JPH0626284B2 - 3-axis antenna control method - Google Patents

3-axis antenna control method

Info

Publication number
JPH0626284B2
JPH0626284B2 JP27715686A JP27715686A JPH0626284B2 JP H0626284 B2 JPH0626284 B2 JP H0626284B2 JP 27715686 A JP27715686 A JP 27715686A JP 27715686 A JP27715686 A JP 27715686A JP H0626284 B2 JPH0626284 B2 JP H0626284B2
Authority
JP
Japan
Prior art keywords
axis
elevation
angle
tracking
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27715686A
Other languages
Japanese (ja)
Other versions
JPS63129702A (en
Inventor
誠 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP27715686A priority Critical patent/JPH0626284B2/en
Priority to DE3789162T priority patent/DE3789162T2/en
Priority to EP87107347A priority patent/EP0246635B1/en
Publication of JPS63129702A publication Critical patent/JPS63129702A/en
Priority to US07/324,951 priority patent/US4994815A/en
Publication of JPH0626284B2 publication Critical patent/JPH0626284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3軸アンテナ制御方法に関し、特に方位軸,俯
仰軸および直交俯仰軸の3軸を備えた3軸マウントの指
向性アンテナにより、天頂付近を通過する中高度衛星の
追尾を自己追尾モードで行う3軸アンテナ制御方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a three-axis antenna control method, and more particularly to a zenith using a directional antenna of a three-axis mount provided with three axes of an azimuth axis, an elevation axis and an orthogonal elevation axis. The present invention relates to a three-axis antenna control method for tracking a medium altitude satellite passing in the vicinity in a self tracking mode.

〔従来の技術〕[Conventional technology]

全天指向型のアンテナの支持方法のうち、垂直に設けら
れた方位軸(AZ軸)のまわりに回転できる方位旋回台
上に水平な俯仰軸(EL軸)を設け、このEL軸のまわ
りに指向性アンテナを水平から天頂まで回転できるよう
に取付けたAZ−ELマウント方式は、構造的に最も有
利であり広く実用されている。しかしながらこの方式
は、天頂付近を通過する衛星を追尾する場合にAZ軸ま
わりの回転角速度が非常に大きくなるという難点があ
る。これに対して、水平に固定された固定軸(X軸)
と、この固定軸のまわりに回転しこれと直交した可動軸
(Y軸)とを備えたX−Yマウントは、天頂付近を通過
する衛星の追尾には支障ないが、低仰角の衛星の追尾に
難点があるほか支持構造が大型となり、特に直径の大き
な大型アンテナには不向きである。
Of all omnidirectional antenna support methods, a horizontal elevation axis (EL axis) is provided on an azimuth revolving base that can rotate around a vertically provided azimuth axis (AZ axis), and around this EL axis. The AZ-EL mount system in which the directional antenna is mounted so as to be rotatable from the horizontal to the zenith is structurally most advantageous and widely used. However, this method has a drawback that the rotational angular velocity around the AZ axis becomes very large when tracking a satellite passing near the zenith. On the other hand, a horizontally fixed axis (X axis)
The XY mount, which has a movable axis (Y axis) that rotates around this fixed axis and is orthogonal to this fixed axis, does not hinder tracking of satellites passing near the zenith, but tracking of satellites with a low elevation angle. In addition to the drawbacks, the support structure becomes large, which is not suitable for large antennas with a large diameter.

上記の問題を解決する一方法として、AZ−ELマウン
トの上にEL軸と直交した直交俯仰軸(XEL軸)を設
け、このXEL軸のまわりに指向性アンテナを限定され
た範囲だけ回転可能に取付けた3軸マウントアンテナが
あり、XEL軸まわりの回転可能範囲を小さくできる駆
動制御方法が特開昭60−22803号公報に提案されてい
る。この方法は天頂付近を通過する衛星を追尾すると
き、衛星が最大仰角に達する以前にAZ軸まわりに先行
して駆動させることにより、XEL軸まわりの回転可能
範囲を先行駆動を行わない場合の半分以下に限定できる
方法である。
As one method for solving the above problem, an orthogonal elevation axis (XEL axis) orthogonal to the EL axis is provided on the AZ-EL mount, and the directional antenna can be rotated around this XEL axis only within a limited range. Japanese Unexamined Patent Publication No. 60-22803 proposes a drive control method that has a mounted triaxial mount antenna and can reduce the rotatable range around the XEL axis. With this method, when tracking a satellite that passes near the zenith, by driving the satellite in advance around the AZ axis before reaching the maximum elevation angle, half the rotation range around the XEL axis is not driven. The method can be limited to the following.

第6図は上述の特開昭60−22803号公報に記載された3
軸マウントアンテナの制御系のブロック図、第7図は第
6図の動作を説明するための流れ図である。以下に第6
図および第7図を参照してこの制御方法を説明する。
FIG. 6 shows 3 described in the above-mentioned JP-A-60-22803.
FIG. 7 is a block diagram of the control system of the axial mount antenna, and FIG. 7 is a flow chart for explaining the operation of FIG. 6th below
This control method will be described with reference to FIGS.

