B2 - - Google Patents

Info

Publication number
JPS6150127B2
JPS6150127B2 JP5532982A JP5532982A JPS6150127B2 JP S6150127 B2 JPS6150127 B2 JP S6150127B2 JP 5532982 A JP5532982 A JP 5532982A JP 5532982 A JP5532982 A JP 5532982A JP S6150127 B2 JPS6150127 B2 JP S6150127B2
Authority
JP
Japan
Prior art keywords
maraging steel
metal
concentration
solution
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5532982A
Other languages
Japanese (ja)
Other versions
JPS58174531A (en
Inventor
Masabumi Inoe
Hiroshi Takeuchi
Kazunori Umo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP57055329A priority Critical patent/JPS58174531A/en
Publication of JPS58174531A publication Critical patent/JPS58174531A/en
Publication of JPS6150127B2 publication Critical patent/JPS6150127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、マルエージング鋼を加工する際に発
生する鋳造くず、切削くず及びマルエージング鋼
スクラツプをマルエージング鋼溶製原料として再
利用するための方法に関するものである。 従来、鉄ベースの金属くずの再利用に当つて
は、これを電気炉によつて溶解し、溶融金属とス
ラグとの反応又は酸素吹精、粉末吹込などによつ
て精練する。いわゆる、「乾式法」によるのが一
般的であり、マルエージング鋼についても例外で
はない。 しかしながら、この乾式法をマルエージング鋼
の再生に使用する場合には、次ぎのような問題点
がある。 1 乾式における精練である大気溶解、酸素吹精
においては、再生材料の成分として含まれるA
,Tiが酸化して微細な介在物となつて再生
材料中に分散するが、マルエージング鋼のよう
に、高応力に耐えることを特徴とする材料で
は、微小な介在物も異常破断の原因となり得る
ので、介在物の存在は好ましくない。 2 A,Tiの酸化を避けるためには、真空溶
解が用いられるが、マルエージング鋼くずは、
スプリングバツクする性質が強く、大容積のく
ずを溶解しても、採取される地金の量は少ない
ので、多量の処理には、バツチ数が増え、真空
のブレーク及び吸引を繰り返さなければなら
ず、不経済である。また、真空溶解では、Sに
よる汚染は除去しにくく、再生材料のリサイク
ルに支障をきたす。 3 不純物の除去は、溶融状態で行なわなければ
ならないので、おのずとその方法は限定され
る。 これに対し、マルエージング鋼くずを酸によつ
て溶解し、この酸溶解液を電解する、いわゆる、
「湿式法」によつて処理すれば、このような乾式
法における困難は完全に取除かれるが、酸溶液の
簡単な処理によつては、陰極に金属を折出させて
回収することは不可能であることが分かつた。 本発明は、従来技術における以上に述べたよう
な欠点を取除き、高度の品質を要求されるマルエ
ージング鋼の溶解原料として電解金属と同等の高
純度合金を安価に提供することのできるマルエー
ジング鋼くずの再利用方法を得ることを、その目
的とするものである。 本発明においては、この目的を達成するため
に、マルエージング鋼くずを塩酸又は硫酸に溶解
してFe,Ni,及びCoを含む液を作り、この液中
のMo濃度が15mg/以下となるようにMoを除去
した後、この液を電解によつてFe,Ni,Coを溶
製原料用の高純度合金として回収することを特徴
とするものである。 以下、本発明をその実施例などに基づいて詳細
に説明する。 マルエージング鋼は、Fe,Ni,Co,Mo,Tiな
どから成立つており、稀硫酸又は稀塩酸による溶
解においては、室温におけるPH=1.5〜3.5付近に
なるまで溶解は継続する。 この場合、Tiは、溶出後、加水分解を受け
Ti,O2として沈殿し、Moも低級酸化物となり沈
殿するが、Tiはほぼ全量が沈殿するのに対し、
Moは条件により20〜1200ppm程度が液中に残存
する。 本発明者らは、この液を電解し、Fe,Ni,Co
を合金として回収することを試みたが、陰極表面
に黒色の沈殿が付着し、Fe,Ni,Coは、通常の
電解によつて得られるような金属光沢を持つた状
態の下における析出が見られることのできないこ
とを確認した。そこで、本発明者らは、更に、電
解による金属析出の妨害の原因を追求した結果、
その原因が液中のMo濃度に関連することを見出
した。 すなわち、マルエージング鋼の酸溶解液から
Moを段階的に除去し、電解を行なつたところ、
表に示すような結果を得た。
The present invention relates to a method for reusing casting waste, cutting waste, and maraging steel scrap generated during the processing of maraging steel as raw materials for maraging steel melting. Conventionally, when iron-based metal scraps are recycled, they are melted in an electric furnace and refined by a reaction between the molten metal and slag, or by oxygen blowing, powder blowing, or the like. The so-called "dry method" is generally used, and maraging steel is no exception. However, when this dry method is used to regenerate maraging steel, there are the following problems. 1 In atmospheric dissolution and oxygen blowing, which are dry scouring processes, A contained as a component of recycled materials
