JPS6149552B2 - - Google Patents

Info

Publication number
JPS6149552B2
JPS6149552B2 JP57228295A JP22829582A JPS6149552B2 JP S6149552 B2 JPS6149552 B2 JP S6149552B2 JP 57228295 A JP57228295 A JP 57228295A JP 22829582 A JP22829582 A JP 22829582A JP S6149552 B2 JPS6149552 B2 JP S6149552B2
Authority
JP
Japan
Prior art keywords
iron pipe
shaft
iron
pipes
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57228295A
Other languages
Japanese (ja)
Other versions
JPS59126185A (en
Inventor
Seiji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAI TETSUKOSHO KK
Original Assignee
SAKAI TETSUKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAI TETSUKOSHO KK filed Critical SAKAI TETSUKOSHO KK
Priority to JP57228295A priority Critical patent/JPS59126185A/en
Publication of JPS59126185A publication Critical patent/JPS59126185A/en
Publication of JPS6149552B2 publication Critical patent/JPS6149552B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 本発明は地中に斜坑トンネルを掘削して水圧鉄
管等の鉄管を据付ける際の据付工法に関し、更に
詳しくは直径の小さな斜坑を掘削し、作業用横坑
より短い単位鉄管を搬入して斜坑と作業用横坑の
交差部で単位鉄管を順次溶接した後、所定位置に
移動して据付ける鉄管の据付工法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an installation method for installing iron pipes such as penstocks by excavating a diagonal tunnel underground. This relates to an iron pipe installation method in which unit iron pipes are brought in, sequentially welded at the intersection of a diagonal shaft and a work shaft, and then moved and installed at a predetermined position.

従来斜坑トンネル内に水圧鉄管を据付ける際に
はトンネル内に6〜9mの長さの鉄管よりなる単
位鉄管を搬入して所定位置に据付け、鉄管の内外
両面より、単位鉄管の管端を相互に溶接して長い
水圧鉄管としたため、鉄管の周囲に作業員が入つ
て据付、溶接、検査等の作業をしうるように鉄管
の直径よりも120〜140cm大きな直径のトンネルを
掘削する必要があつた。鉄管の溶接後鉄管とトン
ネルの間隙はコンクリートで充填するが、このよ
うに鉄管の直径よりも非常に大きな直径のトンネ
ルを掘削し、これをコンクリートで充填するた
め、従来の水圧鉄管の据付工法は多額の工費を要
する欠点があつた。
Conventionally, when installing a penstock in a diagonal shaft tunnel, a unit iron pipe consisting of 6 to 9 m long iron pipes is brought into the tunnel, installed at a predetermined position, and the ends of the unit iron pipe are connected to each other from both the inside and outside of the iron pipe. Since the penstock was welded to a long penstock, it was necessary to excavate a tunnel with a diameter 120 to 140 cm larger than the diameter of the iron pipe so that workers could enter around the iron pipe for installation, welding, inspection, etc. Ta. After the iron pipes are welded, the gap between the iron pipe and the tunnel is filled with concrete, but because a tunnel with a diameter much larger than the diameter of the iron pipe is excavated and then filled with concrete, the conventional method of installing penstocks is difficult. It had the drawback of requiring a large amount of construction costs.

