JPS6150073A - Detection of three-phase unbalance - Google Patents

Detection of three-phase unbalance

Info

Publication number
JPS6150073A
JPS6150073A JP59172041A JP17204184A JPS6150073A JP S6150073 A JPS6150073 A JP S6150073A JP 59172041 A JP59172041 A JP 59172041A JP 17204184 A JP17204184 A JP 17204184A JP S6150073 A JPS6150073 A JP S6150073A
Authority
JP
Japan
Prior art keywords
phase
inputted
instantaneous power
phases
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59172041A
Other languages
Japanese (ja)
Inventor
Toshio Anzai
安斉 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59172041A priority Critical patent/JPS6150073A/en
Publication of JPS6150073A publication Critical patent/JPS6150073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the detection of a three phase unbalance at a high speed with a high sensitivity without being restricted by a sampling timing, by sampling a three-phase instantaneous power at any time to detect hourly changes therein. CONSTITUTION:Three phases of voltages VA, VB and VC and three phases of currents IA, IB and IC in a power system are detected with a transformer PT and a current transformer CT and inputted into an analog/digital converter 2 through a sample holding circuit 1. Output of the converter 2 is inputted into a multiplier and an adder to calculate a 3-phase instantaneous power Pt, which is inputted into a memory and a subtractor. Then, the difference DELTAPt between the 3-phase instantaneous power Pt-1 accumulated in the memory before one sample and the PT is inputted into a comparator and when it exceeds set value delta, a decision signal of 3-phase unbalance is outputted from the timer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は系統保巡あるいは系統安定化等に寄与する3
相不平衡検出方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention contributes to grid protection, grid stabilization, etc.
The present invention relates to a phase unbalance detection method.

〔従来の技術〕[Conventional technology]

従来、系統保護あるいは系統安定化を計るためのディジ
タル保護装置のアルゴリズムには、オーム社発行の「電
気学会大学講座 保護継電器工学」の第6輩、第6.2
表に示された第1図のような基本演算アルゴリズムがあ
った。例えば、過電流検出アルゴリズムの場合には上記
第1図中の積加真方式金用いると、第2図の1うな処理
フローになる0図中、工t、工t−Qは各々を時刻、t
−3時刻(3サンプリング@)の電流サンプル値、工t
はt時刻の実効値、Nll″lt、動作カウンタである
Conventionally, algorithms for digital protection devices for system protection or system stabilization are based on the 6th grade, 6.2 of ``Protection Relay Engineering, University Course of the Institute of Electrical Engineers of Japan,'' published by Ohm Publishing.
There was a basic calculation algorithm shown in the table in Figure 1. For example, in the case of an overcurrent detection algorithm, if the sum-addition method shown in Fig. 1 is used, the processing flow will be as shown in Fig. 2. t
- Current sample value at time 3 (3 sampling @), t
is the effective value of time t, Nll″lt is the operation counter.

第2図は第1図の基本演算アルゴリズムをフローチャー
トで示したものであり、図に示す実効値演算は該当周波
数の1周期の30°のタイミングでサンプリングしたと
きのみ有効であることは公知の事実である。
Figure 2 is a flowchart showing the basic calculation algorithm shown in Figure 1, and it is a well-known fact that the effective value calculation shown in the figure is effective only when sampling is performed at a timing of 30 degrees in one cycle of the corresponding frequency. It is.

従って、通常メモリー内に蓄積された現時刻のデータエ
tと現時刻より90’前のデータエt−3f%効値演算
全行ない、当該実効値〒t2が整定値ε以上刃1否かを
判定する事により、過電流検出を行なうものである。ま
た、通常は軸性を考慮し判定結果を連続複数回以上照合
して「の作する。第2図の例では、積分照合し、過電流
検出する度にカウンタNを1回アップし、不検出の度に
1回ダウンし。
Therefore, the data t at the current time stored in the normal memory and the data 90' before the current time are calculated by t-3f% effective value, and it is determined whether the effective value t2 is greater than or equal to the set value ε. Depending on the situation, overcurrent detection is performed. In addition, normally, the judgment results are checked several times in a row, taking into consideration the axiality, to create a ``N''. It goes down once every time it is detected.

カウンタNが3回以上でηの作検出としている。When the counter N is 3 times or more, the operation of η is detected.

