JPH03291552A - Surface defect inspection device - Google Patents

Surface defect inspection device

Info

Publication number
JPH03291552A
JPH03291552A JP9358290A JP9358290A JPH03291552A JP H03291552 A JPH03291552 A JP H03291552A JP 9358290 A JP9358290 A JP 9358290A JP 9358290 A JP9358290 A JP 9358290A JP H03291552 A JPH03291552 A JP H03291552A
Authority
JP
Japan
Prior art keywords
light
inspected
reflected light
angle
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9358290A
Other languages
Japanese (ja)
Inventor
Hiroshi Ono
浩 小野
Masahiro Kondo
正博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP9358290A priority Critical patent/JPH03291552A/en
Publication of JPH03291552A publication Critical patent/JPH03291552A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration in accuracy due to interference by irradiating the surface of a body to be inspected with the linear polarized light of laser light almost at an angle of incidence nearly corresponding to the Brewster angle and inspecting defects on the surfaces of many kinds of OPC photosensitive body which differ in surface property. CONSTITUTION:The surface of a photosensitive drum 3 to be inspected is irradiated with the linear polarized light of the laser light 4 at the angle of incidence nearly corresponding to the Brewster angle, the polarizing direction of the laser light 4 is selected, and the defect inspection of the surface is performed with the reflected light 6. Then when the photosensitive layer L of the drum 3 is so constituted that reflected light R1 and reflected light R2 interfere with each other, a 1/2-wavelength plate 13 is put in the optical path. Consequently, the laser light 4 becomes (p) polarized light about the incidence surface, the reflected light R1 disappears, and only the reflected light R2 is made incident on a photodetector 2, so that no interference is caused. Further, when the dispersion layer L2 of the photosensitive layer L is large and the reflected light R2 becomes weak, the 1/2-wavelength plate 13 is put off the optical path. Consequently, the laser light 4 becomes (s) polarized light to the incidence surface and the reflected light R1 is reflected and made incident on the photodetector 2, so that the defect inspection of the surface of the drum 3 with the reflected light R1 becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平面又は円筒状をした基体表面に光吸収の少
ない均質系層のOPC感光体を設けた被検査体を移動さ
せながらレーザー光をフライングスポット方式で照射し
、その表面欠陥を検査する表面欠陥検査装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to applying laser light while moving an object to be inspected, which is provided with an OPC photoreceptor having a homogeneous layer with low light absorption on the surface of a flat or cylindrical substrate. The present invention relates to a surface defect inspection device that inspects surface defects by irradiating with a flying spot method.

〔従来の技術〕[Conventional technology]

平面又は円筒状をした被検査体の表面欠陥を検査する方
法として、フライングスポット方式といわれる方法が知
られている。これは、レーザーを光源として回転多面鏡
や振動鏡を用いて、移動する被検査体上にレーザー光を
用いて走査し、その反射光を受光し、欠陥状態によって
相異した反射光の情況から被検査体の欠陥検査を行うも
のである。
A method called a flying spot method is known as a method for inspecting surface defects on a flat or cylindrical object to be inspected. This uses a laser as a light source and a rotating polygon mirror or a vibrating mirror to scan the moving object with laser light, and then receives the reflected light. This is used to inspect objects to be inspected for defects.

被検査体表面の欠陥状態は模式的Jこ次の2つに分けら
れる。
Defect states on the surface of the object to be inspected can be roughly divided into two types:

(1)比較的なだらかな凹凸からなるうねり欠陥(2)
粗面ともいえる微少な凹凸からなる微少凹凸欠陥 被検査体表面に上記(1)のうねり欠陥のある場合には
被検面が正規の面に対し僅か傾いているので、レーザー
反射光は第5図の破線n1に示すように正規の反射方向
(被検査体表面良好時の反射方向(第5図g参照))か
ら外れた方向へ反射する。
(1) Waviness defect consisting of relatively gentle unevenness (2)
Micro-irregularity defect consisting of minute irregularities that can be called a rough surface If the inspected object surface has the above-mentioned waviness defect (1), the inspected surface is slightly inclined with respect to the normal surface, so the laser reflected light As shown by the broken line n1 in the figure, the light is reflected in a direction deviating from the normal reflection direction (reflection direction when the surface of the object to be inspected is good (see FIG. 5g)).

