JPS6149773B2 - - Google Patents
Info
- Publication number
- JPS6149773B2 JPS6149773B2 JP8040078A JP8040078A JPS6149773B2 JP S6149773 B2 JPS6149773 B2 JP S6149773B2 JP 8040078 A JP8040078 A JP 8040078A JP 8040078 A JP8040078 A JP 8040078A JP S6149773 B2 JPS6149773 B2 JP S6149773B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- relay
- adsorbent
- gas
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003463 adsorbent Substances 0.000 claims description 14
- 238000001179 sorption measurement Methods 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 16
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 239000000843 powder Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Contacts (AREA)
- Manufacture Of Switches (AREA)
Description
本発明は有極形の密閉形リレーに於いて用いら
れるリレー接点用磁石に関し、多孔質性の焼結磁
石1表面に活性アルミナのようなガス吸着能を有
するガス吸着剤2を保持させ、この焼結磁石1を
リレー接点の近傍に取り付けて成ることを特徴と
するリレーに係るものである。
低負荷用リレーの接点には、Rhなどの白金系
金属が多く用いられていたが、白金系金属の触媒
活性の為に接点周辺に存在する有機ガスがポリマ
ーとなつて、いわゆるブラウンパウダーを形成し
接触不良や接触抵抗の増加などの接点障害を起し
てリレーの信頼性、寿命に影響を与えることがあ
る。特にプラスチツク材料のケースで密閉された
リレーにおいては、その成型材料から発生する有
機ガスが比較的多いので問題となり易い。そこで
有極形リレー内に使用されている永久磁石(Ba
フエライト磁石)の多孔質性を利用して、内部の
有機ガスを吸着させるという試みがなされ、これ
は、リレーの信頼性、寿命に関して、ある程度の
効果を示すことが報じられている。しかし市販の
Baフエライト磁石のみではその吸着特性は小さ
く、リレーの性能に与える影響にも限度がある。
本発明は上記の点に鑑みて成されたものであつ
て、多孔質性の磁石によるガス吸着性を利用しつ
つさらに有機ガスの吸着性を向上せしめたリレー
を提供することを目的とするものである。
以下本発明を詳細に説明する。多孔質の焼結磁
石としてはBaフエライト磁石が用いられる。ま
た吸着剤としては活性アルミナ、モレキユラーシ
ーブ、活性炭などガス吸着能の優れたものが用い
られる。この吸着剤を1μm径程度に粉砕し、こ
の粉末を2液性エポキシ樹脂(または接着剤)と
共に混合する。吸着剤粉末を混合する樹脂として
はエポキシ樹脂に限定するものではなくシリコン
樹脂等でもよいが、樹脂:吸着剤は1:2の比率
で混合するのがよい。このように樹脂3に吸着剤
2を混合したものを第2図のように多孔質性焼結
磁石1表面上に厚さ約1mmで塗布し、80゜〜100
℃にて2〜3時間乾燥硬化せしめ、磁石1に樹脂
3と吸着剤2との複合層4を積層する。この後複
合層4の表面を#800のエメリー紙で研磨し、厚
さ約0.2mmにする。このように吸着剤2を表面に
積層した磁石1は例えば第1図のように有極形切
換形のリードリレー内に取付けられるものであ
る。第1図中5は端子、6はアクチエーター、7
はコイル、8はこれらを密閉するプラスチツクケ
ースである。しかして、リレーの内部に発生する
有機ガスは多孔質の磁石1に吸着されるものであ
る。ここで、第1図に示されるように磁石1は端
子5の端部とアクチエーター6の先端部とで構成
されるリレー接点の近傍に配置されていて、接点
周辺において発生し易い有機ガスが効率良く吸着
されるようにしてある。尚、吸着剤2は真空中で
加熱して脱ガス処理を施して用いると吸着効果を
より高めることができる。
上述のように本発明にあつては、多孔質性の焼
結磁石表面に活性アルミナ等のガス吸着剤を積層
せしめてあるので、リレー内部の有機ガスや多孔
質の磁石によつて吸着される他吸着剤により強力
に吸着されるものであつて、吸着特性の小さい多
孔質性焼結磁石の吸着性能を吸着剤で補うことが
でき、有機ガスのリレーの性能に与える影響を完
全に除去できるものである。
しかも磁石はリレーの内部において接点の近傍
に配設されるものであり、そして磁石の磁界の作
用によつて、接点より発生するアーク中の帯電し
た粒子を速かに多孔質の磁石及びガス吸着剤に吸
着させることができるものである。
次に本発明を実施例により具体的に説明する。
実施例 1
活性アルミナを約1μの粉末に粉砕して
10-5Torrの真空中で250℃に加熱し脱ガス処理を
行なつた。この活性アルミナ粉末を2液性エポキ
シ樹脂:活性アルミナ粉末=1:2の比率で混合
した。この混合物をBaフエライト磁石表面に1
mmの膜厚で塗布し、90℃にて2.5時間乾燥硬化せ
しめた。この後積層物表面を#800のエメリー紙
で研磨し、膜厚を0.2mmとした。このようにして
Baフエライト磁石に活性アルミナを積層せしめ
た。このものに有機ガスとしてクメン(C9H12)
を用20℃5200ppmで5分吸着せしめる吸着性試
験を行なつた。結果は第1表のとうりである。
The present invention relates to a relay contact magnet used in a polar sealed relay, in which a porous sintered magnet 1 has a gas adsorbent 2 having gas adsorption ability such as activated alumina held on its surface. The present invention relates to a relay characterized in that a sintered magnet 1 is attached near relay contacts. Platinum-based metals such as Rh were often used for the contacts of low-load relays, but due to the catalytic activity of platinum-based metals, the organic gas present around the contacts turns into polymers, forming so-called brown powder. However, contact failures such as poor contact and increased contact resistance may occur, affecting the reliability and life of the relay. In particular, relays that are sealed with a case made of plastic material tend to be a problem because a relatively large amount of organic gas is generated from the molding material. Therefore, the permanent magnet (Ba