又、一般的ディジタル保護装置のアルゴリズムは、第1
図に示すように常Vc3サンプリングONのデータ(3
0’サンプリングのとき)全使用して演算を行なってい
る。
In addition, the algorithm of general digital protection equipment is
As shown in the figure, data with Vc3 sampling always ON (3
(at the time of 0' sampling), all are used to perform the calculation.

従来の3相不平衡検出方法のアルゴリズムは以上のよう
に構成されているので、常に現時点のデータと3サンプ
リング前のデータを使用するものである71)ら、演算
中データの欠落が生じ7iC場合、3サンプリング時間
以上演算が無効となり、それだけ検出が遅れることにな
る。
Since the algorithm of the conventional three-phase unbalance detection method is configured as described above, it always uses the current data and the data three samplings ago.71) In the case of 7iC, data is missing during calculation. , the calculation becomes invalid for more than three sampling times, and detection is delayed accordingly.

また、サンプリングタイミングが30°(基本周波数の
12倍あるいはその整数倍)vc限定される等の制約が
あった。
Further, there are restrictions such as the sampling timing being limited to 30° (12 times the fundamental frequency or an integral multiple thereof) vc.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの不都合を解消する
ためになされたもので、任意の時刻の3相瞬時奄力をサ
ンプリングし、その時間的ズ化あるいに一定レベル以上
になることを検出することにより、高速度で高感度な3
相不平衡検出方法を提供することを目的とするものであ
る。
This invention was made in order to solve the above-mentioned disadvantages of the conventional method, and it samples the three-phase instantaneous force at an arbitrary time and detects whether it becomes temporally distorted or exceeds a certain level. By doing so, high speed and high sensitivity 3
The object of the present invention is to provide a method for detecting phase unbalance.

〔発明の冥症例〕[The secret case of invention]

次にこの発明の詳細な説明すると、まず系統が平衡状態
にあるときの、各相の゛幅圧」jはであり、このときの
3相瞬時屯力汀 Pv=Va(tlX工aF + ■bfυ×より化1+
Vc(tlXICtυ=VmX工mX(sln ωtx
sin(ωt+θ)+5in(ωt−1200)xsi
n(ωt+θ−120°)+5in(ωt−240つX
5in(ωを十〇−240’)) VmX工m −−X (3c o sθ−coe(2ωt+θ)−(
!08(2ωを十〇−240°)1−coB(2ωを十
〇−120つ) =−−VmX工mXCO3θ となり直流成分のみとなる。
Next, to explain this invention in detail, first, when the system is in an equilibrium state, the "width pressure" j of each phase is, and the three-phase instantaneous force pressure Pv = Va (tlX engineering aF + From bfυ× chemical 1+
Vc(tlXICtυ=VmX工mX(sln ωtx
sin(ωt+θ)+5in(ωt-1200)xsi
n(ωt+θ-120°)+5in(ωt-240×
5in (ω = 10-240') Vm
! 08 (2ω at 10-240°) 1-coB (2ω at 10-120) =--Vm

′=!た、3相が不平何状態にあるときは上記の直流分
に加えて2倍の周波数の三角関故成分が生じる。
′=! In addition, when the three phases are in an imbalance state, in addition to the above-mentioned DC component, a trigonometric component with twice the frequency is generated.

また、負荷f動悸平衡状態でもVm、工m、θがバラン
スを保ちながら変化する場合、上記瞬時゛磁力PMt+
ij直流的VC変助するが、この場合上記の三角関数の
変動に比べ変化速度が極度に緩やD)なので、時間間隔
全適当に選べば、不平衡状態と完全に区別することがで
きる。
In addition, even in the load f palpitation equilibrium state, if Vm, m, and θ change while maintaining balance, the above instantaneous magnetic force PMt+
In this case, the rate of change is extremely slow compared to the fluctuation of the trigonometric function described above, so if the time interval is appropriately selected, it can be completely distinguished from the unbalanced state.