また、(2)の微少凹凸欠陥のある場合には、被検査体
の反射面において第5図の破線n、に示すように散乱し
た状態となり、上記受光部に入射する光量は良好な場合
と比較して減少する。
In addition, if there is a slight unevenness defect in (2), the reflective surface of the object to be inspected will be in a scattered state as shown by the broken line n in Figure 5, and the amount of light incident on the light receiving section will be different from that in a good case. decrease in comparison.

上記(1)、(2)の欠陥は重畳した形で発生すること
もあり、また平滑に形成された被検査体表面に(1)、
(2)の欠陥が別個に発生することもある。
The defects (1) and (2) above may occur in a superimposed manner, and the defects (1) and (2) above may occur in a superimposed manner.
The defect (2) may also occur separately.

また、被検査体表面が有機光導電性感光体層(OPC感
光体層)からなる電子写真用感光体ドラムでは例えば第
6図に示すように薄い2層の平行平面層からなる感光層
りが設けられている場合がある。図において、3aはア
ルミニューム等からなり表面が平滑に仕上げられたドラ
ム状の基体、LIは光に対し均質な電荷輸送層である均
質系層、L2は電荷発生層で光を分散させる性質を有す
る分散系層(分散の度合いは種類によって異なる)で、
4は入射光、R1は均質系層り、表面からの反射光、R
2は分散系層L2と基体3aの境界面で反射し空気中に
出てきた反射光である。
Furthermore, in an electrophotographic photoreceptor drum whose surface is an organic photoconductive photoreceptor layer (OPC photoreceptor layer), the photoreceptor layer is made up of two thin parallel plane layers, as shown in FIG. It may be provided. In the figure, 3a is a drum-shaped base made of aluminum or the like with a smooth surface, LI is a homogeneous layer that is a charge transport layer that is homogeneous to light, and L2 is a charge generation layer that has the property of dispersing light. A dispersed layer (the degree of dispersion varies depending on the type),
4 is incident light, R1 is homogeneous layer, reflected light from the surface, R
2 is reflected light that is reflected at the interface between the dispersion layer L2 and the substrate 3a and comes out into the air.

従来は上記反射光R,,’R2を区別せず一緒に受光器
によって受光しその強度の変化から感光層り表面の欠陥
を検出していた。
Conventionally, the reflected lights R, 'R2 are received together by a light receiver without being differentiated, and defects on the surface of the photosensitive layer are detected from changes in their intensity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記フライングスポット方式によって被検査体表面の欠
陥検査を行う場合、第6図における反射光R1と反射光
R1との強度に差が少ない場合には干渉現象が発生する
。その結果感光層L (L l+L z)にレーザー光
の波長に近い微少な層厚の変化やレーザー光走査時の被
検査体の振動等による受光角度の変動があると、レーザ
ー光走査に従い反射光強度に表面欠陥とは無関係の変動
が発生する。この変動は欠陥検出を妨害し、比較的小さ
い欠陥の検出を不可能にし、ときには大きい欠陥をも検
出不可能とするものであった。そこで干渉による受光部
の出力変動を電気回路によって取り除くことが行われる
が、このとき欠陥信号も同時に除去されるため、小さい
欠陥検出が不可能になるという問題点があった。
When inspecting the surface of an object to be inspected for defects using the flying spot method, an interference phenomenon occurs if there is little difference in intensity between the reflected light R1 and the reflected light R1 in FIG. As a result, if there is a slight change in the layer thickness of the photosensitive layer L (L l + L z) close to the wavelength of the laser beam or a fluctuation in the receiving angle due to vibration of the object to be inspected during laser beam scanning, the reflected light will change as the laser beam scans. Variations in strength occur that are independent of surface defects. This variation has interfered with defect detection, making it impossible to detect relatively small defects, and sometimes even large defects. Therefore, the output fluctuation of the light receiving section due to interference is removed by an electric circuit, but at this time, the defect signal is also removed at the same time, which poses a problem that it becomes impossible to detect small defects.

