JPS6149528A - Tracking system of azimuth elevation antenna - Google Patents

Tracking system of azimuth elevation antenna

Info

Publication number
JPS6149528A
JPS6149528A JP17175884A JP17175884A JPS6149528A JP S6149528 A JPS6149528 A JP S6149528A JP 17175884 A JP17175884 A JP 17175884A JP 17175884 A JP17175884 A JP 17175884A JP S6149528 A JPS6149528 A JP S6149528A
Authority
JP
Japan
Prior art keywords
information
meridian
tracking
azimuth
quadrant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17175884A
Other languages
Japanese (ja)
Other versions
JPH0691486B2 (en
Inventor
Makoto Miyashita
信 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17175884A priority Critical patent/JPH0691486B2/en
Publication of JPS6149528A publication Critical patent/JPS6149528A/en
Publication of JPH0691486B2 publication Critical patent/JPH0691486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/38Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal
    • G01S3/42Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal the desired condition being maintained automatically

Abstract

PURPOSE:To deciding on the initial position and rotational direction of the azimuth elevation antenna within it movement range and whether its tracking is allowed or not in response to detected information, and to improve the reliability of the decision making by detecting direction information and meridian pass information at the path start of an artificial satellite. CONSTITUTION:It is decided whether the azimuth angle at the pass start of the artificial satellite is in the 1st or 2nd quadrant of the operation range of the azimuth elevation antenna. Then when the azimuth angle is in the 1st or 2nd quadrant, it is decided whether the path passes through the meridian or not on the basis of information from a flight detection system. When not, either of CW and CCW controls a tracking controller. When the path passes through the meridian, a decision on the pass pattern is made. Further, when the movement range is in the 3rd or 4th quadrant, the azimuth angle and pass pattern are detected similarly. Then, the initial position and rotational direction within the movement range of the azimuth elevation antenna and whether its tracking is allowed or not are decided precisely at a high speed in response to the detected azimuth angle and pass pattern information.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアズエレアンテナ(Az−Enアンテナ)の追
尾方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tracking system for an Az-Ere antenna (Az-En antenna).

人工衛星の飛行状態をキャッチするのにパラボラアンテ
ナを用いて人工衛星を追尾することが必要になる。この
ような人工衛星の追尾において、アンテナ設置位置や人
工衛星の軌道に左右されず、その追尾が可能か否かの判
定ができ、可能な場合にアンテヂの追尾を支障なく制御
し得ることが望ましい。
In order to monitor the flight status of a satellite, it is necessary to track the satellite using a parabolic antenna. In tracking such artificial satellites, it is desirable to be able to determine whether tracking is possible or not, regardless of the antenna installation position or the satellite's orbit, and to be able to control Antege's tracking without any problems if possible. .

〔従来の技術〕[Conventional technology]

現在、人工衛星の追跡局で用いられているアズエレアン
テナ(宇宙開発事業団で用いているアンテナもこのアン
テナである。)の方位角(Az)の稼動範囲は第4図に
示すようになっており、このような稼動範囲において人
工衛星のバス開始時の方位角Asが第4図の第1象限及
び第■象限となる場合に時計式方向(CW、)領域又は
反時計式方向(CCW)領域のいずれで人工衛星を待ち
受けるかの判定を上述方位角Asとそのバスにおける最
大方位角AMとを用いて行なっている。
The operating range of the azimuth angle (Az) of the azure antenna currently used in artificial satellite tracking stations (this is also the antenna used by the Japan Space Development Agency) is shown in Figure 4. In such an operating range, if the azimuth As of the satellite at the start of the bus is in the first quadrant and the second quadrant of Fig. 4, the clockwise direction (CW) region or counterclockwise direction (CCW) ) area in which the satellite is to be waited for is determined using the above-mentioned azimuth As and the maximum azimuth AM for the bus.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このようなAsとそのバスにおける最大方位角AMとを
用いた判定技法では、人工衛星のバスが例えば、第4図
の第1象限から第■象限に至る如き通常化ずるものであ
る場合には上述判定に何らの支障も生じないのであるが
、第5図に示すような特異的なバス(バス1はCCW、
バス2はCW)が生じて来ると、その判定を行ない得な
くなる。
In the determination technique using such As and the maximum azimuth angle AM of the bus, if the bus of the artificial satellite is normalized, for example, from the first quadrant to the second quadrant in Fig. 4, Although there is no problem with the above-mentioned judgment, there is a specific bus (Bus 1 is CCW, Bus 1 is CCW,
When bus 2 (CW) occurs, it becomes impossible to make that determination.

