JPS6150126A - Automatic dimming electronic flash device - Google Patents

Automatic dimming electronic flash device

Info

Publication number
JPS6150126A
JPS6150126A JP17189884A JP17189884A JPS6150126A JP S6150126 A JPS6150126 A JP S6150126A JP 17189884 A JP17189884 A JP 17189884A JP 17189884 A JP17189884 A JP 17189884A JP S6150126 A JPS6150126 A JP S6150126A
Authority
JP
Japan
Prior art keywords
light
circuit
voltage
control
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17189884A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwata
比呂志 岩田
Shinji Hirata
伸二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Electric Co Ltd
Original Assignee
West Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Electric Co Ltd filed Critical West Electric Co Ltd
Priority to JP17189884A priority Critical patent/JPS6150126A/en
Publication of JPS6150126A publication Critical patent/JPS6150126A/en
Priority to US07/089,003 priority patent/US4847538A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/30Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
    • H05B41/34Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp to provide a sequence of flashes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/30Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
    • H05B41/32Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp for single flash operation
    • H05B41/325Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp for single flash operation by measuring the incident light

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

PURPOSE:To vary an optical peak value with the accurate quantity of emitted light and to perform continuous synchro-flash photography in a short time by providing an FET in series with a flash discharging tube and stopping application of a voltage which makes the FET conductive when the quantity of light received from an object becomes a prescribed value. CONSTITUTION:A DC-DC converter 10 is provided with an oscillating transformer 13 and an oscillating transistor TR14 and converts a DC power 11 to a boosted DC. A flash discharging tube 14 consumes the charged electric charge of a main capacitor C1 to emit light, and an FER15 is connected in series to the discharging tube 14. A voltage control means 16 controls the applied voltage of the FET15. The means 16 consists of a constant voltage generating circuit 17, a circuit 18 which generates a control volage given to the FET15, a circuit 19 which controls the operation of the circuit 18, a control operation stopping circui 20 which receives a light emission stop signal from a light receiving part 34 to operate and stops applying an operation input signal from the operation control circuit 19 to the control voltage generating circuit 18, and a start switch circuit 21 of a device. Thus, the optical peak value is varied with the accurate quantity of emitted light and continuous synchro-flash photography is performed in a short time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は写真撮影等の人工光源として用いられる電子閃
光装置に関し、特に被写体の反射光を受光し自動的に発
光量を制御できる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electronic flash device used as an artificial light source for photography, etc., and more particularly to a device that can receive reflected light from a subject and automatically control the amount of light emitted.

従来例の構成とその問題点 最近の自動調光電子閃光装置の多くは第1図に示すよう
に閃光放電管2と直列に5CR3を接続し、主コンデン
サ1の充電電荷ヲトリガー回路4の作動によυ励起され
る閃光放電管2に与え発光させ、被写体の反射光を受光
する受光部8での受光量が所定値に達したときに5CR
siオンさせて、転流コンデンサ5の充電電荷で5CR
3のアノード・カンード間を逆バイアスし、ターンオフ
して発光を停止させるものが主流となっている。
Conventional structure and its problems Many of the recent automatic dimming electronic flash devices connect a 5CR3 in series with the flash discharge tube 2 as shown in FIG. When the amount of light received by the light receiving section 8 that receives the reflected light from the subject reaches a predetermined value, the 5CR is activated.
si is turned on and the charging charge of commutation capacitor 5 is 5CR.
The mainstream is to apply a reverse bias between the anode and cand (No. 3) to turn off and stop emitting light.

この従来装置においては第2図に示すように被写体の受
光量が所定値に達して発光停止がTの時間に行わnれば
、適正発光量であるにも拘わらず5CRsがオンし、5
CR3の主電極間に逆バイアスが印加され5CR3がタ
ーンオフしても、閃光放電管2、転流コンデンサ5.5
CRsi介してなお電流が流nるために斜線で示すよう
な光が余分に発せらnて発光量がオーバーになる。
In this conventional device, as shown in FIG. 2, if the amount of light received by the subject reaches a predetermined value and the light emission is stopped at time T, 5CRs is turned on even though the amount of light is appropriate, and 5
Even if a reverse bias is applied between the main electrodes of CR3 and 5CR3 is turned off, the flash discharge tube 2 and the commutating capacitor 5.5
Since current still flows through the CRsi, extra light as shown by diagonal lines is emitted, resulting in an excessive amount of light emission.

また、写真撮影の中には短時間内に連続して繰り返して
行ないたい場合がらり、このような撮影に同調発光させ
るためには転流コンデンサ5、抵抗6.了の充電時定数
は一回の発光毎に5CR3を確実にターンオフさせるの
に、時定数を小さくするために抵抗6を小さくしすぎる
と5CR9がターンオフレなくなる。
In addition, there are times when it is desired to repeatedly take photographs in a short period of time, and commutating capacitor 5, resistor 6. The final charging time constant ensures that 5CR3 is turned off every time light is emitted, but if the resistor 6 is made too small in order to reduce the time constant, 5CR9 will not turn off.