また、感光層りの分散層L2の分散が大きいものでは、
感光層りに入射した光は散乱吸収されて反射光R2は極
端l二弱くなる場合など、表面の性質が異なる多種類の
被検査体があり、従来1つの表面欠陥検査装置によって
表面欠陥の検査を行うことは困難であった。
In addition, when the dispersion layer L2 of the photosensitive layer has a large dispersion,
There are many types of objects to be inspected with different surface properties, such as when the light incident on the photosensitive layer is scattered and absorbed and the reflected light R2 becomes extremely weak. Conventionally, surface defects cannot be inspected using a single surface defect inspection device. It was difficult to do so.

本発明は、上記干渉を起こす表面構成を有する被検査体
であるOPC感光体層の場合にも、分散の大なる分散系
層を有する被検査体の場合にも簡単な構成によって表面
欠陥検出を可能にした優れた表面欠陥検査装置を提供す
ることを目的とする。
The present invention can detect surface defects with a simple configuration both in the case of an OPC photoreceptor layer, which is an object to be inspected, which has a surface structure that causes the above-mentioned interference, and in the case of an object to be inspected, which has a dispersed layer with large dispersion. The purpose of the present invention is to provide an excellent surface defect inspection device that makes possible the following.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記目的は、基体表面に光吸収の少ない均質系層を設け
たOPC感光体を搬送させながらレーザー光をフライン
グスポット方式で照射し、その反射光で前記被検査体表
面の欠陥を検査するようにした表面欠陥検査装置におい
て、 被検査体表面に向けて前記レーザー光の直線偏光をほぼ
ブルースター角に相当する入射角で照射し、該レーザー
光の偏光方向を選定し、該レーザー光の反射光によって
前記被検査体表面の欠陥検査を行うことを特徴とする表
面欠陥検査装置によって達成される。
The above purpose is to irradiate a laser beam using a flying spot method while transporting an OPC photoreceptor having a homogeneous layer with low light absorption on the surface of the substrate, and use the reflected light to inspect defects on the surface of the object to be inspected. In the surface defect inspection apparatus, the linearly polarized laser beam is irradiated onto the surface of the object to be inspected at an incident angle approximately corresponding to the Brewster angle, the polarization direction of the laser beam is selected, and the reflected light of the laser beam is This is achieved by a surface defect inspection apparatus characterized in that the surface of the object to be inspected is inspected for defects.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す側面図、第2図は第1
図の受光器のA−A線断面図、第3rgJは第1図の受
光器の中央縦断面図、第4図は第1図の走査器のレーザ
ー光の展開光路図である。
FIG. 1 is a side view showing one embodiment of the present invention, and FIG. 2 is a side view showing one embodiment of the present invention.
A sectional view taken along the line A-A of the light receiver shown in the figure, 3rgJ is a central vertical cross-sectional view of the light receiver shown in FIG.