上記のような原理に基づき、系統の不平背金検出するア
ルゴリズムは例えば第3図に示すフローのようvcfx
る。図中、工At、よりt:工Ctは谷々を時刻VCお
けるA、B、C相の電流サンプル値、vAt。
Based on the above-mentioned principle, an algorithm for detecting system complaints is, for example, vcfx as shown in the flow shown in Figure 3.
Ru. In the figure, Δt: ΔCt is the current sample value of the A, B, and C phases at the time VC, vAt.

vBt、 VClは上記同様、A、B、C相の車圧サン
プル値、Pl、、 Pl、−1は谷々を時刻、t−1時
刻(1サンプル前のデータ)における瞬時車力、ΔPt
はt時刻における等測的′屯力変化分、δ(デルタ)は
整定値、lAハ仙佳作カウンタある。
As above, vBt, VCl are vehicle pressure sample values of A, B, and C phases, Pl,, Pl, -1 is the time of the valley, instantaneous vehicle force at time t-1 (data one sample before), ΔPt
is the isometric force change at time t, δ (delta) is the set value, and lA is the honorable mention counter.

第3図においては、上記述べた通り、本アルゴリズムは
3相瞬時磁力が常に直流成分のみとなることを利用し、
を時刻における3相の砥流工At、。
In Figure 3, as mentioned above, this algorithm takes advantage of the fact that the three-phase instantaneous magnetic force always has only a DC component,
The three-phase grinding machine At, at the time.

IBt、 工Ct ト3 相ノ’嘔圧VAt、 VBt
 、 vct工り3相瞬時゛屯力Ptを計算し、1サン
プル前にメモリ内に蓄積され′fc3相瞬時電力Pt−
1との差ΔPtが、整定値δ思トであることを判定する
。し力)して、この判定結果によって系統の3相不平衡
を検出下るものである0また、図中、従来アルコ°リズ
ム同様複数回照合としている。(M−3である必要はな
い。)なお、第く図は上記アルゴリズム?使用した場合
の保護・装置の具体的構成全示したブ、ロンク・図であ
り、図に示す(1)はサンプルホールド回路、(2)は
アナログ/ディジタル変換器である。
IBt, 工Ct ト3 Phase vomiting pressure VAt, VBt
, vct calculates the 3-phase instantaneous force Pt, and stores it in the memory one sample ago, 'fc 3-phase instantaneous power Pt-
It is determined that the difference ΔPt from 1 is the set value δ. The result of this judgment is used to detect three-phase unbalance in the system.In addition, in the figure, verification is performed multiple times as in the conventional algorithm. (It doesn't have to be M-3.) Also, is the above algorithm in Figure 3? This is a block diagram showing the entire concrete configuration of the protection device when used. In the figure, (1) is a sample and hold circuit, and (2) is an analog/digital converter.

なお、上記実胞例では電力変化分△p、4)演算に1サ
ンプル前のデータ全使用したが、l3Jt埋上その必要
はな(、データ欠落時VCri2サンプル、あるいは3
サンプル以上前のデータ全使用しても良い8また、上記
実織例においては、電力変化分にて系統の不平衡を検出
するものとして説明したが、瞬時電力そのものが、ある
一定値以に’jli化したこと?検出してもよく、また
、本発明は第4図に示すディジタル演算に限るものでは
なく、アナ口外演算でも同様に構成できることはいうま
でもない。
In the above example, all the data from one sample before was used for the power change Δp, 4) calculation, but there is no need to bury l3Jt (, when data is missing, VCri2 samples or 3
All data from before the sample may be used.8Also, in the above actual example, it was explained that the unbalance of the grid is detected based on the amount of power change, but if the instantaneous power itself exceeds a certain value, Have you become a JLI? Furthermore, it goes without saying that the present invention is not limited to the digital calculation shown in FIG. 4, but can be similarly configured with an external calculation.

なお、この発明は系統保嫂あるいは系統安定化装置I7
に適用することVCより、一層効果を発揮する。
In addition, this invention is a system protection device or system stabilization device I7.
It is even more effective than VC when applied to

〔元側の効果〕[Original side effect]