また、高感度フィルムを使用した場合には低感度フィル
ムに比較して、特に近距離被写体では短時間内に、たと
えば10数μ式で発光制御しなけnばならず、そのよう
に短時間内で発光制御すると相反則不軌の問題が生じる
Also, when using a high-speed film, compared to a low-speed film, it is necessary to control the light emission in a short time, especially when photographing a subject at a close distance, for example, using a 10-odd micrometer formula. If the light emission is controlled by , the problem of reciprocity law failure occurs.

発明の目的 本発明は、上記した問題点を解決した自動調光電子閃光
装置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an automatic dimming electronic flash device that solves the above-mentioned problems.

発明の構成 本発明の主な構成は、閃光放電管と直列に電界効果トラ
ンジスタを接続し、そのゲートとソース間の印加電圧を
制御することにより電界効果トランジスタの導通を制御
する電圧制御手段を設け、被写体光を受光し、その受光
量が所定値になったときに前記電圧制御手段による電界
効果トランジスタへの電圧印加を停止させる受光部とか
らなる。
Structure of the Invention The main structure of the present invention is to connect a field effect transistor in series with a flash discharge tube, and to provide voltage control means for controlling conduction of the field effect transistor by controlling the voltage applied between its gate and source. , a light receiving section that receives object light and stops applying voltage to the field effect transistor by the voltage control means when the amount of the received light reaches a predetermined value.

実施例の説明 第3図は本発明の自動調光電子閃光装置の第1の実施例
である電気回路図である。図において、10は一次巻線
13−1、二次巻線13−2、補助巻線13−3、出力
巻線13−4を有した発振トランス13と発振トランジ
スタ12等を有し、直流電源11を昇圧した直流Kf換
する電源であるDC−DCコンバータ、14は主コンデ
ンサ1の充電電荷で発光する閃光放電電管、15は閃光
放電管14に直列接続の電界効果トランジスタ、16は
電界効果トランジスタ(以下、FETと称する)の印加
電圧を制御する電圧制御手段゛、33は閃光放電管14
に励起するトリガー回路、34は被写体光を受光してそ
の受光量が所定値に達したときに発光停止信号を電圧制
御手段16に印加する受光部である。
DESCRIPTION OF THE EMBODIMENTS FIG. 3 is an electrical circuit diagram of a first embodiment of the automatic light control electronic flash device of the present invention. In the figure, reference numeral 10 includes an oscillation transformer 13 having a primary winding 13-1, a secondary winding 13-2, an auxiliary winding 13-3, an output winding 13-4, an oscillating transistor 12, etc., and a DC power supply. 11 is a DC-DC converter which is a power source for converting boosted direct current Kf, 14 is a flash discharge tube that emits light by the charge charged in the main capacitor 1, 15 is a field effect transistor connected in series with the flash discharge tube 14, and 16 is a field effect A voltage control means 33 for controlling the voltage applied to a transistor (hereinafter referred to as FET) is a flash discharge tube 14.
A trigger circuit 34 is a light receiving section that receives subject light and applies a light emission stop signal to the voltage control means 16 when the amount of light received reaches a predetermined value.

電圧制御手段16は、定電圧発生回路1了と、EFTl
 5に与える制御電圧を発生する回路18と、制御電圧
発生回路18の動作を制御する回路19と、受光部34
からの発光停止信号を受けて動作し、動作制御回路19
による制御電圧発・生回路1Bへの動作入力信号の印加
を停止せしめる制御動作停止回路20と、装置の起動ス
イッチ回路21とから成る。
The voltage control means 16 includes a constant voltage generation circuit 1 and an EFTl.
5, a circuit 19 that controls the operation of the control voltage generation circuit 18, and a light receiving section 34.
The operation control circuit 19 operates upon receiving a light emission stop signal from the
The device comprises a control operation stop circuit 20 for stopping the application of an operation input signal to the control voltage generation/generating circuit 1B, and a start switch circuit 21 for the device.

次に以上の構成より成る装置の動作について第4図のタ
イムチャートとともに説明する@DC−DCコンバータ
10の電源スィッチをオンすることにより周知のように
発振トランジスタ10は発振し、発振トランス13の二
次巻線13−2および出力巻線13−4から出力電圧が
発生し、二次巻線13−2の出力電圧をダイオードで直
流変換した電圧で主コンデンサ1は高電圧に充電される
Next, the operation of the device having the above configuration will be explained with reference to the time chart in FIG. An output voltage is generated from the secondary winding 13-2 and the output winding 13-4, and the main capacitor 1 is charged to a high voltage with the voltage obtained by converting the output voltage of the secondary winding 13-2 into DC using a diode.