図において、1は例えば半導体レーザー々どの直線偏光
を発射するレーザー、1/2波長板1回転多面鏡、fθ
レンズ、同期センサ等からなる走査器、2は入射光に対
し薄板又はエツジ部材によって前後に分割された2つの
受光部2a2bからなる受光器、3は被検査体の一例で
ある感光体ドラム、4は走査光であるレーザー光、5は
レーザー光4によって走査・照射されて被検査体表面に
描き出される走査輝線、6はレーザー光4の被検査体表
面からの反射光、θ1は被検面のレーザー光4入射点に
立つ法線と入射レーザー光4との間の角度である入射角
、θrは上記法線と反射光6との間の角度である反射角
で、走査中央部において受光器2の中心線をこの反射角
θrと一致させであるので受光角ともいう。上記走査器
lの入射角θlと受光角θrは常に θi−θr の関係を保ちつつ変更可能になっている。
In the figure, 1 is a laser that emits linearly polarized light, such as a semiconductor laser, a 1/2 wavelength plate, a 1-rotation polygon mirror, and an fθ
A scanner consisting of a lens, a synchronization sensor, etc., 2 a light receiver consisting of two light receiving sections 2a2b which are divided into front and back by a thin plate or an edge member for incident light, 3 a photosensitive drum which is an example of an object to be inspected, 4 is a laser beam that is a scanning light, 5 is a scanning bright line drawn on the surface of the object to be inspected by scanning and irradiation with the laser beam 4, 6 is the reflected light of the laser beam 4 from the surface of the object to be inspected, and θ1 is the surface of the object to be inspected. The incident angle is the angle between the normal line standing at the laser beam 4 incident point and the incident laser beam 4, and θr is the reflection angle that is the angle between the normal line and the reflected light 6. Since the center line of 2 coincides with this reflection angle θr, it is also called the light reception angle. The incident angle .theta.l and the acceptance angle .theta.r of the scanner 1 can be changed while always maintaining the relationship of .theta.i-.theta.r.

走査器lは第4図にその構成と光路の一例を示すように
、レーザー11より発射されるレーザー光4は必要時に
開放するシャッタ12と挿脱自在に設けられた172波
長板13を通過したのちビーム径拡大器14によって適
度のビーム径に拡大される。このレーザー光4は、回転
多面鏡16およびfθレンズ17によって被検査体であ
る感光体ドラム3の表面をその回転軸と平行に図のa−
4b−hCの方向に等速で走査・照射し走査輝線5を形
成する。−力感光体ドラム3は、矢示方向に制御用CP
Uの制御により等線速度で回転しており被検査面全面が
レーザー光4によって走査・照射され、その反射光6は
受光器2によって受光されるようになっている。同期セ
ンサ18はレーザー光4に感度を有する受光器よりなり
、走査器lの1走査毎その走査開始時点に同期信号を制
御用CPUに送出する。
As shown in FIG. 4, which shows an example of the structure and optical path of the scanner 1, the laser beam 4 emitted from the laser 11 passes through a shutter 12 that is opened when necessary and a 172 wavelength plate 13 that is removably installed. Thereafter, the beam diameter is expanded to an appropriate beam diameter by the beam diameter expander 14. This laser beam 4 is transmitted by a rotating polygon mirror 16 and an fθ lens 17 to the surface of the photosensitive drum 3, which is an object to be inspected, in parallel with its rotation axis.
The scanning bright line 5 is formed by scanning and irradiating at a constant speed in the direction 4b-hC. - The force photosensitive drum 3 is connected to the control CP in the direction of the arrow.
It rotates at a uniform speed under the control of U, and the entire surface to be inspected is scanned and irradiated with laser light 4, and the reflected light 6 is received by light receiver 2. The synchronization sensor 18 is composed of a light receiver sensitive to the laser beam 4, and sends a synchronization signal to the control CPU at the start of each scan of the scanner I.

また、レーザー11はそれより発射されるレーザー光4
の振動面は第6図の入射面に垂直即ちS偏光となるよう
に設置されている。
Also, the laser 11 is a laser beam 4 emitted from it.
The vibration plane is set perpendicular to the incident plane in FIG. 6, that is, so as to provide S-polarized light.