そこで出来るだけ直径の小さなトンネルを掘削
して、その中に鉄管を据付けることにより工費の
節減を図る目的で従来の鉄管の内外両面より鉄管
を溶接する溶接工法に代えて、鉄管の内側のみか
ら、いわゆる裏波溶接により鉄管を溶接する工法
が提案されている。この工法によれば、鉄管の外
側とトンネル内壁の間に溶接工が入つて溶接作業
を行う必要がないため、鉄管の導入に必要な最小
限のトンネルを掘削するのみでよいから、トンネ
ルの掘削及び充填の費用は節減しうる。しかし裏
波溶接は、鉄管の内側のみから溶接を行うため、
内外両側から溶接を行う工法に比較して、溶接作
業が困難であり、完全な溶接を行うためには、自
動化された大規模な溶接設備を必要とし、溶接コ
ストが嵩むという欠点がある。
Therefore, in order to reduce construction costs by excavating a tunnel with as small a diameter as possible and installing the iron pipe inside it, instead of the conventional welding method in which the iron pipe is welded from both the inside and outside of the iron pipe, welded only from the inside of the iron pipe. A method of welding iron pipes using so-called Uranami welding has been proposed. According to this construction method, there is no need for welders to enter between the outside of the iron pipe and the inner wall of the tunnel to perform welding work, so it is only necessary to excavate the minimum tunnel necessary for introducing the iron pipe. and filling costs can be saved. However, since Uranami welding only welds from the inside of the iron pipe,
Compared to the method of welding from both the inside and outside, this method has the disadvantage that the welding work is difficult, and in order to perform complete welding, automated large-scale welding equipment is required, which increases welding costs.

本発明は上記の従来の工法の欠点に鑑みトンネ
ルの直径を鉄管の移動に必要な最小必要寸法とし
て、トンネルの掘削、及び充填の費用を節減する
と共に、鉄管の溶接は、管の内外両側より、手溶
接により安価で品質のよい溶接を行うことができ
る水圧鉄管の据付工法を提供することを目的とす
る。
In view of the above-mentioned drawbacks of the conventional construction method, the present invention sets the diameter of the tunnel as the minimum required dimension for moving the iron pipe, thereby reducing the cost of tunnel excavation and filling. The purpose of the present invention is to provide a method for installing penstocks that allows manual welding to be performed at low cost and with good quality.

一般に鉄管路トンネルの斜坑ではトンネルの途
中に掘削時のズリの搬出や、鉄管の搬入のために
斜坑の200〜300m毎に作業用横坑が設けられる。
本発明の工法は斜坑の直径は鉄管を斜坑に沿つて
上下に移動させるに必要最小限の寸法とすると共
に、斜坑と作業用横坑との交差部付近のみ斜坑の
断面を作業用横坑からの鉄管の搬入、溶接、検査
を容易に行なうことができる大きさに切拡げ、作
業用横坑より一定の長さの単位鉄管を搬入して切
拡げた斜坑と作業用横坑の交差部で単位鉄管を管
の内外両面から手溶接等で完全に溶接し、斜坑の
頂部に設けたウインチ等の吊上げ設備により、溶
接した鉄管全体を1個の単位鉄管の溶接が終るた
びに単位鉄管の長さだけ上方に吊上げて移動さ
せ、その下端に順次次の単位鉄管を溶接して、全
長を延ばしていき、斜坑の作業用横坑間の長さの
鉄管が完成するとこれを吊り降ろし、所定位置に
据付け、次の上の段の横坑と斜坑の交差部で同様
の作業を繰り返す工法である。
In general, in the case of inclined shafts of iron pipeline tunnels, work shafts are provided every 200 to 300 meters along the inclined shaft to carry out excavation waste and to carry in iron pipes.
In the construction method of the present invention, the diameter of the inclined shaft is set to the minimum dimension necessary to move the iron pipe up and down along the inclined shaft, and the cross section of the inclined shaft is removed from the working side shaft only near the intersection of the inclined shaft and the working side shaft. The steel pipes are cut and widened to a size that can be easily carried in, welded, and inspected, and the unit iron pipes of a certain length are brought in from the working side shaft and cut and widened at the intersection of the sloped shaft and the working side shaft. The unit iron pipes are completely welded by hand welding from both the inside and outside of the pipe, and by lifting equipment such as a winch installed at the top of the inclined shaft, the length of the entire welded iron pipe is lifted each time one unit iron pipe is welded. The steel pipes are then hoisted upward and moved, and successive unit iron pipes are welded to the lower ends of the pipes to extend the total length. When the length of the steel pipe between the work shafts of the inclined shaft is completed, it is lowered and placed in the designated position. This is a construction method in which the same work is repeated at the intersection of the horizontal shaft and inclined shaft on the next upper level.

