JPS6150003A - Pattern detecting method - Google Patents

Pattern detecting method

Info

Publication number
JPS6150003A
JPS6150003A JP17144884A JP17144884A JPS6150003A JP S6150003 A JPS6150003 A JP S6150003A JP 17144884 A JP17144884 A JP 17144884A JP 17144884 A JP17144884 A JP 17144884A JP S6150003 A JPS6150003 A JP S6150003A
Authority
JP
Japan
Prior art keywords
light
hologram
pattern
linear
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17144884A
Other languages
Japanese (ja)
Inventor
Moritoshi Ando
護俊 安藤
Giichi Kakigi
柿木 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17144884A priority Critical patent/JPS6150003A/en
Publication of JPS6150003A publication Critical patent/JPS6150003A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Abstract

PURPOSE:To detect the wiring pattern on substrates accurately, by reproducing the image of a linear non-directional light source by a hologram, and performing linear lighting. CONSTITUTION:When laser light 12 is inputted to a hologram 11, a linear images 4 is formed on substrates 5 and 6. Since the image 4 is the reproduced image of the non-directional light source through the hologram, light is converged in corresponding with the non-directional property of the hologram forming light source, i.e., in irregular directions, and the linear image is formed. Therefore, light rays in various directions are mixed in the light 13, which is applied on the copper foil pattern 6. As a result, the light 13, which is applied at any part of the end part of the copper foil pattern 6, sufficiently reaches a CCD8 through a lens 7. Even if the surface of the pattern is not flat, the pattern including its width can be accurately detected by this method.

Description

【発明の詳細な説明】 本発明はノセターン検知方法、例えば、プリント基板上
の配線パターンを正確に検知する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nosetan detection method, for example, a method for accurately detecting a wiring pattern on a printed circuit board.

半導体装置業界におけるプリント板上の配線パターンは
微細化し、かつ基板面積は拡大する方向にある。そのた
め、プリント板の検査を目視で行なうことは難しくなっ
てきてお)、有効な自動的検査方法が望まれている。
In the semiconductor device industry, wiring patterns on printed boards are becoming finer and the board area is increasing. For this reason, it has become difficult to visually inspect printed boards, and an effective automatic inspection method is desired.

従来の技術 従来、平面上のパターンを検知する方法として、レーザ
光を線状に照射し、ラインCODで検知する方法が知ら
れている。第4図を参照して説明すると、レーザ1から
出た光を光ビーム拡大器2全通してシリンドリカルレン
ズ3に入射し、シリンドリカルレンズ3を通過して線状
に集光する光4をプリント板5に照射する。レンズ7に
よってプリント板5上の配線パターン6の像を結像して
CCD8で検知する。プリント板5を移動してレーザビ
ーム4でプリント板5上を走食し、プリント板5上の−
Pターンを検知する。
2. Description of the Related Art Conventionally, as a method of detecting a pattern on a plane, a method of linearly irradiating laser light and detecting by line COD is known. To explain with reference to FIG. 4, the light emitted from the laser 1 passes through the optical beam expander 2 and enters the cylindrical lens 3. Irradiate to 5. An image of the wiring pattern 6 on the printed board 5 is formed by the lens 7 and detected by the CCD 8. The printed board 5 is moved and the laser beam 4 runs on the printed board 5, causing - on the printed board 5.
Detects P-turn.

上記方法においてレーザ光1r、線状に集光して照明す
るのは、プラスチック製のプリント板基拐は光を内部拡
散する性質があるために、特に拡散性の面状の照明を行
なうとプリント板からの反射光に内部拡散光が混入して
検出のコントラスト比を低下し、配線パターンの正確な
検出を困難にするので、これを防止するために我々が開
発したものである(特願昭58’−194808号)。
In the above method, the laser beam 1r is focused in a linear manner for illumination because the plastic printed board substrate has the property of internally diffusing light. Internally diffused light mixes with the reflected light from the board, lowering the detection contrast ratio and making accurate detection of wiring patterns difficult. 58'-194808).