受光器2は第2図及び第3図に示すように、エツジ部材
22によって図において上下に分割され、それぞれのA
受光部2a、B受光部2bにはその先端部分に磁性材か
らなる円筒状の磁気シールド部材24を備えた複数個例
えば4個ずつのA光電子増倍管23a、B光電子増倍管
23bが等間隔に設けられ、受光器lの先端部分の受光
窓部には拡散板21a、21bが設けられていて、マス
ク部材25によって受光部dが規制されている。エツジ
部材22の先端部22aは刃先状に形成されるが、厚さ
0.2mm前後の薄板を用いて分割する場合は特にその
必要はない。A。
As shown in FIGS. 2 and 3, the light receiver 2 is divided into upper and lower parts by an edge member 22, and each A
The light receiving section 2a and the B light receiving section 2b are equipped with a plurality of, for example, four A photomultiplier tubes 23a and B photomultiplier tubes 23b each having a cylindrical magnetic shielding member 24 made of a magnetic material at the tip thereof. Diffusion plates 21a and 21b are provided in the light receiving window portion at the tip of the light receiver l, which are spaced apart from each other, and the light receiving portion d is regulated by a mask member 25. The tip portion 22a of the edge member 22 is formed into a cutting edge shape, but this is not particularly necessary when dividing using a thin plate with a thickness of about 0.2 mm. A.

B受光部2a、2bの内壁には鏡面部材又は白色拡散材
からなる反射層26が設けられていて、反射光6が拡散
板21a、21bに入射し透過拡散したのち上記内壁で
反射して効率良くA光電子増倍管23a及びB光電子増
倍管23bによって受光されるようになっている。上記
拡散板21a、21bは、これがないと走査器l、受光
器2及び被検査体である感光体ドラム3の相互関係位置
、或は反射光6の反射方向に対する受光器2の傾きを極
めて精度良く調整しなければ検知精度に影響を及ぼすが
、これを設けることによって若干検知精度は落ちるが上
記関係位置や傾きの僅少な変化の影響を受けなくするこ
とができる。
A reflective layer 26 made of a mirror member or a white diffusing material is provided on the inner wall of the B light receiving sections 2a and 2b, and the reflected light 6 enters the diffuser plates 21a and 21b, is transmitted and diffused, and is then reflected by the inner wall to improve efficiency. The light is well received by the A photomultiplier tube 23a and the B photomultiplier tube 23b. Without the diffuser plates 21a and 21b, the relative position of the scanner 1, the light receiver 2, and the photosensitive drum 3 which is the object to be inspected, or the inclination of the light receiver 2 with respect to the direction of reflection of the reflected light 6 can be changed with extreme precision. If not well adjusted, the detection accuracy will be affected, but by providing this, the detection accuracy will drop slightly, but it can be made immune to the influence of slight changes in the above-mentioned relative position and inclination.

受光器2は上記のような構成になっているので、なだら
かなうねり欠陥の場合には受光部2a、受光部2bの出
力に差が現れ、微少凹凸欠陥の場合には良好な表面の場
合に比べその出力が減少するのでいずれの欠陥をも精度
良く検出することができる。
Since the photodetector 2 has the above-described configuration, a difference appears in the output of the photodetector 2a and photodetector 2b in the case of a gentle undulation defect, and a difference appears in the output of the photodetector 2a and the photodetector 2b in the case of a fine surface in the case of a minute unevenness defect. Since the output is reduced in comparison, any defect can be detected with high accuracy.

マスク部材25によって規制される入射窓の輻dは最も
感度良く検知しようとする表面欠陥の大きさや種類によ
っても異なるが、例えばレーザー光4の走査面上におけ
る輝点の直径が55μmであるときはd−20mmとし
たとき良好な結果が得られた。
The radiation d of the entrance window regulated by the mask member 25 varies depending on the size and type of the surface defect to be detected with the highest sensitivity, but for example, when the diameter of the bright spot on the scanning surface of the laser beam 4 is 55 μm. Good results were obtained when d-20 mm.