次に本発明の鉄管の据付工法の内容を図面によ
り更に詳細に説明する。第1図は、本発明の鉄管
の据付工法の説明図である。1は水圧鉄管2を埋
設する斜坑であつて、埋設すべき鉄管2を斜坑に
沿つて吊上げ吊降すに必要最小限の直径、例えば
鉄管の外径より60cm大きな直径に掘削する。斜坑
1内にはこれに沿つて下側に鉄管移動用のインク
ライン用レール3を敷設する。斜坑頂部にはウイ
ンチ等の鉄管の吊上げ設備4を設ける。第2図に
示すように溶接した長い水圧鉄管2を適当な間隔
で台車5に載置してインクライン用レール3上を
吊上げ設備4により上下に移動させる。
Next, the content of the iron pipe installation method of the present invention will be explained in more detail with reference to the drawings. FIG. 1 is an explanatory diagram of the iron pipe installation method of the present invention. Reference numeral 1 denotes a diagonal shaft in which a penstock 2 is to be buried, which is excavated to the minimum diameter necessary to lift and lower the penstock 2 to be buried along the diagonal shaft, for example, a diameter 60 cm larger than the outer diameter of the iron pipe. In the inclined shaft 1, an inclined rail 3 for moving iron pipes is laid on the lower side along the inclined shaft 1. Iron pipe lifting equipment 4 such as a winch is provided at the top of the inclined shaft. As shown in FIG. 2, long welded penstocks 2 are placed on carts 5 at appropriate intervals and moved up and down on incline rails 3 by lifting equipment 4.

6は作業用横坑であつて通常斜坑1の上・下端
及び中間に200〜300m間隔で設けられている。斜
坑1と作業用横坑6の交差部7は単位鉄管8の搬
入、溶接等の作業が容易に行なうことができるよ
うに両坑を切拡げてある。作業用横坑6には、単
位鉄管8を組立台9に載置して搬入するためにレ
ール10を敷設する。第3図に示すように単位鉄
管8を載置してレール10上を転動して搬入され
た組立台9は、支点11を中心として斜位置迄回
動しうるようになつている。
Reference numeral 6 denotes horizontal working shafts, which are usually provided at intervals of 200 to 300 m at the upper and lower ends and in the middle of the inclined shaft 1. At the intersection 7 of the inclined shaft 1 and the working horizontal shaft 6, both shafts are widened so that work such as carrying in unit iron pipes 8 and welding can be easily carried out. Rails 10 are laid in the work shaft 6 in order to place the unit iron pipes 8 on an assembly table 9 and carry them there. As shown in FIG. 3, the assembly table 9, on which the unit iron pipes 8 are placed and carried in by rolling on the rails 10, can rotate about a fulcrum 11 to an oblique position.