Attempts have been made to utilize the porous nature of ferrite magnets to adsorb internal organic gases, and this has been reported to have some effect on the reliability and lifespan of relays. However, commercially available
Ba ferrite magnets alone have small adsorption characteristics and have a limited effect on relay performance. The present invention has been made in view of the above points, and it is an object of the present invention to provide a relay that utilizes the gas adsorption property of a porous magnet and further improves the adsorption property of organic gas. It is. The present invention will be explained in detail below. A Ba ferrite magnet is used as the porous sintered magnet. In addition, as the adsorbent, one having excellent gas adsorption ability such as activated alumina, molecular sieve, and activated carbon is used. This adsorbent is pulverized to a diameter of about 1 μm, and this powder is mixed with a two-component epoxy resin (or adhesive). The resin with which the adsorbent powder is mixed is not limited to epoxy resin, and may be silicone resin or the like, but it is preferable to mix the resin:adsorbent at a ratio of 1:2. A mixture of resin 3 and adsorbent 2 is applied to the surface of porous sintered magnet 1 to a thickness of about 1 mm as shown in Fig.
The composite layer 4 of the resin 3 and the adsorbent 2 is laminated on the magnet 1 by drying and curing at a temperature of 2 to 3 hours. Thereafter, the surface of the composite layer 4 is polished with #800 emery paper to a thickness of about 0.2 mm. The magnet 1 having the adsorbent 2 laminated on its surface is installed, for example, in a polarized switching type reed relay as shown in FIG. In Figure 1, 5 is the terminal, 6 is the actuator, and 7
is a coil, and 8 is a plastic case that seals them. Therefore, the organic gas generated inside the relay is attracted to the porous magnet 1. Here, as shown in FIG. 1, the magnet 1 is placed near the relay contact consisting of the end of the terminal 5 and the tip of the actuator 6, and the organic gas that is likely to be generated around the contact is It is designed to be adsorbed efficiently. Note that the adsorption effect can be further enhanced by heating the adsorbent 2 in a vacuum and subjecting it to degassing treatment. As mentioned above, in the present invention, a gas adsorbent such as activated alumina is layered on the surface of the porous sintered magnet, so that the organic gas inside the relay and the porous magnet adsorb the gas. The adsorbent can supplement the adsorption performance of porous sintered magnets, which are strongly adsorbed by other adsorbents and have small adsorption properties, and can completely eliminate the influence of organic gases on relay performance. It is something. Moreover, the magnet is placed near the contacts inside the relay, and by the action of the magnetic field of the magnet, the charged particles in the arc generated from the contacts are quickly absorbed by the porous magnet and the gas. It can be adsorbed to the agent. Next, the present invention will be specifically explained using examples. Example 1 Activated alumina was ground into powder of approximately 1μ.
Degassing treatment was performed by heating to 250°C in a vacuum of 10 -5 Torr. This activated alumina powder was mixed in a two-component epoxy resin:activated alumina powder ratio of 1:2. Apply this mixture to the surface of the Ba ferrite magnet.