上記本発明の表面欠陥検査装置においては、被検査体表
面の欠陥検査に先立って走査器lの入射角θl及び受光
器2の受光角θrは被検査体の表面層即ち均質系層り、
の空気に対する屈折率をn、とすると、下記のθbに等
しくなるように調整される。
In the above surface defect inspection apparatus of the present invention, prior to defect inspection on the surface of the object to be inspected, the incident angle θl of the scanner 1 and the acceptance angle θr of the light receiver 2 are determined based on the surface layer of the object to be inspected, that is, the homogeneous layer;
Let n be the refractive index of air with respect to air, it is adjusted to be equal to θb below.

tan  θ b=  n  。tan θ b = n.

このような入射角度θbはブルースター角といわれる。Such an angle of incidence θb is called the Brewster angle.

このブルースター角に相当する角度θbで光か入射する
と第7図に示すように入射面に平行な振動面を有するp
偏光の反射率はOとなる。
When light is incident at an angle θb corresponding to this Brewster's angle, it has a vibration plane parallel to the incident plane as shown in Figure 7.
The reflectance of polarized light is O.

第7図はn+−1,5で入射光の振動面が入射面に平行
なp偏光(実線)及び垂直なS偏光(破線)の場合の入
射角θ1と反射率(%)の関係を示した図である。ブル
ースター角θbの前後で反射率の変化は約15度の範囲
であれば非常に緩慢で、かつその値も小さいため入射角
θlの調整及び走査中の入射角θlが多少ずれても問題
はない。
Figure 7 shows the relationship between the incident angle θ1 and the reflectance (%) when the vibration plane of the incident light is p-polarized light (solid line) parallel to the incident plane and S-polarized light (broken line) perpendicular to the incident plane at n+-1,5. This is a diagram. Changes in reflectance before and after Brewster's angle θb are very slow within a range of about 15 degrees, and the value is small, so there is no problem even if the incident angle θl is slightly deviated during adjustment of the incident angle θl and scanning. do not have.

さらに、前記被検査体である感光体ドラム3の感光層り
が反射光R,と反射光R3とが干渉する構成の場合には
l/2波長板13を光路中に挿入する。
Furthermore, if the photosensitive layer of the photosensitive drum 3, which is the object to be inspected, is configured such that the reflected lights R and R3 interfere with each other, a 1/2 wavelength plate 13 is inserted into the optical path.

これによりレーザー光4は入射面に対しp偏光となる。As a result, the laser beam 4 becomes p-polarized light with respect to the incident plane.

従ってレーザー光4が感光体ドラム3の表面にブルース
ター角θbに相当する角度で入射すると、反射光R1は
0となり反射光R2のみが受光器2に入射し干渉は発生
しない。しかも、反射光R2には感光層りの欠陥情報が
十分含まれているので、感光体ドラム3表面の欠陥検査
を干渉によって妨害されずに行うことができる。
Therefore, when the laser beam 4 is incident on the surface of the photosensitive drum 3 at an angle corresponding to the Brewster angle θb, the reflected light R1 becomes 0, and only the reflected light R2 enters the light receiver 2, and no interference occurs. Moreover, since the reflected light R2 contains sufficient information on defects in the photosensitive layer, defect inspection on the surface of the photosensitive drum 3 can be performed without being hindered by interference.

また、感光層りの分散層L2の分散が大きく反射光R2
か弱くなる場合には1/2波長板13を光路中から退避
させる。これによりレーザー光4は入射面に対しS偏光
となるので、反射光R8は反射し受光器2に入射して反
射光R□による感光体ドラム3表面の欠陥検査が可能に
なる。
In addition, the dispersion layer L2 of the photosensitive layer has a large dispersion and the reflected light R2
If the light becomes weak, the half-wave plate 13 is removed from the optical path. As a result, the laser beam 4 becomes S-polarized with respect to the incident surface, so that the reflected light R8 is reflected and enters the light receiver 2, making it possible to inspect the surface of the photoreceptor drum 3 for defects using the reflected light R□.