以上のように未発BAVc裏れば、原理上一定であるは
ずの3相屯力の変幼を瞬時に検出するので、高速度で旨
感度に3相不平衡を検出でき、L 、fl)も従来の方
法のようなサンプリングタイミングの制約がない。
As described above, if the unreleased BAVc is detected, changes in the three-phase force, which should be constant in principle, can be detected instantaneously, so three-phase unbalance can be detected at high speed and with high sensitivity. Also, there is no restriction on sampling timing as in conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の基本演算アルゴリズムを示す図、第2図
は第1図のアルゴリズムの一例k 示すフローチャート
、第3図は本発明の一実砲例全示すフローチャート、第
4図は本発明を使用した作画装置の一実癩例を示すブロ
ック図である。 第3図に示す(工At) (工nt) (工at)はサ
ンプリンクL L 各相(1’) 電流、(VAt) 
(vnt)(vct) riサンプリングした各相の電
圧、(Pt)け3相瞬時°屯力、(Pt−1)け1サン
プル前の3相瞬時屯力、(ΔPt)は上記Pt−Pt−
1の差、δは整定値である。 なお、上記各図中、同一符号は同一または相当部分を示
す。
Fig. 1 is a diagram showing a conventional basic calculation algorithm, Fig. 2 is a flowchart showing an example of the algorithm in Fig. 1, Fig. 3 is a flowchart showing an example of an actual gun of the present invention, and Fig. 4 is a flowchart showing an example of the algorithm of the present invention. It is a block diagram showing an example of the drawing device used. As shown in Figure 3, (At) (At) (At) is the sample link L L Each phase (1') Current, (VAt)
(vnt) (vct) ri The voltage of each sampled phase, (Pt) multiplied by the three-phase instantaneous force, (Pt-1) multiplied by the three-phase instantaneous force one sample before, and (ΔPt) are the above Pt-Pt-
The difference of 1, δ, is a set value. In addition, in each of the above figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)電力系統からサンプリングした同時刻の電圧と電
流の積を3相分加算して瞬時電力量を求め、この瞬時電
力量の急峻な時間的変化分により不平衡と判定すること
を特徴とした3相不平衡検出方法。
(1) The product of voltage and current sampled from the power grid at the same time is added for three phases to obtain the instantaneous power amount, and an imbalance is determined based on the steep temporal change in this instantaneous power amount. Three-phase unbalance detection method.
JP59172041A 1984-08-18 1984-08-18 Detection of three-phase unbalance Pending JPS6150073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172041A JPS6150073A (en) 1984-08-18 1984-08-18 Detection of three-phase unbalance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172041A JPS6150073A (en) 1984-08-18 1984-08-18 Detection of three-phase unbalance

Publications (1)

Publication Number Publication Date
JPS6150073A true JPS6150073A (en) 1986-03-12

Family

ID=15934431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172041A Pending JPS6150073A (en) 1984-08-18 1984-08-18 Detection of three-phase unbalance

Country Status (1)

Country Link
JP (1) JPS6150073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721887A (en) * 2012-06-30 2012-10-10 李钢 Three-phase electrical parameter gathering device and method for analyzing and processing three-phase electrical signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721887A (en) * 2012-06-30 2012-10-10 李钢 Three-phase electrical parameter gathering device and method for analyzing and processing three-phase electrical signals

Similar Documents

Publication Publication Date Title
Karimi-Ghartemani et al. A new phase-locked loop system for three-phase applications
KR101418228B1 (en) Motor control device
Panda et al. Novel schemes used for estimation of power system harmonics and their elimination in a three-phase distribution system
Bongiorno et al. Effect of sampling frequency and harmonics on delay-based phase-sequence estimation method
US9742339B2 (en) Apparatus for controlling inverter
CN107683418B (en) Leakage current detection device
AU691679B2 (en) Numerical comparator
JP2003224928A (en) Digital directional relay
JP3015575B2 (en) Voltage drop detector
JPS6150073A (en) Detection of three-phase unbalance
JP3287121B2 (en) Voltage drop detection circuit
JPH05297030A (en) Detection method of voltage drop
JP2012252443A (en) Phase synchronization detection circuit
JP5238358B2 (en) AC power measuring device, AC power measuring method, and single-phase AC / DC converter
Sezi Fast and accurate measurement of power system frequency
JP2723286B2 (en) Ground fault detector
JP7330394B2 (en) Power meter
JP4191582B2 (en) AC voltage drop detection device
JP3696306B2 (en) Phase detector
JP2630862B2 (en) Change width detector
US20220334151A1 (en) Open-phase detection circuit and power conversion apparatus
Benyamina et al. Advanced PLL with multivariable filter and fuzzy logic controller based shunt active power filter
JPH11326428A (en) Parameter measuring device for inverter circuit
Lu et al. Three-phase multiple harmonic sequence detection based on generalized delayed signal superposition
JP3532342B2 (en) Digital type voltage balanced relay