発明が解決しようとする問題点 プリント板上の配線パターンは、典型的には、エポキシ
等のプリント板基材表面の銅箔を所望の配線バターyに
エツチングして形成するが、エツチングの際等にパター
ンの端部(肩部)に[°だれ」が生じる。ところが、レ
ーザ光はもともと平行光であるために、シリンドリカル
レンズ3を通過して集光する光は、集光する方向にこそ
集光角に相幽する角度範囲内で光の進行方向にばらつき
がつくられるが、集光角を含む面に直角な方向の光は平
行光のままでプリント板基材5およびパターン6上に到
達する。従って、第5図(ロ)に見られるように、線状
の像4に結像するレーデ光のうち上記平行成分は、銅箔
パターンに当たりても(光9)、パターンの平担でない
端部のだれの部分で反射すると必ずしも検出用CCD 
8に到達しない。そのために、第5図(ロ)に見られる
ように、CCDの受光強度においてパターンの端部10
の強度が低下し、その結果、ツクターンの幅を正確に検
知することが不可能である。
Problems to be Solved by the Invention Wiring patterns on printed boards are typically formed by etching copper foil on the surface of a printed board base material such as epoxy into a desired wiring butter, but during etching, etc. [° drooping] occurs at the edge (shoulder) of the pattern. However, since laser light is originally parallel light, the light that passes through the cylindrical lens 3 and is focused has variations in the traveling direction of the light within an angular range that is in conflict with the focusing angle. However, the light in the direction perpendicular to the plane including the condensing angle reaches the printed board base material 5 and pattern 6 as parallel light. Therefore, as seen in FIG. 5(b), even if the parallel component of the Rede light that forms on the linear image 4 hits the copper foil pattern (light 9), the edge of the pattern is not flat. If it is reflected from the sagging part, it is not necessarily the detection CCD.
It doesn't reach 8. For this reason, as shown in FIG. 5(b), the pattern edge 10 is
The strength of the trundle is reduced, as a result of which it is impossible to accurately detect the width of the tsuktan.

問題点を解決するだめの手段および作用本発明は、上記
の如き問題点を解決するために、線状の無指向性光源の
ホログラムを作や、そのホログラムで線状無指向性光源
の像を再生する。ここに無指向性光源とは光源から放出
される光の進行方向に一定の指向性がなく、無秩序にあ
らゆる方向に向いていることを量体する。このような光
源からの光を物体波として形成したホログラムを再生す
ると、再生光はホログラム形成時の物体波と丁度逆に光
が進んで光源の像を再生する性質があるので、無秩序な
あらゆる方向から光が集まって光源の像を再生すること
になる(もつとも、ホログラムに記録されなかった光は
再生されないので、再生光の方向に一定の範囲、限界は
ある)。
Means and operation for solving the problems In order to solve the above-mentioned problems, the present invention creates a hologram of a linear omnidirectional light source and uses the hologram to create an image of the linear omnidirectional light source. Reproduce. Here, the term "omnidirectional light source" refers to the fact that the light emitted from the light source does not have a fixed directionality in the direction of travel, but is oriented randomly in all directions. When reproducing a hologram formed by forming the light from such a light source as an object wave, the regenerated light has the property of reproducing the image of the light source by traveling exactly in the opposite direction to the object wave at the time the hologram was formed, so it can be used in any random direction. Light gathers from the hologram and reproduces the image of the light source (light that is not recorded in the hologram cannot be reproduced, so there is a certain range or limit to the direction of the reproduced light).

従って、このようなホログラムを用いれば、プリント板
上に多方向からの光で線状の照明を行なうことができる
ので、配線パターンの検知においてパターンのだれによ
る受光強度の低下を防ぐことができ、パターンをその幅
まで正確に検知できる。
Therefore, if such a hologram is used, it is possible to illuminate the printed board in a linear manner with light from multiple directions, so it is possible to prevent a decrease in the received light intensity due to sagging of the pattern when detecting the wiring pattern. The pattern can be accurately detected up to its width.