定電圧発生回路17のトランジスタ37のエミッタには
定電圧ダイオードにより所定値の定電圧が現れる。この
ような状態において、起動スイッチ回路21内のスイッ
チ36を第4図AのようにT1 の時期にオンすると、
トランジスタ29が導通状態になりNANDゲート26
の入力端子IがLレベルになるので、NANDゲート2
6の出力はHレベルに反転し、コンデンサ3oと抵抗3
1との時定数で設定されたパルス電圧が発生し、NAN
Dゲート2了を介してNANDゲート28に印加され、
NANDゲート28から第4図Bに示すような出力が発
生し、制御電圧発生回路18に入力される。このNAN
Dゲート28の出力時間@T4 Tlは、主コンデンサ
1の充電電荷が閃光放電管14を介して全て放電する時
間と等しいか、またはそれよりも長い時間になるように
コンデンサ30、抵抗31による時定数で調整される。
A constant voltage of a predetermined value appears at the emitter of the transistor 37 of the constant voltage generating circuit 17 due to a constant voltage diode. In this state, if the switch 36 in the starting switch circuit 21 is turned on at time T1 as shown in FIG. 4A,
Transistor 29 becomes conductive and NAND gate 26
Since the input terminal I of the NAND gate 2 becomes L level,
The output of 6 is inverted to H level, and the capacitor 3o and resistor 3
A pulse voltage set with a time constant of 1 is generated, and the NAN
applied to NAND gate 28 via D gate 2,
An output as shown in FIG. 4B is generated from the NAND gate 28 and input to the control voltage generation circuit 18. This NAN
The output time @T4 Tl of the D gate 28 is determined by the capacitor 30 and the resistor 31 so that the time required for the charge in the main capacitor 1 to fully discharge through the flash discharge tube 14 is equal to or longer than that. Adjusted by constant.

NANDゲート28の出力によ〕トランジスタ22は導
通し、さらにトランジスタ23も導通し第4図Cのよう
に制御電圧発生回路18からの定電圧を抵抗24.25
で分割した電圧Vが抵抗260両端に発生し、この電圧
はFET1sのゲート・ソース間に印加され、FET1
5は導通状態になるQ FET1sの導通によりトリガー回路33のトリガーコ
ンデ/す39、トリガートランス38の一次巻線を介し
て電流が流れるので、トリガートランス38の二次巻線
から第4図りのようなトリガー電圧が発生し、これによ
り閃光放電管14は第4図のT2の時間に励起状態にさ
れて、導通状態のFET15i介して主コンデンサ1の
充電電荷を消費しながら、第4図Eのように発光する。
The transistor 22 becomes conductive due to the output of the NAND gate 28, and the transistor 23 also becomes conductive, as shown in FIG.
A voltage V divided by is generated across the resistor 260, and this voltage is applied between the gate and source of FET1s,
5 is in a conductive state. Due to the conduction of Q FET 1s, current flows through the trigger converter 39 of the trigger circuit 33 and the primary winding of the trigger transformer 38, so that the current flows from the secondary winding of the trigger transformer 38 as shown in the fourth diagram. A trigger voltage is generated, which causes the flash discharge tube 14 to be excited at time T2 in FIG. It emits light like that.

この閃光放電管14からの発光は被写体に照射され、被
写体からの反射光は受光部34の受光素子36に入射さ
n、第4図のT3の時間に受光量が所定値に達すると、
受光部34から発光停止信号が電圧制御手段16に印加
され、この発光停止信号によりトランジスタ32が導通
し、抵抗310両端を短絡するので、T3の時期に第4
図Bおよび第4図Cの出力はなくなり、制御電圧発生回
路18のトランジスタ22.23は非導通になるので、
抵抗25に電圧が発生せず、FET15は非導通に反転
し、閃光放電管14は第4図T3の時間で発光停止する
The light emitted from the flash discharge tube 14 is irradiated onto the subject, and the reflected light from the subject is incident on the light receiving element 36 of the light receiving section 34. When the amount of light received reaches a predetermined value at time T3 in FIG.
A light emission stop signal is applied from the light receiving section 34 to the voltage control means 16, and this light emission stop signal makes the transistor 32 conductive and short-circuits both ends of the resistor 310.
The outputs in Figures B and 4C disappear, and the transistors 22 and 23 of the control voltage generation circuit 18 become non-conductive.
No voltage is generated across the resistor 25, the FET 15 is turned non-conductive, and the flash discharge tube 14 stops emitting light at time T3 in FIG. 4.

従って、閃光放電管14からの発光は第4図EのT2か
らT3までの時間となる。
Therefore, the light emission from the flash discharge tube 14 is from T2 to T3 in FIG. 4E.

以上のように動作するが、抵抗24と抵抗25の比率を
変えて抵抗25に発生する電圧に太きくしてFET16
f介して流れる電流イ直を犬きくすると、第4図Fに示
すように第4図:Eに示した光ピーク値H1より高い光
ピーク値H2で発光、させることもできるし、また逆に
抵抗25の発光電圧を小さくするとHl より低い、光
ピーク値で発光させることもできる。また、トリガー回
路33の動作もFET1sの導通によりトリガーコンデ
ンサ39を介して充電電流に基づいて行なわせるように
したが、第6図に示すようにトリガーコンデンサ39を
予め充電しておき、起動スイッチ回路21のスイッチ3
6とスイッチ40とを連動させておけば、スイッチ36
のオンによりスイッチりがオンしくトリガーコンデンサ
39がトリガートランス38の一次巻線を介して放電し
、二次巻線に高圧のトリガー電圧を発生して閃光放電管
14を励起させることができる。さらに電源としてDC
−DCコンバータによる電源を用いたが他の高圧の積層
電池を用いてもよいことは勿論である。
It operates as described above, but by changing the ratio of the resistor 24 and the resistor 25 and increasing the voltage generated at the resistor 25, the FET 16
If the current I flowing through f is increased, light can be emitted at a light peak value H2 higher than the light peak value H1 shown in Fig. 4E, as shown in Fig. 4F, or vice versa. By reducing the light emission voltage of the resistor 25, light can be emitted at a light peak value lower than Hl. Further, the operation of the trigger circuit 33 is also caused to be performed based on the charging current via the trigger capacitor 39 by conduction of the FET 1s, but the trigger capacitor 39 is charged in advance as shown in FIG. 21 switch 3
If 6 and switch 40 are linked, switch 36
When the switch is turned on, the trigger capacitor 39 is discharged through the primary winding of the trigger transformer 38, and a high trigger voltage is generated in the secondary winding to excite the flash discharge tube 14. Furthermore, DC as a power source
-Although a DC converter power source is used, it goes without saying that other high-voltage stacked batteries may be used.