本発明の方法により水圧鉄管を据付けるには、
2段目の作業用横坑6から単位鉄管8を組立台9
に載置して搬入し、作業用横坑6と斜坑1の交差
部7で第3図に鎖線で示すように組立台9を単位
鉄管8を載置したままで回動して単位鉄管8の軸
線が斜坑1と平行になるように傾斜させ、その単
位鉄管8を斜坑頂部12のウインチ等の吊上げ設
備4から降ろしたワイヤ13により、単位鉄管8
1本分の長さより若干高い位置迄台車5に載せて
インクライン用レール3に沿つて引上げる。次の
単位鉄管8を搬入して組立台9上に載せ、組立台
9を傾斜させ、先に斜坑1内引上げておいた鉄管
を少し降ろして管端を合せる。次いで継手部14
を管内外両面より手溶接又は機械溶接により溶接
する。溶接部の検査の後、溶接された鉄管2全体
を吊上げ設備4により約単位鉄管1本分の長さだ
け引上げる。同様の作業を繰返し、順次搬入した
単位鉄管8を斜坑1内の鉄管2に溶接して延ばし
てゆき、溶接した鉄管2が第1図の1段目と2段
目の作業用横坑6,6間の斜坑1のA区間の長さ
に達すると交差部7にインクライン用レール3を
組立て、上に引上げていたA区間の鉄管2全体を
交差部7を横切つて所定の据付位置まで吊降ろ
す。鉄管2を正しい位置に据付け、鉄管2とトン
ネルの間隙にコンクリートを充填し、A区間の据
付作業を完了する。コンクリート充填の際インク
ライン用レール3も共に埋設する。
To install a penstock by the method of the present invention,
Assembling the unit iron pipe 8 from the second stage working horizontal shaft 6 to the assembly table 9
At the intersection 7 of the working horizontal shaft 6 and the inclined shaft 1, as shown by the chain line in FIG. The unit iron pipe 8 is tilted so that its axis is parallel to the inclined shaft 1, and the unit iron pipe 8 is lowered from the lifting equipment 4 such as a winch at the top 12 of the inclined shaft by a wire 13.
It is placed on the trolley 5 to a position slightly higher than the length of one line and pulled up along the incline rail 3. The next unit iron pipe 8 is carried in and placed on the assembly table 9, the assembly table 9 is tilted, and the iron pipe previously pulled up into the inclined shaft 1 is lowered a little and the tube ends are aligned. Next, the joint part 14
Weld by hand or machine welding from both the inside and outside of the tube. After inspecting the welded part, the entire welded iron pipe 2 is lifted up by the lifting equipment 4 by about the length of one unit iron pipe. By repeating the same operation, the unit iron pipes 8 brought in one after another are welded to the iron pipes 2 in the inclined shaft 1 and extended. When the length of the A section of the inclined shaft 1 between 6 and 6 is reached, the incline rail 3 is assembled at the intersection 7, and the entire iron pipe 2 of the A section that has been pulled up is moved across the intersection 7 to the predetermined installation position. hang it down The iron pipe 2 is installed in the correct position, the gap between the iron pipe 2 and the tunnel is filled with concrete, and the installation work for section A is completed. When filling concrete, the incline rail 3 is also buried.

同様にしてB区間については3段目の作業用横
坑6を利用して鉄管を搬入し、その交差部7′で
溶接を繰返し、B区間の長さに等しい鉄管2を組
立て、B区間の所定の位置まで吊降ろす。B区間
の鉄管の下端をA区間の鉄管の上端に当接させ、
両区間の鉄管を溶接又はメカニカル継手により接
続する。次いでB区間の鉄管とトンネルの間隙を
コンクリートで充填し、B区間の鉄管の据付作業
を終了する。
Similarly, for section B, the iron pipes are brought in using the third-stage work shaft 6, welding is repeated at the intersection 7', and iron pipes 2 equal to the length of section B are assembled. Lower it to the designated position. The lower end of the iron pipe in section B is brought into contact with the upper end of the iron pipe in section A,
The iron pipes in both sections will be connected by welding or mechanical joints. Next, the gap between the steel pipe in section B and the tunnel is filled with concrete, and the installation work for the steel pipe in section B is completed.

このようにして、順次N個の区間について据付
作業を繰返し、斜坑トンネル全体の鉄管の据付作
業を終了する。
In this way, the installation work is repeated for N sections in sequence, and the installation work of the iron pipes for the entire inclined shaft tunnel is completed.

一つの区間の距離が長く、1区間全体の鉄管を
1本に接続して吊上げ、吊降ろすのが困難な場合
には、1区間を数個に分割して鉄管を組立て、分
割部分の鉄管が完成する毎に所定位置に据付けて
各分割鉄管をメカニカル継手等により、接続する
ことができる。
If the distance of one section is long and it is difficult to connect the whole section of iron pipe into one and lift and lower it, one section can be divided into several pieces and the iron pipes are assembled, and the iron pipes of the divided parts are Each time it is completed, it can be installed at a predetermined position and the divided iron pipes can be connected using mechanical joints or the like.