又、Asが第■象限及び第■象限になる場合には、その
バスを追跡し得るのか否かの判別を為し得ないことがあ
る。
Furthermore, when As falls in the first and second quadrants, it may not be possible to determine whether the bus can be tracked or not.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述問題を解決し得るアズエレアンテナの追尾
方式を提供するもので、その手段は人工衛星のバス開始
時の方位角情報及び子午線通過情報を探知し、これら情
報に応答してアズエレアンテナの稼動範囲内初期位置及
び回転方向並びにその追尾の可否を判定して該アズエレ
アンテナの追尾を生せしめるようにしたものである。
The present invention provides a tracking method for an azure antenna that can solve the above-mentioned problems, and its means detect azimuth information and meridian passage information at the time of bus start of an artificial satellite, and respond to these information to The initial position and rotational direction within the operating range of the antenna and whether or not tracking is possible are determined to cause the azure antenna to perform tracking.

〔作用〕[Effect]

本発明方式によれば、人工衛星のバス開始時の方位角及
び子午線通過情報からアズエレアンテナの稼動範囲内初
期位置及び回転方向並びにその追尾の可否を判定してい
るから、人工衛星のバスがどのような特異的なバスで現
れようとも、上述判定に支障を来すことはなくなる。従
って、その判定の信頼性は格段に向上する。
According to the method of the present invention, the initial position and rotational direction within the operating range of the azure antenna, as well as whether or not it can be tracked, are determined from the azimuth angle and meridian passing information at the time the satellite bus starts, so that the satellite bus No matter how specific the bus appears, it will not interfere with the above-mentioned determination. Therefore, the reliability of the determination is significantly improved.

〔実施例〕゛ 以下、添付図面を参照しながら本発明の詳細な説明する
[Embodiments] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の一実施例を説明するためのフローチャ
ートである。このフローチャートに示すように、バス開
始時の方位角(見え初め方位角)Asが第4図に示すア
ズエレアンテナの稼動範囲の第■象限又は第■象限にあ
るか否かが判定される(ステップ31)。このAsは飛
行探知システムから与えられる。
FIG. 1 is a flow chart for explaining one embodiment of the present invention. As shown in this flowchart, it is determined whether the azimuth angle at the start of the bus (the initial azimuth angle of appearance) As is in the first quadrant or the second quadrant of the operating range of the azure antenna shown in FIG. Step 31). This As is given by the flight detection system.

Asが第1象限又は第■象限にあるならば、ステップS
2において、バスが子午線を通過しているか否かの判定
が為される。その判定情報は飛行探知システムから与え
られる。通過していないならば(ステップS2のN) 
、CW又はCCWのいずれかによって追尾制御装置の制
御が生ぜしめられる(ステップS3)。
If As is in the first quadrant or the second quadrant, step S
2, a determination is made whether the bus is passing through a meridian. The decision information is provided by the flight detection system. If it has not passed (N in step S2)
, CW or CCW causes control of the tracking control device (step S3).

子午線通過有りとなると(ステップS2のY)、最初の
子午線通過パターン(第3図参照)がパターン■である
か又はパターン■であるかの判定がステップS4で為さ
れる。パターン■であるならば、アズエレアンテナの追
尾初期位置がCW領領域あり、その回転方向がCW力方
向される追尾制御が生ぜしめられる(ステップS5)。
If there is a meridian passage (Y in step S2), it is determined in step S4 whether the first meridian passage pattern (see FIG. 3) is pattern ■ or pattern ■. If it is pattern (2), the initial tracking position of the azure antenna is in the CW region, and tracking control is performed in which the direction of rotation is in the CW force direction (step S5).