第6図は、本発明の自動調光電子閃光装置の第2実施例
を示す電気回路図であり、第1の実施例における制御電
圧発生回路全相異った値の制御電圧を異った時間に発生
し、FET15のゲート・ソース間に印加する第1の制
御電圧発生口P41と第2の制御電圧発生回路42とで
構成し、また制御電圧発生回路の動作制御回路を第1の
制御電圧発生回路41と第2の制御電圧発生回路42の
動作を夫々制御する第1の動作制御回路43と第2の動
作制御回路44とで構成し、さらに制御電圧発生回路を
制御する動作制御回路の制御動作停止回路を受光部34
からの発光停止信号により動作して第1.第2の動作制
御回路43.44の動作を停止させるように構成してな
る。
FIG. 6 is an electric circuit diagram showing a second embodiment of the automatic dimming electronic flash device of the present invention. It is composed of a first control voltage generation port P41 and a second control voltage generation circuit 42, which are generated at the same time and applied between the gate and source of the FET 15, and the operation control circuit of the control voltage generation circuit is controlled by the first control voltage generation port P41. An operation control circuit that includes a first operation control circuit 43 and a second operation control circuit 44 that control the operations of the voltage generation circuit 41 and the second control voltage generation circuit 42, respectively, and further controls the control voltage generation circuit. The control operation stop circuit of the light receiving section 34
It is activated by the light emission stop signal from the first. It is configured to stop the operation of the second operation control circuits 43 and 44.

なお、第1の実施例と同図番のものは同機能であるので
説明は省略して以下に動作を第7図のタイムチャートと
ともに説明する。
Components with the same figure numbers as those in the first embodiment have the same functions, so the explanation will be omitted and the operation will be explained below with reference to the time chart of FIG. 7.

DC−DCコンバータ1oの動作により主コンデンサ1
が充電さnた状態で第1の実施例と同様に起動スイッチ
回路21内のスイッチ36を第7図AのT5の時間にオ
ンすることによυトランジスタ29が導通し、第1の動
作制御回路43のNANDゲート52の出力はHレベル
に反転し、NANDゲート53の出力はコンデンサ54
と抵抗55との時定数にもとづいて第7図Bのようにな
り、この出力は第1の制御電圧発生回路41に印加され
、トランジスタ46は導通し、さらにトランジスタ47
が導通して抵抗48と抵抗25の抵抗比に応じた値で抵
抗25に電圧が発生し、この電圧はFET1sのゲート
・ソース間に印加され、FET15は導通し、トリガー
回路33から第7図りのようなトリガーパルスが発生し
、閃光放電管14は励起され、第7図Eに示すようにT
6の時間で主コンデ/す1の充電電荷により発光開始し
、被写体を照射する。
Main capacitor 1 due to operation of DC-DC converter 1o
In the charged state, the switch 36 in the starting switch circuit 21 is turned on at time T5 in FIG. The output of the NAND gate 52 of the circuit 43 is inverted to H level, and the output of the NAND gate 53 is connected to the capacitor 54.
Based on the time constants of the resistor 55 and the resistor 55, the output becomes as shown in FIG.
becomes conductive, and a voltage is generated across the resistor 25 with a value corresponding to the resistance ratio of the resistor 48 and the resistor 25. This voltage is applied between the gate and source of the FET 1s, and the FET 15 becomes conductive, causing the trigger circuit 33 to A trigger pulse such as is generated, the flash discharge tube 14 is excited, and T as shown in FIG.
At time 6, the main condenser 1 starts emitting light due to the charged charge, and irradiates the subject.

第7図13に示す第1の動作制御回路43からの出力が
T7の時点でHレベルからLレベルに反転し第1の制御
電圧発生回路の41の動作は停止され、一方第2の動作
制御回路44のN A N Dゲート56の出力はHレ
ベルに反転し、第1の動作制御回路43動作と同様にコ
ンデンサ57、抵抗58の時定数に基いた反転出力が第
7図Cに示すようにT7の時点でNANDゲート59か
ら発生し、この出力により第2の制御電圧発生回路42
のトランジスタ49が導通し、さらにトランジスタ5o
が導通する。
The output from the first operation control circuit 43 shown in FIG. The output of the NAND gate 56 of the circuit 44 is inverted to H level, and the inverted output based on the time constants of the capacitor 57 and resistor 58 is as shown in FIG. 7C, similar to the operation of the first operation control circuit 43. is generated from the NAND gate 59 at time T7, and this output causes the second control voltage generation circuit 42
The transistor 49 becomes conductive, and the transistor 5o becomes conductive.
conducts.