, Ti oxidizes and becomes fine inclusions that are dispersed in the recycled material, but in materials that are characterized by their ability to withstand high stress, such as maraging steel, minute inclusions can also cause abnormal fractures. The presence of inclusions is undesirable because the 2 To avoid oxidation of A, Ti, vacuum melting is used, but maraging steel scraps
It has a strong spring-back property, and even if a large volume of scrap is melted, the amount of bullion collected is small, so when processing a large amount, the number of batches increases and vacuum breaking and suction must be repeated. , it is uneconomical. Furthermore, in vacuum melting, it is difficult to remove S contamination, which hinders the recycling of recycled materials. 3. Since the removal of impurities must be carried out in a molten state, the method is naturally limited. On the other hand, maraging steel scraps are dissolved in acid and this acid solution is electrolyzed.
If the treatment is carried out by the "wet method", these difficulties in the dry method are completely removed, but by simple treatment with an acid solution, it is impossible to deposit the metal at the cathode and recover it. It turns out it's possible. The present invention eliminates the above-mentioned drawbacks of the prior art, and provides a maraging method that can provide a high-purity alloy equivalent to electrolytic metal at a low cost as a raw material for maraging steel, which requires a high level of quality. The purpose is to find a way to reuse steel scrap. In the present invention, in order to achieve this objective, maraging steel scraps are dissolved in hydrochloric acid or sulfuric acid to create a liquid containing Fe, Ni, and Co, and the Mo concentration in this liquid is adjusted to be 15 mg/ or less. After Mo is removed, this liquid is electrolyzed to recover Fe, Ni, and Co as a high-purity alloy for use as raw materials for melting. Hereinafter, the present invention will be explained in detail based on examples thereof. Maraging steel is made of Fe, Ni, Co, Mo, Ti, etc., and when melted with dilute sulfuric acid or dilute hydrochloric acid, the melting continues until the pH at room temperature reaches around 1.5 to 3.5. In this case, Ti undergoes hydrolysis after elution.
Ti precipitates as O 2 , and Mo also precipitates as a lower oxide, but almost all of Ti precipitates, whereas
Approximately 20 to 1200 ppm of Mo remains in the liquid depending on the conditions. The present inventors electrolyzed this solution to produce Fe, Ni, Co
An attempt was made to recover Fe, Ni, and Co as an alloy, but a black precipitate adhered to the surface of the cathode. I confirmed that it cannot be affected. Therefore, the present inventors further investigated the cause of interference with metal deposition by electrolysis, and found that
We found that the cause was related to the Mo concentration in the liquid. That is, from the acid solution of maraging steel
When Mo was removed step by step and electrolysis was performed,
The results shown in the table were obtained.