そして、1バス内に子午線通過回数が3回以内であるな
らば(、ステップS6のN)、その追尾制御は続行され
るが、子午線通過回数が3回を超え(ステップS6のY
)、子午線通過パターンが■−■−■又は■−■−■の
いずれかであるかの判定がステップS7で行なわれ、そ
の判定が否定であるならば(ステップS7のN)、上述
追尾制御が続行される。これに対し、ステップS7の判
定が肯定になるならば(ステップS7のY)、その追尾
制御はもはや不可能とされる(ステップS8)。
If the number of meridian passages within one bus is three or less (N in step S6), the tracking control is continued, but the number of meridian passages exceeds three (Y in step S6).
), it is determined in step S7 whether the meridian passing pattern is either ■-■-■ or ■-■-■, and if the determination is negative (N in step S7), the above-mentioned tracking control is performed. continues. On the other hand, if the determination in step S7 is affirmative (Y in step S7), the tracking control is no longer possible (step S8).

ステップS4の判定で、子午線通過パターンがパターン
■であると判定されるならば、アズエレアンテナの追尾
初期位置がCCW領域にあり、その回転方向がCCW方
向とされる追尾制御が住ぜしめられる(ステップS9)
。そして子午線通過回数が3回以内であるならば(ステ
ップSIOのN)、そめ追尾制御は続行されるが、子午
線通過回数が3回を超え(ステップSIOのY)、子午
線通過パターンが■−■−■又は■−■→■のいずれで
あるかの判定がステップSllで行なわれ、その判定が
否定であるならば(ステップSllのN)、上述追尾制
御が続行される。これに対して、ステップSllの判定
が肯定であるならば(ステップSllのY)、その追尾
制御はもはや不可能とされる(ステップ512)。
If it is determined in step S4 that the meridian passing pattern is pattern (2), the initial tracking position of the azure antenna is in the CCW region, and tracking control is performed in which the rotation direction is in the CCW direction. (Step S9)
. If the number of meridian passages is within 3 (N in step SIO), some tracking control is continued, but if the number of meridian passages exceeds 3 (Y in step SIO), the meridian passage pattern is -■ or -■→■ is determined in step Sll, and if the determination is negative (N in step Sll), the above-mentioned tracking control is continued. On the other hand, if the determination at step Sll is affirmative (Y at step Sll), the tracking control is no longer possible (step 512).

ステップS1の判定が否定つまりAsが第■象限又は第
■象限であるならば(ステップS]のN)、ステップS
12に移り、1バス内に子午線通節回数が2回以上あり
、且つそのうちの2つの連続した子午線通過パターンが
■−■又は■−■であるか否かの判定が為され、その判
定が否定であるならば(ステップSI2のN)追尾制御
が行なわれるが、逆に判定が肯定であるならば追尾制御
は不可能とされる(ステップ513)。
If the determination in step S1 is negative, that is, As is in the ■quadrant or the ■quadrant (N in step S), step S
Moving on to step 12, it is determined whether there are two or more meridian passages in one bus and the two consecutive meridian passage patterns are ■-■ or ■-■, and the determination is made. If the determination is negative (N in step SI2), tracking control is performed, but if the determination is affirmative, tracking control is disabled (step 513).

なお、上記実施例では、子午線通過情報として子午線通
過回数及び子午線通過パターンを用いる例について説明
したが、これら情報に子午線通過時刻を加味してもよい
。又、バス開始時の方位角が第■象限又は第■象限にあ
る場合について説明したが、バス開始時の方位角が他の
2つの象限になる場合には、それに対応する基準線につ
いての通過情報を利用するようにすればよい。勿論、こ
の場合追跡層の追尾態様もそれに対応して変更される。
In the above embodiment, an example was described in which the number of meridian passages and the meridian passage pattern are used as the meridian passage information, but the meridian passage time may be added to these pieces of information. In addition, we have explained the case where the azimuth at the time of bus start is in quadrant ■ or quadrant II, but if the azimuth at the time of bus start is in the other two quadrants, the corresponding reference line will be passed. All you have to do is make use of the information. Of course, in this case, the tracking mode of the tracking layer is also changed accordingly.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、 ■人工衛星のバスがどのような特異的なバスで現れる場
合であっても、そのバスに対する適確な判定を下し78
る、 ■従って、判定の信頼性は格段に向上する、等の効果が
得られる。
As described above, according to the present invention, (1) No matter what kind of specific bus a satellite bus appears, an accurate judgment can be made for that bus.78
(1) Therefore, the reliability of judgment is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を説明するための
フローチャート、第3図は子午線通過パターンを示す図
、第4図は従来のアズエレアンテナの稼動範囲を示す図
、第5図は従来技法では判定し得なGζバスの例を示す
図である。 図中、■及び■はアズエレアンテナ稼動範囲の第1象限
及び第H象限、■、■、■、■は子午線通過パターンを
示す。 第1図 第2図 +80”
1 and 2 are flowcharts for explaining one embodiment of the present invention, FIG. 3 is a diagram showing a meridian passage pattern, FIG. 4 is a diagram showing the operating range of a conventional azure antenna, and FIG. The figure shows an example of a Gζ bus that cannot be determined using conventional techniques. In the figure, ■ and ■ indicate the first and H quadrants of the azure antenna operating range, and ■, ■, ■, and ■ indicate meridian passing patterns. Figure 1 Figure 2 +80”