実施例 第1〜3図を参照して本発明の実施例について説明する
。第1図0)はプリント板のパターンを検査する本発明
の詳細な説明するものであるが、第4図(イ)と同じも
のは同−癖照数字で指示した。
Embodiments Embodiments of the present invention will be described with reference to FIGS. 1 to 3. FIG. 10) is a detailed explanation of the present invention for inspecting patterns on a printed board, and the same parts as in FIG. 4(a) are indicated by the same numerals.

すなわち、4は線状の集光像、5はプリント板基材、6
は銅箔パターン、7はレンズ、8 iL ccDである
。ただし、実施例ではシリンドリカルレンズの代フにホ
ログラム11を用いる。このホログラム11の作成法の
詳細は後述するが、線状の無指向性光源のホログラムで
ある。このホログラム11にレーザ光(平行光)12を
入射すると、プリント板5,6上に線状の像4が結像す
る。この像4は無指向性光源のホログラム再生像である
から、前述のように、ホログラム形成用光源の無指向性
に対応して無指向的、即ち、無秩序な方向から光が集光
して線状の像を形成している。従って、銅箔パターン6
に当たる光13も、シリンドリカルレンズ通過光の場合
のように平行光はかシではなく、いろいろな方向の光が
まじっていて、その結果、銅箔ノ千ターン6の端部のだ
れの部分に轟りた光13もレンズ7を介してCCD 8
に十分に到達する(光14)。
That is, 4 is a linear focused image, 5 is a printed board base material, and 6 is a linear focused image.
is a copper foil pattern, 7 is a lens, and 8 iL ccD. However, in the embodiment, a hologram 11 is used in place of the cylindrical lens. The details of how to create this hologram 11 will be described later, but it is a hologram of a linear omnidirectional light source. When laser light (parallel light) 12 is incident on this hologram 11, a linear image 4 is formed on printed boards 5 and 6. Since this image 4 is a hologram reconstructed image of a non-directional light source, as mentioned above, light is condensed from non-directional, that is, random directions into a line, corresponding to the non-directionality of the hologram-forming light source. It forms an image of the shape. Therefore, the copper foil pattern 6
The light 13 that hits the cylindrical lens is not parallel light as in the case of light passing through a cylindrical lens, but is a mixture of light from various directions. The emitted light 13 is also transmitted to the CCD 8 via the lens 7.
(Light 14).

こうして、本発明の方法によれば、パターンの表面の状
態が必ずしも平担ではなくても、ツクターンと背景の光
反射効率さえ異なれば、そのパターンをその幅を含めて
正確に検知することが可能になる(第1図←)参照)。
In this way, according to the method of the present invention, even if the surface condition of the pattern is not necessarily flat, as long as the light reflection efficiency of the pattern and the background is different, it is possible to accurately detect the pattern including its width. (See Figure 1 ←)).

次に、第2図、第3図を参照して上記ホログラムの作成
方法を説明する。ホログラム記録膜20は例えば高解像
度写真乾板(銀塩)を用いる。線状の無指向性光源とし
ては白紙、スリガラスのように乱反射面を有する素材2
1を所定の線状(例えば幅100μm1長さ20団)に
切断し、黒色背景22上に置いて、レーデ光(He−N
eレーザ光)23を照射して、その反射光24を用いる
ことができる。この反射光24は当然に線状素材21か
らの乱反射光即ち無指向性の光である。この線状光源2
1からの光を物体波24とし、ホログラム記録膜20に
対して一定の角度を持つ平行光(He−Neレーデ光)
を参照波25としてホログラム30を作成する。このホ
ログラム30に参照波と丁度逆方向から記録時の参照波
25と同じ光31を入射すると、記録時の物体波24と
丁度逆の進路を通って光32が結像し、線状の像33を
形成する。光32は集光角を含む面に直角な方向におい
ても平行ではなく、無指向性即ち無秩序、多方向である
Next, a method for creating the above hologram will be explained with reference to FIGS. 2 and 3. For example, a high-resolution photographic plate (silver salt) is used as the hologram recording film 20. As a linear omnidirectional light source, use blank paper or a material 2 with a diffusely reflective surface such as ground glass.
1 is cut into a predetermined linear shape (for example, 100 μm wide, 20 groups long), placed on a black background 22, and exposed to Rede light (He-N
It is possible to irradiate the e-laser beam 23 and use its reflected light 24. This reflected light 24 is naturally diffusely reflected light from the linear material 21, that is, non-directional light. This linear light source 2
The light from 1 is an object wave 24, and parallel light (He-Ne Radhe light) having a certain angle with respect to the hologram recording film 20
A hologram 30 is created using the reference wave 25 as the reference wave 25. When the same light 31 as the reference wave 25 at the time of recording is incident on this hologram 30 from the direction exactly opposite to the reference wave, the light 32 passes through a course exactly opposite to the object wave 24 at the time of recording and forms a linear image. form 33. The light 32 is not parallel even in the direction perpendicular to the plane including the condensing angle, but is omnidirectional, that is, disordered, and multidirectional.