第6図に示す3軸アンテナ制御系は、直交した二つの誤
差信号101,102を検出する追尾受信機1と、各軸
角度検出器2,3,4からの角度表示情報により軌道予
測演算等を行う天頂追尾装置5と、EL軸駆動系6,A
Z軸駆動計7及びXEL軸駆動系8の各軸駆動系により
構成されている。衛星位置が下限リミットを越えて衛星
の初期捕捉が終り、追尾受信機1の受信レベルが自己追
尾可能な状態になったとき、第7図のステップ201に
示すように、XEL軸を角度表示が0゜の位置に固定し
て通常のAZ−ELマウントの場合と同様にAZ軸およ
びEL軸のみを用いて自己追尾を行う。この間に仰角が
一定の値を越えるとステップ202で軌道予測演算を行
い、衛星が天頂付近を通過するときAZ軸の所要駆動速
度が最大駆動速度を越えると判断された場合に天頂追尾
モードに切換え、ステップ203に示すようにAZ軸を
定速度で先行駆動し、追尾受信機1の誤差信号102を
AZ軸駆動系7からXEL軸駆動系8に切換え、EL軸
およびXEL軸による自己追尾を行う。衛星が天頂付近
を通過して仰角が所定角度以下になると、AZ軸の定速
駆動を終了して再びAZ軸およびEL軸による自己追尾
モードに戻り、仰角が低下して下限リミットに達すると
追尾動作を終了する。
The three-axis antenna control system shown in FIG. 6 includes a tracking receiver 1 that detects two error signals 101 and 102 that are orthogonal to each other, and trajectory prediction calculation based on the angle display information from each axis angle detector 2, 3, and 4. Zenith tracking device 5 for performing EL axis drive system 6, A
The Z-axis drive meter 7 and the XEL-axis drive system 8 are constituted by respective axis drive systems. When the satellite position exceeds the lower limit and the initial acquisition of the satellite ends and the reception level of the tracking receiver 1 becomes self-trackable, the XEL axis is displayed as an angle as shown in step 201 of FIG. The position is fixed at 0 ° and self-tracking is performed using only the AZ axis and the EL axis as in the case of a normal AZ-EL mount. If the elevation angle exceeds a certain value during this time, an orbit prediction calculation is performed in step 202, and when it is determined that the required drive speed of the AZ axis exceeds the maximum drive speed when the satellite passes near the zenith, the mode is switched to the zenith tracking mode. As shown in step 203, the AZ axis is pre-driven at a constant speed, the error signal 102 of the tracking receiver 1 is switched from the AZ axis drive system 7 to the XEL axis drive system 8, and self-tracking by the EL axis and the XEL axis is performed. . When the satellite passes near the zenith and the elevation angle becomes less than the predetermined angle, the AZ axis constant speed drive is terminated and the AZ axis and EL axis return to the self-tracking mode again, and when the elevation angle decreases and reaches the lower limit, tracking is performed. The operation ends.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述の例に示したように、従来の3軸アンテナ制御方式
では、天頂付近を除く大部分の範囲ではAZ−ELマウ
ントの場合と同様に、追尾受信機1の直交する誤差信号
101,102でAZ軸とEL軸との回転を制御し、天
頂付近の衛星を追尾する天頂追尾モードのときにはEL
軸とXEL軸とを用いて自己追尾を行うように構成され
ており、追尾受信機1の誤差信号出力の接続を自己追尾
動作の途中で変更し、これに伴ってAZ軸の制御感度調
整のためのcosec補正回路を挿入したり除去したりする
煩雑さがあるという問題点がある。
As shown in the above-mentioned example, in the conventional three-axis antenna control method, the error signals 101 and 102 orthogonal to each other in the tracking receiver 1 are used in most areas except the vicinity of the zenith, as in the case of the AZ-EL mount. Controls the rotations of the AZ and EL axes, and in the zenith tracking mode that tracks satellites near the zenith, EL
It is configured to perform self-tracking using the axis and the XEL axis. The connection of the error signal output of the tracking receiver 1 is changed during the self-tracking operation, and accordingly, the control sensitivity adjustment of the AZ axis is performed. Therefore, there is a problem in that it is complicated to insert or remove the cosec correction circuit.