It was applied to a film thickness of mm and dried and cured at 90°C for 2.5 hours. Thereafter, the surface of the laminate was polished with #800 emery paper to give a film thickness of 0.2 mm. In this way
Activated alumina is layered on Ba ferrite magnet. This stuff contains cumene (C 9 H 12 ) as an organic gas.
An adsorption test was conducted in which the material was adsorbed for 5 minutes at 5200 ppm at 20°C. The results are as shown in Table 1.
【表】
活性アルミナを積層しないBaフエライト磁石
単独の従来例のものに比して8〜10倍の吸着量が
得られた。
実施例 2
同様にしてBaフエライト磁石にモレキユラー
シーブを積層し、実施例1と同様な吸着性試験を
行なつた。結果は表2のとおり、[Table] 8 to 10 times the amount of adsorption was obtained compared to a conventional example using only a Ba ferrite magnet without stacking activated alumina. Example 2 A molecular sieve was laminated on a Ba ferrite magnet in the same manner, and the same adsorption test as in Example 1 was conducted. The results are shown in Table 2.
【表】
実施例 3
活性炭を用いて実施例1と同様にしてBaフエ
ライト磁石上に積層し、実施例1と同様な吸着試
験を行なつた。結果は表3のとおり。[Table] Example 3 Activated carbon was laminated on a Ba ferrite magnet in the same manner as in Example 1, and the same adsorption test as in Example 1 was conducted. The results are shown in Table 3.
第1図は本発明の磁石を用いたリレーの一部切
欠斜視図、第2図aは同上の磁石の斜視図、第2
図bは同上の拡大断面図であつて、1は磁石、2
は吸着剤である。
FIG. 1 is a partially cutaway perspective view of a relay using the magnet of the present invention, FIG. 2a is a perspective view of the same magnet, and FIG.
Figure b is an enlarged sectional view of the same as above, where 1 is a magnet, 2
is an adsorbent.
Claims (1)
うなガス吸着能を有するガス吸着剤を保持させ、
この焼結磁石をリレー接点の近傍に取り付けて成
ることを特徴とするリレー。1 A gas adsorbent with gas adsorption ability such as activated alumina is held on the surface of a porous sintered magnet,
A relay characterized in that this sintered magnet is attached near relay contacts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8040078A JPS556772A (en) | 1978-06-30 | 1978-06-30 | Magnet for relay contact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8040078A JPS556772A (en) | 1978-06-30 | 1978-06-30 | Magnet for relay contact |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS556772A JPS556772A (en) | 1980-01-18 |
JPS6149773B2 true JPS6149773B2 (en) | 1986-10-31 |
Family
ID=13717228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8040078A Granted JPS556772A (en) | 1978-06-30 | 1978-06-30 | Magnet for relay contact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS556772A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53127051U (en) * | 1977-03-17 | 1978-10-09 |
-
1978
- 1978-06-30 JP JP8040078A patent/JPS556772A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS556772A (en) | 1980-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101237001B1 (en) | Composition for complex sheet, complex sheet comprising the same, and preparation method of the complex sheet | |
KR830008396A (en) | Semiconductor device and manufacturing method | |
TW201310476A (en) | Electronic component and manufacturing method thereof | |
JP2008192585A (en) | Multilayer laminated mica tape | |
US20120255444A1 (en) | Activated carbon for simultaneous removal of dust and gaseous air pollutants and method of preparing activated carbon electrode plate using the same | |
JPS6149773B2 (en) | ||
US2027277A (en) | Contact device | |
US2333477A (en) | Electrical variable resistor | |
US6833181B2 (en) | Conductive resin composition and contact board using the same | |
US2177484A (en) | Resistance device | |
JPS5927005Y2 (en) | relay | |
US11961645B2 (en) | Coil component and method for manufacturing coil component | |
US3835529A (en) | Gas detecting device and method of making same | |
JPS63274452A (en) | Magnetic adsorbent for manufacturing nitrogen | |
JP2001167875A (en) | Absorbent holding structure of organic electroluminescent element | |
WO2020232691A1 (en) | Flexible material used for capacitors, preparation method therefor and printed circuit board | |
CN212737359U (en) | Shaving board capable of efficiently adsorbing formaldehyde | |
JPH0536514A (en) | Composite magnetic material | |
JPH0645166A (en) | Manufacture of amorphous metal toroidal core | |
JP3814189B2 (en) | Activated carbon fiber element and manufacturing method thereof | |
SU936040A1 (en) | Electric wire | |
US2412668A (en) | Magnetic body | |
JP2002353064A (en) | Metalized film capacitor | |
JPS60177513A (en) | Mold bushing | |
JPS58122866A (en) | Getter body |