発明の効果 以上の説明から明らかなように、本発明によシ、パター
ンの表面状態が平担、一様でない場合にもそのパターン
をその幅を含めて正確に検知する方法が提供される。こ
の方法はプリント板の配線パターンの検査に特に有効で
おるが、検知される/セターンは必ずしも線状に限らな
い。
Effects of the Invention As is clear from the above description, the present invention provides a method for accurately detecting a pattern including its width even when the surface condition of the pattern is not flat or uniform. Although this method is particularly effective for inspecting wiring patterns on printed circuit boards, the detected/set turns are not necessarily linear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の・ぐターン検知方法を説明す
る斜視図、第2図はホログラムの記録を説明する斜視図
、第3図はホログラムの像再生を説明する斜視図、第4
図および第5図は従来例のパターン検知方法を説明する
斜視図である。 1・・・レーザ、3・・・シリンドリカルレンズ、4・
・・像、5・・・プリント板基材、6・・・配線パター
ン、7・・・レンズ、8・・・ecD、 11・・・ホ
ログラム、20・・・ホログラム記録膜、21・・・光
源用スリット、30・・・ホログラム、33・・・像。
FIG. 1 is a perspective view illustrating a turn detection method according to an embodiment of the present invention, FIG. 2 is a perspective view illustrating hologram recording, FIG. 3 is a perspective view illustrating hologram image reproduction, and FIG.
1 and 5 are perspective views illustrating a conventional pattern detection method. 1... Laser, 3... Cylindrical lens, 4...
... Image, 5... Printed board base material, 6... Wiring pattern, 7... Lens, 8... ecD, 11... Hologram, 20... Hologram recording film, 21... Slit for light source, 30... Hologram, 33... Image.

Claims (1)

【特許請求の範囲】[Claims] 1、平面状に線状の照明を走査し、その反射光を受理し
て該平面上のパターンを検知する方法において、線状の
無指向性光源のホログラムを作り、該ホログラムで該線
状無指向性光源の像を再生することによって前記の線状
の照明を行なうことを特徴とするパターン検知方法。
1. In a method of scanning linear illumination on a plane and receiving the reflected light to detect a pattern on the plane, a hologram of a linear omnidirectional light source is created, and the hologram is used to detect the linear non-directional light source. A pattern detection method characterized in that the linear illumination is performed by reproducing an image of a directional light source.
JP17144884A 1984-08-20 1984-08-20 Pattern detecting method Pending JPS6150003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17144884A JPS6150003A (en) 1984-08-20 1984-08-20 Pattern detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17144884A JPS6150003A (en) 1984-08-20 1984-08-20 Pattern detecting method

Publications (1)

Publication Number Publication Date
JPS6150003A true JPS6150003A (en) 1986-03-12

Family

ID=15923292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17144884A Pending JPS6150003A (en) 1984-08-20 1984-08-20 Pattern detecting method

Country Status (1)