他方、T7の時点ではNANDゲート53がらの出力が
なくなるので、トランジスタ46.47は非導通となる
On the other hand, at time T7, the output from the NAND gate 53 disappears, so the transistors 46 and 47 become non-conductive.

トランジスタ49.50の導通により抵抗61、抵抗2
5の抵抗比率に基づく電圧が抵抗25に発生じ、第1の
制御電圧発生回路41の動作による電圧とは異った電圧
がFET1sのゲート・ノース間に印加される。今、抵
抗61の値を調整して抵抗48と抵抗25との抵抗比に
よるものより抵抗61と抵抗25との抵抗比によ・り抵
抗26に得られる電圧を大きくすると、FET1sには
より多くの電流を流すことができるので第7図Eに示す
ように閃光放電管14はT7の時間以降、光ビーク値が
大きな発光となる。
Due to conduction of transistors 49 and 50, resistor 61 and resistor 2
A voltage based on the resistance ratio of 5 is generated in the resistor 25, and a voltage different from the voltage caused by the operation of the first control voltage generating circuit 41 is applied between the gate and north of the FET 1s. Now, if the value of the resistor 61 is adjusted and the voltage obtained at the resistor 26 is made larger due to the resistance ratio of the resistor 61 and the resistor 25 than that due to the resistance ratio between the resistor 48 and the resistor 25, the voltage obtained at the resistor 26 will be increased. Therefore, as shown in FIG. 7E, the flash discharge tube 14 emits light with a large optical peak value after time T7.

閃光放電管14からの発光は第7図で示す16時間にお
ける発光開始と共に被写体を照射し、その反射光は受光
部34に受光され、T8の時間で受光量が所定値に達す
ると、発光停止信号が受光部34から制御動作停止回路
45に発せらnlこの発光停止信号によりトランジスタ
60が導通し、抵抗58′jf:、短絡するので、第2
の動作制御回路44の出力は第7図CのようにT8の時
間にLレベルに反転し、トランジスタ49,50は非導
通になり、したがって抵抗26に電圧が発生しなくなる
のでFET15は非導通に反転し、第7図Eに示すよう
に閃光放電管14からの発光はT8の時間に終了する。
The light emitted from the flash discharge tube 14 irradiates the subject with the start of light emission at 16 hours shown in FIG. 7, and the reflected light is received by the light receiving section 34. When the amount of light received reaches a predetermined value at time T8, the light emission stops. When a signal is issued from the light receiving section 34 to the control operation stop circuit 45, the transistor 60 becomes conductive due to this light emission stop signal, and the resistor 58'jf: is short-circuited.
The output of the operation control circuit 44 is inverted to the L level at time T8 as shown in FIG. On the other hand, as shown in FIG. 7E, the light emission from the flash discharge tube 14 ends at time T8.

なお、被写体が比較的近距離にあり第2の動作制御回路
44、第2の制御電圧発生回路42の動作開始時点T7
までのたとえば”10の時間に受光部34の受光量が所
定値に達したときには、°受光部34からの発光停止信
号によりトランジスタ60.61が導通し、抵抗55.
58を短絡するので、前述したように抵抗25に電圧が
得られなくなυ、したがって閃光放電管14の発光は第
了図FのTloの時点で終了する。
Note that the object is relatively close and the second operation control circuit 44 and the second control voltage generation circuit 42 start operating at time T7.
For example, when the amount of light received by the light receiving section 34 reaches a predetermined value at time 10, the transistors 60, 61 are turned on by the light emission stop signal from the light receiving section 34, and the resistors 55, 61 are turned on.
58 is short-circuited, as described above, no voltage can be obtained across the resistor 25, υ, and therefore, the light emission of the flash discharge tube 14 ends at time Tlo in FIG.

第8図は本発明の自動調光電子閃光装置の第3実施例を
示した電気回路図で、第1.第2の動作制御回路43.
44の動作を選択して切換えるスイッチ62を第2の実
施例の起動スイッチ回路21に併設したものであり、他
の回路構成は第2の実施例と同じであり、本実施例を第
9図のタイムチャートとともに説明する。
FIG. 8 is an electrical circuit diagram showing a third embodiment of the automatic dimming electronic flash device of the present invention. Second operation control circuit 43.
A switch 62 for selecting and switching the operation of 44 is added to the start switch circuit 21 of the second embodiment, and the other circuit configuration is the same as that of the second embodiment, and this embodiment is shown in FIG. This will be explained along with the time chart.

今、切換スイッチ62を62−1に切換えた場合には、
第2実施例と同様の動作となり、第9図Aに示すように
T11の時点においてスイッチ36をオンすると、前述
したように7A1の動作制御回路43のNANDゲート
63から第9図BのようにT からT13までの時間巾
の出力を発し、閃光放電管14から第9図Eのように光
ピーク値H3α氏横危砿T  まで行なわn、次いでT
13の時間になると、第2の動作制御回路44から第9
図りに示す出力が発せられ、これにより第9図Eのよう
にH3より高いH4の光ピーク値での発光が行なわ汎る
Now, if the selector switch 62 is switched to 62-1,
The operation is similar to that of the second embodiment, and when the switch 36 is turned on at time T11 as shown in FIG. 9A, the NAND gate 63 of the operation control circuit 43 of 7A1 as shown in FIG. 9B as described above. It emits an output with a time span from T to T13, and outputs from the flash discharge tube 14 as shown in FIG.
At time 13, the second operation control circuit 44
The output shown in the figure is emitted, and as a result, light is emitted at a light peak value of H4 higher than that of H3 as shown in FIG. 9E.