本実施例ではレーザー11は発射するレーザー光4の振
動面が入射面と垂直となるように設けられているがこれ
に限ることはなく、その振動面が入射面と平行となるよ
う設け、l/2波長板13の光路中からの挿脱を上記実
施例とは逆にしてもよく、また172波長板13を用い
ずに、レーザー11を90度回動して直線偏光のレーザ
ー光4を入射面に対してp偏光又はS偏光となるよう切
り替えるようにしてもよいことはいうまでもない。
In this embodiment, the laser 11 is installed so that the vibration plane of the emitted laser beam 4 is perpendicular to the incident plane, but the invention is not limited to this. The insertion and removal of the /2 wavelength plate 13 from the optical path may be reversed from the above embodiment, or the laser 11 may be rotated 90 degrees to emit the linearly polarized laser beam 4 without using the 172 wavelength plate 13. It goes without saying that the light may be switched to become p-polarized light or s-polarized light with respect to the incident plane.

C発明の効果〕 本発明によれば以上説明したような構成によって、レー
ザー光をブルースター角に相当する角度で入射させ、単
にl/2波長板の挿脱又はレーザーの90度回動するの
みの簡単な操作で、従来lっの装置では検知不可能であ
った、性質の異なる表面層を有する多種類のOPC感光
体表面の欠陥検査を可能とし、干渉による検出精度低下
のない優れた表面欠陥検査装置を提供することができる
こととなった。
C Effects of the Invention According to the present invention, with the configuration described above, the laser beam is incident at an angle corresponding to the Brewster angle, and the laser beam can be simply inserted and removed by inserting and removing the 1/2 wavelength plate or rotating the laser by 90 degrees. With a simple operation, it is possible to inspect for defects on the surface of many types of OPC photoreceptors that have surface layers with different properties, which could not be detected with conventional equipment. We are now able to provide defect inspection equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す側面図、M2図は81
図の受光器のA−A線断面図、′ig3図は第1図の受
光器の中央縦断面図、第4図は第1図のレーザー光の展
開光路図、第5図は被検査体表面の各種欠陥の反射光の
状態を表した図、第6図は被検査体の表面層が2層から
なる場合の反射光の状態を表す図、第7図はレーザー光
の入射角度と反射率の関係を示す図である。 l・・・走査器     2・・・受光器2a・・・A
受光部    2b・・・B受光部3・・・感光体ドラ
ム(被検査体) 4・・・レーザー光   5・・・走査輝線6・・反射
光     11・・・レーザー13・・・1/2波長
板    16・・・回転多面鏡17・・・fθレンズ
   18・・・同期センサ21a、21b・・・拡散
板  22・・・エツジ部材23d・・A光電子増倍管 23b・・B光電子増倍管
Fig. 1 is a side view showing one embodiment of the present invention, M2 drawing is 81
Figure 3 is a central vertical cross-sectional view of the receiver in Figure 1, Figure 4 is a developed optical path diagram of the laser beam in Figure 1, Figure 5 is the object to be inspected. Figure 6 shows the state of reflected light from various defects on the surface. Figure 6 shows the state of reflected light when the surface layer of the object to be inspected consists of two layers. Figure 7 shows the incident angle and reflection of laser light. FIG. 3 is a diagram showing the relationship between rates. l... Scanner 2... Light receiver 2a...A
Light receiving part 2b...B light receiving part 3...Photosensitive drum (object to be inspected) 4...Laser light 5...Scanning bright line 6...Reflected light 11...Laser 13...1/2 Wave plate 16...Rotating polygon mirror 17...Fθ lens 18...Synchronization sensor 21a, 21b...Diffusion plate 22...Edge member 23d...A photomultiplier tube 23b...B photomultiplier tube

Claims (1)