Claims (1)

【特許請求の範囲】[Claims] 人工衛星のバス開始時の方位角情報及び子午線通過情報
を探知し、これら情報に応答してアズエレアンテナの稼
動範囲内初期位置及び回転方向並びにその追尾の可否を
判定して該アズエレアンテナの追尾制御を生ぜしめるよ
うにしたことを特徴とするアズエレアンテナの追尾方式
The azimuth information and meridian passage information at the start of the bus of the artificial satellite are detected, and in response to this information, the initial position and rotation direction within the operating range of the azure antenna, as well as whether or not it can be tracked, are determined. A tracking method for an azure antenna characterized by causing tracking control.
JP17175884A 1984-08-18 1984-08-18 Azuele antenna tracking method Expired - Lifetime JPH0691486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17175884A JPH0691486B2 (en) 1984-08-18 1984-08-18 Azuele antenna tracking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17175884A JPH0691486B2 (en) 1984-08-18 1984-08-18 Azuele antenna tracking method

Publications (2)

Publication Number Publication Date
JPS6149528A true JPS6149528A (en) 1986-03-11
JPH0691486B2 JPH0691486B2 (en) 1994-11-14

Family

ID=15929133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17175884A Expired - Lifetime JPH0691486B2 (en) 1984-08-18 1984-08-18 Azuele antenna tracking method

Country Status (1)

Country Link
JP (1) JPH0691486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901402A (en) * 2019-04-08 2019-06-18 哈尔滨工程大学 A kind of autonomous underwater robot path following method based on course smoothing technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901402A (en) * 2019-04-08 2019-06-18 哈尔滨工程大学 A kind of autonomous underwater robot path following method based on course smoothing technique
CN109901402B (en) * 2019-04-08 2021-10-29 哈尔滨工程大学 Autonomous underwater robot path tracking method based on course smoothing technology

Also Published As

Publication number Publication date
JPH0691486B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
Song Observability of target tracking with bearings-only measurements
US6018998A (en) Acceleration sensing device and method of operation and forming
JP2004533958A5 (en)
CN103292784A (en) Underwater surface topography visuality analyzing method based on sound ray track
JPS6149528A (en) Tracking system of azimuth elevation antenna
JP2002068098A (en) Sun-seeking solar array control system and method
US7019712B2 (en) Antenna control system and control method
JPS63215983A (en) Automatic tracking processor
US3079107A (en) System for controlling an aircraft from a magnetic sensor
JPS5824912A (en) Rolling/yawing controller for satellite
JPS6123222A (en) Guiding system
JPH07112840B2 (en) Satellite attitude and antenna pointing control device
Bernhard New results about corners in differential games, including state constraints
JPS5935201B2 (en) antenna mount device
JPH08258799A (en) Attitude control device
JPS62267616A (en) Map data display device
JPH0626284B2 (en) 3-axis antenna control method
JPH09226697A (en) Attitude control device
JPS5989005A (en) Antenna direction control system
JPH03226622A (en) Navigation system for vehicle
US3516173A (en) Navigation apparatus
JPH0390814A (en) Navigation system for moving body
JP3325861B2 (en) Antenna system
US2315754A (en) Radio navigator
JPH04192571A (en) Sensor unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term