Country Link
JP (1) JPS6150003A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269047A (en) * 1986-05-19 1987-11-21 Fujitsu Ltd Illumination for lead terminal
WO2001036906A1 (en) * 1999-11-18 2001-05-25 Bosbach, Christof Method and device for measuring the contours of the surface of an object using electromagnetic radiation
WO2012032668A1 (en) * 2010-09-07 2012-03-15 大日本印刷株式会社 Scanner device and device for measuring three-dimensional shape of object
JP2012058226A (en) * 2011-03-15 2012-03-22 Dainippon Printing Co Ltd Scanner device and apparatus for measuring three-dimensional shape of object
US8727543B2 (en) 2010-09-07 2014-05-20 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
JP2014178323A (en) * 2014-04-16 2014-09-25 Dainippon Printing Co Ltd Linear illumination device
US8848267B2 (en) 2010-09-07 2014-09-30 Dai Nippon Printing Co., Ltd. Illuminating device using coherent light source

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269047A (en) * 1986-05-19 1987-11-21 Fujitsu Ltd Illumination for lead terminal
WO2001036906A1 (en) * 1999-11-18 2001-05-25 Bosbach, Christof Method and device for measuring the contours of the surface of an object using electromagnetic radiation
US9341760B2 (en) 2010-09-07 2016-05-17 Dai Nippon Printing Co., Ltd. Illuminating method using coherent light source
US9348149B2 (en) 2010-09-07 2016-05-24 Dai Nippon Printing Co., Ltd. Image display module
US8727543B2 (en) 2010-09-07 2014-05-20 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US11953857B2 (en) 2010-09-07 2024-04-09 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US8848267B2 (en) 2010-09-07 2014-09-30 Dai Nippon Printing Co., Ltd. Illuminating device using coherent light source
US9116504B2 (en) 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
WO2012032668A1 (en) * 2010-09-07 2012-03-15 大日本印刷株式会社 Scanner device and device for measuring three-dimensional shape of object
US10802444B2 (en) 2010-09-07 2020-10-13 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US9423546B2 (en) 2010-09-07 2016-08-23 Dai Nippon Printing Co., Ltd. Illuminating device using coherent light source
US9851580B2 (en) 2010-09-07 2017-12-26 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US10051243B2 (en) 2010-09-07 2018-08-14 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US10156732B2 (en) 2010-09-07 2018-12-18 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US10523902B2 (en) 2010-09-07 2019-12-31 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
JP2012058226A (en) * 2011-03-15 2012-03-22 Dainippon Printing Co Ltd Scanner device and apparatus for measuring three-dimensional shape of object
JP2014178323A (en) * 2014-04-16 2014-09-25 Dainippon Printing Co Ltd Linear illumination device

Similar Documents

Publication Publication Date Title
US5264912A (en) Speckle reduction track filter apparatus for optical inspection of patterned substrates
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
JPH0915163A (en) Method and equipment for inspecting foreign substance
JP3617547B2 (en) Method and processing apparatus for observing wiring pattern
JPS6150003A (en) Pattern detecting method
JPS6225221B2 (en)
JP3480176B2 (en) Glass substrate front / back defect identification method
US6444995B1 (en) Focussing method and system of exposure apparatus
US20020180959A1 (en) Optical system for detecting surface defects and disk tester and disk testing method utilizing the same optical system
CN106094442B (en) Detection device, measuring device, lithographic equipment and the method for manufacturing article
JPH0478200B2 (en)
JP3050431B2 (en) Face plate foreign matter inspection device
JP2921074B2 (en) Substrate observation device
JP2802845B2 (en) Face plate foreign matter inspection device
JPH04289409A (en) Substrate inspecting method
JPS5970947A (en) Method for detecting pattern of printed-wiring board
JP2002168795A (en) Resist pattern inspection device and inspection method
JPH04147043A (en) Device and method for inspecting appearance of soldered state
JP2808850B2 (en) Substrate observation device
JPH04254707A (en) Appearance inspection device of plate body
JPH03111745A (en) Leaking-light detecting apparatus
JPH0476405B2 (en)
JPS63298105A (en) Slit light source device
JPH03291552A (en) Surface defect inspection device
JPS58105591A (en) Method of detecting pattern