上記説明では、各区間に据付ける鉄管2を構成
する単位鉄管8は、その据付けるべき斜坑の区間
の上端で交差する作業用横坑6より搬入して、そ
の交差部7で溶接を行う方法を用いたが、1区間
全体を1本の鉄管に接続して吊上げる場合は上と
逆に各区間の下端で交差する作業用横坑6より単
位鉄管8を搬入して、その作業用横坑6と斜坑1
の交差部7で溶接を行う方法も全く同様に用いる
ことができる。特に斜坑1の最上部の区間につい
ては接続した鉄管全体を上方に吊上げる余地がな
いから後者の方法で施工するのが望ましい。最上
部の区間を分割して施工する場合はその分割され
た施工部分のうち最上部のみは広いトンネルを掘
削して、従来の工法で鉄管の据付けを行うのがよ
い。
In the above explanation, the unit iron pipes 8 constituting the iron pipes 2 to be installed in each section are carried in through the work shaft 6 that intersects at the upper end of the section of the inclined shaft to be installed, and welded at the intersection 7. However, when the entire section is connected to one iron pipe and lifted, the unit iron pipe 8 is carried in from the working horizontal shaft 6 that intersects at the bottom end of each section, contrary to the above, and the working horizontal shaft is Pit 6 and inclined shaft 1
A method of welding at the intersection 7 can also be used in exactly the same manner. In particular, for the uppermost section of the inclined shaft 1, it is preferable to use the latter method since there is no room to lift the entire connected iron pipe upward. If the uppermost section is to be constructed in sections, it is best to excavate a wide tunnel for only the uppermost portion of the divided sections and install the iron pipe using conventional construction methods.

上記据付工法において斜坑1にインクライン用
レール3を必ずしも敷設する必要はなく、その代
りに斜坑1内にガイドローラー等を固定してその
案内によりこれに沿つて鉄管2を移動させてもよ
い。又組立台9を作業用横坑6に敷設したレール
10上を移動させ、単位鉄管8をこれに積載して
搬入してもよいし、又、組立台9は交差部7に固
定しておいて別の台車で単位鉄管8を搬入して組
立台9上に移載してもよい。
In the above installation method, it is not always necessary to lay the incline rail 3 in the inclined shaft 1, and instead, guide rollers or the like may be fixed in the inclined shaft 1 and the iron pipe 2 may be moved along the guide rollers. Furthermore, the assembly table 9 may be moved on the rails 10 laid in the work shaft 6, and the unit iron pipes 8 may be loaded thereon and carried in. Alternatively, the assembly table 9 may be fixed at the intersection 7. Then, the unit iron pipe 8 may be carried in using another cart and transferred onto the assembly table 9.

本発明の水圧鉄管の据付工法によれば、鉄管を
据付ける斜坑トンネルの直径を鉄管の移動に必要
な最小限の寸法とすることができ、トンネルの掘
削、及びコンクリート充填の工事費を大幅に節減
することができると共に、単位鉄管の搬入、溶
接、検査等の作業は、切拡げた斜坑と作業用横坑
の交差部で行うため、作業が容易であり、鉄管の
内外両面から、安価な手溶接により、品質の優れ
た溶接を行うことができる。
According to the penstock installation method of the present invention, the diameter of the inclined shaft tunnel in which the iron pipe is installed can be reduced to the minimum dimension necessary for moving the iron pipe, and the construction costs for tunnel excavation and concrete filling can be significantly reduced. In addition, work such as carrying in, welding, and inspecting unit iron pipes is carried out at the intersection of the diagonal shaft that has been cut and widened and the work shaft, making the work easier. Manual welding allows for superior quality welds.