閃光放電管14の発光による被写体の反射′光を受光す
る受光部34での受光量が所定値に達した時点T14で
、前述したと同様に抵抗65が短絡され発光は終了する
At time T14 when the amount of light received by the light receiving section 34, which receives the reflected light from the subject due to the light emitted by the flash discharge tube 14, reaches a predetermined value, the resistor 65 is short-circuited and the light emission ends, as described above.

つぎに切換スイッチ62f62−2に切換えた状態にお
いてT11の時間にスイッチ36をオンし、トランジス
タ2つが導通すると第2の動作制御回路44のN A 
N Dゲート56の出力はHレベルに反転し、コンデン
サ57と抵抗58の時定数に基づく出力が第9図Fに示
すように発せられ、この出力によ!11第2の制御電圧
発生回路42を動作させ、閃光放電管14からは第9図
Gに示すように第9図Eに示したピーク値H4の光が発
せられ被写体に照射し、その反射光の受光量がT16の
時間で所定値に達すると、受光部34からの発光停止信
号により抵抗58が短絡さnてNANDゲート59から
出力が第2の制御電圧発生回路42に印加されなくなり
、FET1sは非導通となって発光全停止する。
Next, with the changeover switch 62f62-2 switched on, the switch 36 is turned on at time T11, and when the two transistors become conductive, the N A of the second operation control circuit 44 is turned on.
The output of the ND gate 56 is inverted to H level, and an output based on the time constant of the capacitor 57 and resistor 58 is generated as shown in FIG. 9F. 11 The second control voltage generation circuit 42 is operated, and the flash discharge tube 14 emits light with the peak value H4 shown in FIG. 9E, as shown in FIG. 9G, and irradiates the subject with the reflected light. When the amount of light received reaches a predetermined value at time T16, the light emission stop signal from the light receiving section 34 short-circuits the resistor 58, so that the output from the NAND gate 59 is no longer applied to the second control voltage generation circuit 42, and the FET 1s becomes non-conductive and stops emitting light.

なお、第2の動作側■回路44のN A NDゲート5
9の出力時間(T16 ”1’ 3”T1□−T11)
は、第9図Gの破線で示すように主コンデンサ1の充電
電荷の全てが閃光放電管14に消費されて発光する、い
わゆる全発光するのに要する時間と同じか、またはそn
以上となるようにコンデンサ57、抵抗58の時定数が
調整される。
Note that the NAND gate 5 of the second operating side ■circuit 44
9 output time (T16 "1'3" T1□-T11)
As shown by the broken line in FIG. 9G, the time required for all of the charge in the main capacitor 1 to be consumed by the flash discharge tube 14 and emit light, or so-called full light emission, is equal to or around the same time.
The time constants of the capacitor 57 and the resistor 58 are adjusted so as to achieve the above.

発明の効果 以上本発明の実施例について詳細に説明したが、本発明
の自動調光電子閃光装置の効果は概ね次の通りである。
Effects of the Invention Although the embodiments of the present invention have been described in detail above, the effects of the automatic dimming electronic flash device of the present invention are generally as follows.

(1)閃光放電管と直列に発光制御するスイッチ素子と
してFETを接続し、このFETのゲート、−>制御電
圧を印加する電圧制御手段によってFETの動作を制御
するだけで、発光量の制御を行うものであり、冒頭に述
べた従来装置における5CRi用いた場合のターンオフ
時における増発光による発光量オーバの問題は起らない
(1) The amount of light emitted can be controlled simply by connecting an FET as a switch element for controlling light emission in series with the flash discharge tube, and controlling the operation of the FET using a voltage control means that applies a control voltage to the gate of this FET. This eliminates the problem of excessive light emission due to increased light emission at turn-off when 5CRi is used in the conventional device described at the beginning.

(2)従来装置で、高感度フィル・ムを用いた場合には
特に近距離側において相反則不軌の問題が生じることが
あるが、本発明装置では閃光放電管の発光のピーク値を
FETへの電圧印加制御で調整しうるので、従来装置に
比して光ピーク値を低くして閃光時間を長くすることが
できるので、そのような問題点は全くない。
(2) In the conventional device, when a high-sensitivity film is used, reciprocity law failure may occur, especially on the short distance side, but in the device of the present invention, the peak value of light emission from the flash discharge tube is transferred to the FET. Since this can be adjusted by controlling the voltage application, the light peak value can be lowered and the flash duration can be increased compared to conventional devices, so there is no such problem at all.