【表】 この表から、電解液中のMo濃度が、0〜6mg/
の範囲であれば、析出した金属は、Fe,Ni,
Coの合金として採取されるが、6〜15mg/であ
れば、これに酸化モリブデンが加わつたややもろ
い金属として回収され、これらは、溶製原料とし
て使用することができるが、しかしながら、Mo
濃度が15mg/以上であると、Mo酸化物が析出す
るだけであり、金属を回収することはできないこ
とが分かる。 また、モリブデン濃度は、金属回収の電流効率
にも関与し、電解液中のMo濃度が3mg/の時に
は析出合金に対する電流効率は87%であるが、12
mg/の時には、75%であり、15mg/では70%前
後となることが推定されるので、この面から見て
も15mg/がMo濃度の限界であるものと考えられ
る。 一方、通常、Fe,Ni,Coを含む合金では、Fe
〓を酸化してFe〓とし沈殿・除去し、しかる後
にNi,Coを回収する。そして、このFeの沈殿は
ベンガラ材料として利用されるが、この回収のた
めに、ろ過、水洗、乾燥、焼成等の工程を経て
も、ベンガラ材料はt当たり約30万円程度にしか
評価されない上、沈殿に伴つて10〜20%のNi,
Coが共沈して損失する。 これに対し、本発明においては、合金電解によ
つてFeを回収し、これによつて、Feの沈殿をベ
ンガラに製造するために掛かる経費と、Ni,Co
の損失とを無くし、その代わりに、これをマルエ
ージン鋼製造時に配合する電解鉄に代替させるも
のである。電解鉄の価格は、t当たり約50万円で
あるが、所要電力は1200KWであり電力価格20
円/KWとしても、24000円にしかならず、ベン
ガラ製造に比べ、はるかに有利であることが分か
る。 先に述べたように、従来のマルエージング鋼の
再資源化は、乾式法によるものであるが、この乾
式法は、介在物の完全除去が困難であるという重
大な欠点を持つており、一方、湿式法では、この
欠点は完全に取除かれ、高純度金属を得ることが
できるが、酸溶解液の簡単な処理によつては、電
解によつて陰極に金属を析出回収することは不可
能であつたのを、本発明においては、この湿式法
による金属の析出回収不可能の原因が、成分中の
Moによることをつきとめ、その限界量を求め、
電解によつてFe,Ni,Co合金として回収するこ
とに成功したものであり、これによつて、従来法
ではなし得なかつたマルエージング鋼くずからほ
とんど介在物を含まず低イオウの溶製原料を作る
ことができ、更に、塩酸によつて原料を溶解した
場合、簡単な液処理によつて極めて低イオウの回
収金属が得られるという優れた効果を発揮するも
のである。
[Table] From this table, the Mo concentration in the electrolyte is 0 to 6 mg/
In the range of , the precipitated metals are Fe, Ni,
It is collected as an alloy of Co, but if it is 6 to 15 mg/mo, it is recovered as a slightly brittle metal with molybdenum oxide added to it, and these can be used as raw materials for melting.
It can be seen that when the concentration is 15 mg/min or more, Mo oxide only precipitates and the metal cannot be recovered. In addition, the molybdenum concentration is also related to the current efficiency of metal recovery; when the Mo concentration in the electrolyte is 3 mg/, the current efficiency for the precipitated alloy is 87%, but 12
At mg/, it is 75%, and at 15 mg/, it is estimated to be around 70%, so from this point of view, 15 mg/ is considered to be the limit of Mo concentration. On the other hand, usually in alloys containing Fe, Ni, and Co, Fe
〓 is oxidized to become Fe〓, which is precipitated and removed, and then Ni and Co are recovered. This precipitate of Fe is used as red iron material, but even after undergoing processes such as filtration, washing, drying, and calcination to recover it, red iron material is only valued at about 300,000 yen per ton. , 10-20% Ni with precipitation,
Co precipitates and is lost. In contrast, in the present invention, Fe is recovered by alloy electrolysis, thereby reducing the cost of producing Fe precipitate into red iron and Ni, Co
This eliminates the loss of steel and replaces it with electrolytic iron, which is blended during the production of maraging steel. The price of electrolytic iron is approximately 500,000 yen per ton, but the required power is 1200KW, so the electricity price is 20%.
Even in terms of yen/KW, it costs only 24,000 yen, which shows that it is much more advantageous than red iron manufacturing. As mentioned earlier, the conventional recycling of maraging steel is by the dry method, but this dry method has the serious drawback that it is difficult to completely remove inclusions. In the wet method, this drawback is completely removed and high-purity metals can be obtained, but by simple treatment of the acid solution, it is impossible to deposit and recover the metals on the cathode by electrolysis. However, in the present invention, the reason why metal precipitation cannot be recovered by this wet method is due to the presence of metal in the components.
Find out that it is due to Mo, find its limit amount,
This alloy was successfully recovered as Fe, Ni, and Co alloys through electrolysis, and as a result, it was possible to produce a low-sulfur smelting raw material containing almost no inclusions from maraging steel scraps, which could not be done using conventional methods. Furthermore, when the raw materials are dissolved with hydrochloric acid, it exhibits the excellent effect of obtaining recovered metal with extremely low sulfur through simple liquid treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 マルエージング鋼くずを塩酸又は硫酸に溶解
して、Fe,Ni,Coを含む液を作り、この液から
液中のMoの濃度が15mg/l以下となるようにMoを
除去し、その後、この液を、電解によつてFe,
Ni,Coを溶製原料用の高純度合金として回収す
ることを特徴とするマルエージング鋼くずの再利
用方法。
1. Dissolve maraging steel scraps in hydrochloric acid or sulfuric acid to create a solution containing Fe, Ni, and Co, remove Mo from this solution so that the concentration of Mo in the solution is 15 mg/l or less, and then, This solution is electrolyzed with Fe,
A method for reusing maraging steel scraps, which is characterized by recovering Ni and Co as high-purity alloys for use as raw materials for smelting.
JP57055329A 1982-04-05 1982-04-05 Reuse of maraging steel scrap Granted JPS58174531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055329A JPS58174531A (en) 1982-04-05 1982-04-05 Reuse of maraging steel scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055329A JPS58174531A (en) 1982-04-05 1982-04-05 Reuse of maraging steel scrap