本発明の鉄管の据付工法は、水圧鉄管だけでな
く、傾斜して埋設するあらゆる埋設鉄管の据付工
法として用いることができる。
The iron pipe installation method of the present invention can be used not only for hydraulic iron pipes, but also for any type of buried iron pipe that is buried at an angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鉄管の据付工法を示す側面断
面図である。第2図はA―A拡大断面図、第3図
は交差部の拡大側面断面図である。 符号の説明 1…斜坑、2…鉄管、3…インク
ライン用レール、4…吊上げ設備、5…台車、6
…作業用横坑、7,7′…交差部、8…単位鉄
管、9…組立台、10…レール、11…支点、1
2…頂部、13…ワイヤ、14…継手部。
FIG. 1 is a side sectional view showing the iron pipe installation method of the present invention. FIG. 2 is an enlarged sectional view taken along the line AA, and FIG. 3 is an enlarged side sectional view of the intersection. Explanation of symbols 1... Inclined shaft, 2... Iron pipe, 3... Incline rail, 4... Lifting equipment, 5... Trolley, 6
...Working shaft, 7,7'...Intersection, 8...Unit iron pipe, 9...Assembly table, 10...Rail, 11...Fully point, 1
2...Top part, 13...Wire, 14...Joint part.

Claims (1)

【特許請求の範囲】[Claims] 1 斜坑トンネルを掘削して、その中に鉄管を組
み立てるための短い単位鉄管を搬入して、これを
トンネル内で互に溶接して長い鉄管を組立てて埋
設する鉄管の据付工法において、鉄管の移動に必
要な最小限の直径の斜坑を掘削し、該斜坑と斜坑
掘削作業用横坑の交差部のみを切拡げ、該作業用
横坑より該交差部に単位鉄管を搬入し、該交差部
で該単位鉄管をその軸線が斜坑と平行になるよう
に傾けて設置し、斜坑頂部に設けた吊上げ設備に
より、該単位鉄管を斜坑に沿つて一定高さ迄引上
げ、次の単位鉄管を該交差部に搬入し、前と同じ
位置に同様に傾けて設置し、引上げた単位鉄管を
引降ろして、両単位鉄管の管端を鉄管の内外両面
より互に溶接し、溶接した鉄管全体を再び一定高
さ迄引上げ、次いで次の単位鉄管を搬入して、同
様にして引上げた鉄管の下端にこれを溶接し、こ
れを繰返して鉄管の全長が一定の長さに達すれ
ば、該鉄管全体を吊降ろし、斜坑内の所定の位置
に据付け、該鉄管と斜坑トンネルの間隙にコンク
リートを充填して斜坑の下端から一定長さ区間に
ついて鉄管の据付を完了し、次の上の斜坑の区間
について同じ横坑又は順次上の段の横坑と、斜坑
の交差部で同じ作業を繰返して、順次一定区間ず
つ鉄管の据付を行い、この際溶接して吊降ろした
長い鉄管相互間は溶接又はメカニカル継手で互に
接合し、斜坑全長に亘つて鉄管を据付けることを
特徴とする鉄管の据付工法。
1 In the iron pipe installation method, in which a diagonal shaft tunnel is excavated, short unit iron pipes for assembling iron pipes are brought in, welded together in the tunnel, long iron pipes are assembled, and buried. Excavate a diagonal shaft with the minimum diameter required for the work, cut and widen only the intersection of the diagonal shaft and the diagonal excavation work shaft, carry a unit iron pipe from the work shaft to the intersection, and at the intersection. The unit iron pipe is installed so that its axis is parallel to the inclined shaft, and the lifting equipment installed at the top of the inclined shaft lifts the unit iron pipe to a certain height along the inclined shaft, and the next unit iron pipe is placed at the intersection. The steel pipes were brought in to the same position as before, tilted in the same way, and the pulled up unit iron pipes were lowered, the pipe ends of both unit iron pipes were welded together from both the inside and outside of the iron pipes, and the entire welded iron pipe was held at a constant height again. The next unit iron pipe is brought in and welded to the lower end of the iron pipe that was pulled up in the same way.This process is repeated until the total length of the iron pipe reaches a certain length, and then the entire iron pipe is suspended. , install the steel pipe at a predetermined position in the inclined shaft, fill the gap between the iron pipe and the inclined shaft tunnel with concrete, complete the installation of the iron pipe for a certain length section from the lower end of the inclined shaft, and install the same in the next upper inclined shaft section. Alternatively, repeat the same work at the intersection of the upper horizontal shaft and the inclined shaft, and install the iron pipes in certain sections one after another. At this time, the long iron pipes that have been welded and suspended are mutually connected by welding or mechanical joints. An iron pipe installation method characterized by joining the iron pipe to the shaft and installing the iron pipe along the entire length of the inclined shaft.
JP57228295A 1982-12-30 1982-12-30 Method of installation construction of iron pipe Granted JPS59126185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228295A JPS59126185A (en) 1982-12-30 1982-12-30 Method of installation construction of iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228295A JPS59126185A (en) 1982-12-30 1982-12-30 Method of installation construction of iron pipe