(3)第2.第3実施例においては、発光初期では光の
ピーク値を低くした発光を行ない次いでそ扛よりも高い
ピーク値での発光をさせることにより、近距離側にある
被写体照射のために発光初期における相反則不軌の問題
を除去し、次いで相反則不軌の問題が殆んど生じない中
距離以上の被写体を照射する場合には高いピーク値の高
輝度発光を行って従来の装置と同様の発光での被写体照
射ができる。
(3) Second. In the third embodiment, by emitting light with a low peak value at the initial stage of light emission and then emitting light at a higher peak value than that, the contrast in the early stage of light emission is achieved in order to illuminate a subject located at a short distance. After eliminating the problem of reciprocity failure, when illuminating a subject at a medium distance or longer where the problem of reciprocity failure hardly occurs, high-intensity light emission with a high peak value is performed to achieve the same light emission as the conventional device. Can illuminate the subject.

(4)従来装置では閃光時間は全発光の場合でも1m5
eC程度で、フォーカルプレーンシャッタでは、低速の
シャッタ速度(一般に1/60秒以下)しか同調できな
いが、本発明装置による閃光発光時間は電圧制御手段に
よるFETへの印加電圧の大きさ、印加時間を調整する
ことにより簡単に3,4・・・m5ecと長くすること
ができる撮影ができる。
(4) With conventional equipment, the flash duration is 1m5 even when the light is fully emitted.
eC, and focal plane shutters can only be tuned at low shutter speeds (generally 1/60 seconds or less), but the flash emission time with the device of the present invention depends on the magnitude and duration of the voltage applied to the FET by the voltage control means. By adjusting the length, it is possible to easily take pictures that can be made as long as 3, 4...m5ec.

(5)さらに、第3実施例では発光初期は、光ピーク値
を低くし続いて光ピーク値の高い発光を行なわせる第1
の発光モードと、発光初期から高い光のピーク値で発光
させる第2の発光モードとの選択ができるようにしてい
るので、フィルム感度の高・低に合せて第1あるいは第
2の発光モールドでの発光撮影が可能である。
(5) Furthermore, in the third embodiment, in the initial stage of light emission, the light peak value is lowered, and then light emission with a higher light peak value is performed.
Since it is possible to select between the light emission mode of It is possible to take pictures with light emission.

(6)本発明装置ではFETのゲート電圧印加可否で発
光制御でき、従来装置のようにスイッチ素子のターンオ
フ回路が不要なので、ターンオフ回路の動作時間追従性
の遅れから起る発光制御ができないために短時間内に繰
り返した複数回発光に限定が生じるということはなく、
起動スイッチ回路のスイッチ動作をカメラの撮影動作に
合せて同調させるだけで何ら問題なく短時間における連
続的同調発光撮影ができる。
(6) In the device of the present invention, light emission can be controlled by applying or not applying gate voltage to the FET, and unlike conventional devices, there is no need for a turn-off circuit for a switch element. There is no limit to the number of times the light can be emitted repeatedly within a short period of time.
Continuous synchronized light emission photography can be carried out in a short period of time without any problems simply by synchronizing the switch operation of the start switch circuit in accordance with the photographing operation of the camera.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動調光電子閃光装置の電気回路図、第
2図は第1図の従来装置の閃光波形図、第3図は本発明
の自動調光電子閃光装置の第1実施例を示す電気回路図
、第4図は本発明の第1実施例のタイムチャート、第6
図は第1実施例におけるトリガー回路の他の実施例を示
す電気回路図、第6図は本発明の自動調光電子閃光装置
の第2の実施例を示す電気回路図、第7図は本発明の第
2の実施例のタイムチャート、第8図は本発明の自動調
光電子閃光装置の第3の実施例を示す電気回路図、第9
図は本発明の第3の実施例のタイムチャートである。 1・・・・・・DC−DCコンバータ、14・・・・・
・閃光放電揄、15・・・・・・FET、16・・・・
・・電圧制御手段、33・・・・・・トリガー回路、3
4・・・・・・受光部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名旧図
            第9 Td4  1aTy   T8   %−−÷a!間 第8図 L−−−一−−工−1u TttTn     万/77J7ン7    hダ 
η5一時間
FIG. 1 is an electric circuit diagram of a conventional automatic dimming electronic flash device, FIG. 2 is a flash waveform diagram of the conventional device shown in FIG. 1, and FIG. 3 is a first embodiment of the automatic dimming electronic flash device of the present invention. FIG. 4 is a time chart of the first embodiment of the present invention, and FIG.
The figure is an electric circuit diagram showing another embodiment of the trigger circuit in the first embodiment, FIG. 6 is an electric circuit diagram showing a second embodiment of the automatic dimming electronic flash device of the present invention, and FIG. FIG. 8 is a time chart of the second embodiment of the invention, and FIG. 9 is an electric circuit diagram showing the third embodiment of the automatic dimming electronic flash device of the invention.
The figure is a time chart of a third embodiment of the present invention. 1...DC-DC converter, 14...
・Flash discharge, 15...FET, 16...
...Voltage control means, 33...Trigger circuit, 3
4... Light receiving section. Name of agent Patent attorney Toshio Nakao and one other person Old figure No. 9 Td4 1aTy T8 %--÷a! Figure 8L---1--Eng-1u TttTn 10,000/77J7n7hda
η5 one hour

Claims (1)