【特許請求の範囲】 基体表面に光吸収の少ない均質系層を設けたOPC感光
体を搬送させながらレーザー光をフライングスポット方
式で照射し、その反射光で前記被検査体表面の欠陥を検
査するようにした表面欠陥検査装置において、 被検査体表面に向けて前記レーザー光の直線偏光をほぼ
ブルースター角に相当する入射角で照射し、該レーザー
光の偏光方向を選定し、該レーザー光の反射光によって
前記被検査体表面の欠陥検査を行うことを特徴とする表
面欠陥検査装置。
[Claims] Laser light is irradiated by a flying spot method while an OPC photoreceptor having a homogeneous layer with low light absorption on the surface of the substrate is conveyed, and defects on the surface of the object to be inspected are inspected using the reflected light. In the surface defect inspection apparatus, the linearly polarized laser beam is irradiated onto the surface of the object to be inspected at an incident angle approximately corresponding to the Brewster angle, the polarization direction of the laser beam is selected, and the polarization direction of the laser beam is selected. A surface defect inspection device characterized in that the surface of the object to be inspected is inspected for defects using reflected light.
JP9358290A 1990-04-09 1990-04-09 Surface defect inspection device Pending JPH03291552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358290A JPH03291552A (en) 1990-04-09 1990-04-09 Surface defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358290A JPH03291552A (en) 1990-04-09 1990-04-09 Surface defect inspection device

Publications (1)

Publication Number Publication Date
JPH03291552A true JPH03291552A (en) 1991-12-20

Family

ID=14086271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358290A Pending JPH03291552A (en) 1990-04-09 1990-04-09 Surface defect inspection device

Country Status (1)

Country Link
JP (1) JPH03291552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281589A (en) * 1993-03-26 1994-10-07 Mitsui Mining & Smelting Co Ltd Defect evaluating apparatus
US6963076B1 (en) * 2000-07-31 2005-11-08 Xerox Corporation System and method for optically sensing defects in OPC devices
US10775161B2 (en) * 2017-06-02 2020-09-15 Konica Minolta, Inc. Roll object inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281589A (en) * 1993-03-26 1994-10-07 Mitsui Mining & Smelting Co Ltd Defect evaluating apparatus
US6963076B1 (en) * 2000-07-31 2005-11-08 Xerox Corporation System and method for optically sensing defects in OPC devices
US10775161B2 (en) * 2017-06-02 2020-09-15 Konica Minolta, Inc. Roll object inspection apparatus

Similar Documents

Publication Publication Date Title
US4342515A (en) Method of inspecting the surface of an object and apparatus therefor
US7643139B2 (en) Method and apparatus for detecting defects
US7292330B2 (en) Wafer inspection with a customized reflective optical channel component
US4541715A (en) Apparatus for detecting contaminants on the reticle of exposure system
JPH0915163A (en) Method and equipment for inspecting foreign substance
US5963316A (en) Method and apparatus for inspecting a surface state
JPH11501727A (en) Product surface inspection system and method
US7218391B2 (en) Material independent optical profilometer
US6853446B1 (en) Variable angle illumination wafer inspection system
JPH075115A (en) Surface condition inspection apparatus
JPH11242001A (en) Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate
JP2000352697A (en) Optical image detecting method and appearance inspecting device
JPS63143831A (en) Optical apparatus for detecting defect on face plate
JPH03291552A (en) Surface defect inspection device
JP3469714B2 (en) Photoconductor surface inspection method and photoconductor surface inspection device
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JPH03289506A (en) Surface-defect inspecting apparatus
JPH03173452A (en) Wafer surface plate pit defects detection optical system
JPH0141922B2 (en)
JPH10142162A (en) Coated layer flaw inspecting light selecting method, coated layer flaw inspecting method, and coated layer flaw inspecting device
JPH09145339A (en) Surface flaw inspection method
JPS6352766B2 (en)
JPH10293103A (en) Method and equipment for optical measurement and optical measuring equipment for patterned substrate
JPH0755721A (en) Inspecting device for sheet material
JPH0894540A (en) Surface inspection device