Publications (2)

Publication Number Publication Date
JPS59126185A JPS59126185A (en) 1984-07-20
JPS6149552B2 true JPS6149552B2 (en) 1986-10-30

Family

ID=16874221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228295A Granted JPS59126185A (en) 1982-12-30 1982-12-30 Method of installation construction of iron pipe

Country Status (1)

Country Link
JP (1) JPS59126185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013066A (en) * 2012-07-05 2014-01-23 Sekisui Chem Co Ltd Pipe body conveyance tool and conveyance method of pipe body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013066A (en) * 2012-07-05 2014-01-23 Sekisui Chem Co Ltd Pipe body conveyance tool and conveyance method of pipe body

Also Published As

Publication number Publication date
JPS59126185A (en) 1984-07-20

Similar Documents

Publication Publication Date Title
RU2516667C2 (en) Device and system of pipeline installation
CN107191676A (en) Construction method of buried pipeline
CN111794754B (en) Pipe piece assembled derrick and construction method thereof
CN113236853A (en) Equipment and method for installing hole-penetrating pipe in long-distance embankment-penetrating sleeve
CN107044114A (en) Large-scale penstock inversion construction method in a kind of high vertical shaft
CN206616184U (en) Coke oven loss flue dust dust gathering arrester supporting construction
CN114134928B (en) Construction method of steel pipe column tower crane foundation
CN110172977B (en) Construction method and structure for preventing concrete at pile top of foundation pit supporting steel column filling pile from being excessively poured
CN113605377A (en) Rock stratum ultra-deep steel pipe column and uplift pile combined construction process
CN114215309A (en) BIM-based piping shaft installation construction method
CN110145317B (en) Shield tunneling machine station-crossing construction method
JPS6149552B2 (en)
CN100366832C (en) Construction technique for hoisting steel made coal hopper on-site
CN116174867A (en) Self-walking ultra-large pressure steel tube assembly and welding integrated pulley and construction method thereof
CN113047853B (en) Shield originating construction method for water-rich soft soil geological region
CN109469498B (en) Mounting structure of lining steel pipe in narrow space of water delivery tunnel and construction method of mounting structure
CN209816868U (en) Built-in truss assembled cylinder spliced pile
CN111287763A (en) Control method for preventing subway shield tunnel from long-term settlement
JPS6119876B2 (en)
CN114960753B (en) Steel pipe column machining and verticality control method
CN215213506U (en) Shield machine starting device of air shaft with undersized curve intervals
CN116658682A (en) Construction method for pipeline in shield tunnel
CN111535823B (en) Shield construction method for pipe gallery working well
CN217782768U (en) Double-inverted-triangle moving trolley for welding inner circular seam of large-diameter steel pipe
CN216108512U (en) Synchronous hoisting structure for multiple lengthened sounding pipes of foundation pit reverse construction method cast-in-place pile