【特許請求の範囲】[Claims] 電源と、前記電源により充電される主コンデンサと、前
記主コンデンサの充電電荷を消費して発光する閃光放電
管と、前記閃光放電管を介した前記主コンデンサの放電
ループ内に設けられた前記発光を制御するFETと、前
記FETのゲートへの印加電圧を制御し前記FETの制
御の動作を制御する電圧制御手段と、被写体の反射光を
受光し、その受光量が所定値に達したときに前記電圧制
御手段に発光停止信号を印加し、前記電圧を制御手段に
よる前記FETのゲートへの印加電圧を制御させる受光
部とを備えた自動調光電子閃光装置。
a power supply, a main capacitor charged by the power supply, a flash discharge tube that emits light by consuming the charge of the main capacitor, and the light emission provided within the discharge loop of the main capacitor via the flash discharge tube. a voltage control means for controlling the voltage applied to the gate of the FET to control the control operation of the FET; An automatic dimming electronic flash device comprising: a light receiving section that applies a light emission stop signal to the voltage control means and controls the voltage applied to the gate of the FET by the control means.
JP17189884A 1984-08-18 1984-08-18 Automatic dimming electronic flash device Pending JPS6150126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17189884A JPS6150126A (en) 1984-08-18 1984-08-18 Automatic dimming electronic flash device
US07/089,003 US4847538A (en) 1984-08-18 1987-08-19 Electronic flash equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17189884A JPS6150126A (en) 1984-08-18 1984-08-18 Automatic dimming electronic flash device

Publications (1)

Publication Number Publication Date
JPS6150126A true JPS6150126A (en) 1986-03-12

Family

ID=15931852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17189884A Pending JPS6150126A (en) 1984-08-18 1984-08-18 Automatic dimming electronic flash device

Country Status (1)

Country Link
JP (1) JPS6150126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839686A (en) * 1987-07-10 1989-06-13 Minolta Camera Kabushiki Kaisha Flash device
US5004349A (en) * 1988-04-05 1991-04-02 Minolta Camera Kabushiki Kaisha Lighting apparatus and color measuring apparatus using the same
US5075714A (en) * 1988-12-09 1991-12-24 Nikon Corporation Electronic flash apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119A (en) * 1976-06-23 1978-01-05 Mitsubishi Electric Corp Flash device for photography
JPS54131927A (en) * 1978-04-05 1979-10-13 Asahi Optical Co Ltd Voltage discrimination automatic strobe device
JPS56117222A (en) * 1980-02-21 1981-09-14 Olympus Optical Co Ltd Automatic exposure control circuit
JPS5738596A (en) * 1980-08-20 1982-03-03 Nippon Electric Co Circuit for driving discharge tube
JPS59137936A (en) * 1983-01-28 1984-08-08 Toshiba Corp Control circuit of electronic flash device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119A (en) * 1976-06-23 1978-01-05 Mitsubishi Electric Corp Flash device for photography
JPS54131927A (en) * 1978-04-05 1979-10-13 Asahi Optical Co Ltd Voltage discrimination automatic strobe device
JPS56117222A (en) * 1980-02-21 1981-09-14 Olympus Optical Co Ltd Automatic exposure control circuit
JPS5738596A (en) * 1980-08-20 1982-03-03 Nippon Electric Co Circuit for driving discharge tube
JPS59137936A (en) * 1983-01-28 1984-08-08 Toshiba Corp Control circuit of electronic flash device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839686A (en) * 1987-07-10 1989-06-13 Minolta Camera Kabushiki Kaisha Flash device
US5313247A (en) * 1987-07-10 1994-05-17 Minolta Camera Kabushiki Kaisha Flash device
US5004349A (en) * 1988-04-05 1991-04-02 Minolta Camera Kabushiki Kaisha Lighting apparatus and color measuring apparatus using the same
US5075714A (en) * 1988-12-09 1991-12-24 Nikon Corporation Electronic flash apparatus

Similar Documents

Publication Publication Date Title
JPS628499A (en) High voltage generator
US5747944A (en) Flash device having plural emission modes in one of which a flash inductor is selectively short-circuited
JP2841756B2 (en) Electronic flash device
US4847538A (en) Electronic flash equipment
JPS6150126A (en) Automatic dimming electronic flash device
US4450506A (en) Automatic light-quantity-control speed light
JP2730631B2 (en) Auto strobe device
JPH0528367B2 (en)
JP3780038B2 (en) Strobe device
JP3002290B2 (en) Electronic flash device
JP2969396B2 (en) Flash device with dimming function
JP3740236B2 (en) Flash light emitting device
JP2967587B2 (en) Flash light emitting device
JPH0695192B2 (en) Strobe device
JPH04344622A (en) Strobe light emission controller
JP3458259B2 (en) DC-DC converter
JP2006288059A (en) Boosting drive circuit
JPH02158096A (en) Electronic flashing apparatus
JP2000321633A (en) Electronic flash device and camera
JPH04114136A (en) Flash light emission control circuit
JPS5943678Y2 (en) electronic flash device
JPH08122869A (en) Stroboscopic device
JPH04247439A (en) Flash light emitting device
JPH02109030A (en) Light emitting device
JPS597369B2 (en) Combination device of photographic camera and strobe device