Publications (2)

Publication Number Publication Date
JPS58174531A JPS58174531A (en) 1983-10-13
JPS6150127B2 true JPS6150127B2 (en) 1986-11-01

Family

ID=12995493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055329A Granted JPS58174531A (en) 1982-04-05 1982-04-05 Reuse of maraging steel scrap

Country Status (1)

Country Link
JP (1) JPS58174531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134711A (en) * 1986-11-26 1988-06-07 Takenaka Komuten Co Ltd Improving method for weak ground on periphery of existing structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150383A (en) * 1993-12-01 1995-06-13 Yokota Corp:Kk Production of high-purity metal from waste of metal working and device therefor
JP2770122B2 (en) * 1993-12-29 1998-06-25 株式会社 ヨコタコーポレーション How to produce high-purity iron from scrap metal processing
JP2898189B2 (en) * 1993-12-30 1999-05-31 株式会社 ヨコタコーポレーション Method for producing hydrogen and high-purity iron using waste metal processing materials
JPH07197288A (en) * 1993-12-31 1995-08-01 Yokota Corp:Kk Production of hydrogen to be occluded in hydrogen occlusion alloy and hydrogen occlusion alloy using metal machining scrap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134711A (en) * 1986-11-26 1988-06-07 Takenaka Komuten Co Ltd Improving method for weak ground on periphery of existing structure

Also Published As

Publication number Publication date
JPS58174531A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
JP4219947B2 (en) How to recover lead
KR100614891B1 (en) Method for recovering high purity Indium
JP6493423B2 (en) Method for separating zinc, method for producing zinc material, and method for producing iron material
US4662938A (en) Recovery of silver and gold
CN110616330A (en) Method for recovering rare and noble metals in rhenium-containing high-temperature alloy waste
CA2006893A1 (en) Process for extracting noble metals
JP2008297608A (en) Method for separating/recovering tin
JPS6150127B2 (en)
JP2002129250A (en) Method for producing metallic titanium
JP2012513536A (en) Method for recovering secondary zinc oxide rich in fluoride and chloride
RU2644719C2 (en) Method of waste processing of electronic and electrotechnical industry
JPH11217634A (en) Recovery of metallic tin from tin-containing waste
JPS5967326A (en) Recovery method of valuable metal from alloy containing rare earth elements
JPH04191340A (en) Production of high purity tin
JPH0457603B2 (en)
JP2001279344A (en) Method for recovering tin
JP2001335852A (en) METHOD FOR RECOVERING Nd-BASED RARE EARTH MAGNET ALLOY WASTE POWDER
TW201313911A (en) Method of recycling tin and copper metals from acidic waste liquid
EP0040659B1 (en) Heavy metal recovery in ferrous metal production processes
WO1981003500A1 (en) Heavy metal recovery in ferrous metal production processes
JP3060574B2 (en) Metal tin recovery method
NO831249L (en) PROCEDURE FOR SEPARATION AND EXTRACTION OF IRON AND ITS ALLOY METALS FROM OXYDS
TW201012940A (en) Recycling of lead-free silver containing tin solder dross
US4173467A (en) Process for recovering valuable metals from superalloy scrap
RU2779554C1 (en) Method for producing refined silver from intermediate products of precious metal production containing silver in the form of chloride