本発明の目的は、追尾受信機の出力を常時EL軸および
XEL軸に接続したままで使用でき、運用中に追尾受信
機出力の接続変更を必要としない3軸アンテナ制御方法
を提供することである。
An object of the present invention is to provide a three-axis antenna control method that can be used while the output of a tracking receiver is always connected to the EL axis and the XEL axis and does not require connection change of the tracking receiver output during operation. is there.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の3軸アンテナ制御方法は、垂直に設けられた方
位軸と、この方位軸のまわりに回転できる水平な俯仰軸
と、この俯仰軸のまわりに回転できこれと直交する直交
俯仰軸と、この直交俯仰軸のまわりに限定された角度範
囲内で回転できるように取付けられた指向性アンテナ
と、この指向性アンテナの指向方向誤差を検出する追尾
受信機とを備えた3軸マウントアンテナを自己追尾モー
ドで制御する3軸アンテナ制御方法において、前記常時
俯仰軸および直交俯仰軸の回転を前記追尾受信機からの
互いに直交する誤差信号成分がそれぞれ最小となるよう
に速度制御し、前記方位軸,俯仰軸および直交俯仰軸の
各回転軸の角度表示からあらかじめ定められた関数関係
により算出される指令角度と前記方位軸の角度表示とが
一致するように前記方位軸の回転を位置制御するように
構成されている。
The three-axis antenna control method according to the present invention includes a vertical azimuth axis, a horizontal elevation axis that can rotate about the azimuth axis, and an orthogonal elevation axis that can rotate about the elevation axis and that is orthogonal to the elevation axis. A three-axis mount antenna equipped with a directional antenna mounted so as to be able to rotate within a limited angle range around the orthogonal elevation axis and a tracking receiver that detects a pointing direction error of the directional antenna is self-assembled. In a three-axis antenna control method for controlling in a tracking mode, the rotations of the normal elevation axis and the orthogonal elevation axis are speed-controlled so that mutually orthogonal error signal components from the tracking receiver are minimized, and the azimuth axis, The angle display of the azimuth axis and the command angle calculated by a predetermined functional relationship from the angle display of each rotation axis of the elevation axis and the orthogonal elevation axis are matched so as to be the same. Is configured to position control the rotation of the position axis.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

第1図において、追尾受信機(図示せず)からの互いに
直交する誤差信号101,102はそれぞれA−D変換
器9,10でディジタル信号に変換された後、サーボ制
御回路11,12及び追尾モード切換器13を経てD−
A変換器14,15に加えられ、アナログ信号に変換さ
れてEL軸およびXEL軸駆動系の速度制御信号10
3,104として送り出される。
In FIG. 1, error signals 101 and 102 from a tracking receiver (not shown) that are orthogonal to each other are converted into digital signals by A / D converters 9 and 10, respectively, and then servo control circuits 11 and 12 and tracking are performed. D- via the mode switch 13
The speed control signal 10 of the EL axis and XEL axis drive system is added to the A converters 14 and 15 and converted into an analog signal.
It is sent out as 3,104.

一方、レゾルバ(図示せず)で検出された各軸の角度表
示信号は、レゾルバ変換器16,17,18でディジタ
ル信号に変換され、それぞれ座標変換回路19又は角度
指令発生回路20からの指令角度情報105,106,
107と比較されたのち、サーボ制御回路21,22,
23を経て追尾モード切換器13に送られる。追尾モー
ド切換器13及び13aがA側(Pはプログラム追尾モ
ード、Sは速度制御モード)に接続されている自己追尾
モードでは、EL軸およびXEL軸駆動系は常に追尾受
信機からの誤差信号により制御され、AZ軸駆動系は角
度指令発生回路20からの指令角度情報により制御さ
れ、AZ軸の角度表示が角度指令発生回路20の指令角
度と一致するような位置制御が行われるように構成され
ている。角度指令発生回路20は各軸の角度表示情報に
基づいて軌道予測演算を行い、この予測結果からAZ軸
の指令角度情報を発生する回路である。
On the other hand, the angle display signal of each axis detected by the resolver (not shown) is converted into a digital signal by the resolver converters 16, 17, and 18, and the command angle from the coordinate conversion circuit 19 or the angle command generation circuit 20 is output. Information 105, 106,
After being compared with 107, the servo control circuits 21, 22,
It is sent to the tracking mode switch 13 via 23. In the self-tracking mode in which the tracking mode switches 13 and 13a are connected to the A side (P is the program tracking mode, S is the speed control mode), the EL axis and XEL axis drive systems are always operated by the error signal from the tracking receiver. The AZ axis drive system is controlled by the command angle information from the angle command generating circuit 20, and position control is performed so that the angle display of the AZ axis matches the command angle of the angle command generating circuit 20. ing. The angle command generation circuit 20 is a circuit that performs trajectory prediction calculation based on the angle display information of each axis, and generates command angle information of the AZ axis from this prediction result.

第2図は第1図に示した角度指令発生回路の一実施例の
動作を説明する流れ図で、EL軸まわりの回転が天頂を
越えて180度まで可能な3軸マウントアンテナの場合
を示している。衛星位置が下限リミットを越えて追尾受
信機出力が自己追尾可能な状態となると、その出力でE
L軸とXEL軸駆動系を制御して自己追尾を行い、ステ
ップ204に示すようにAZ軸駆動系に対する指令角度
ΘAZは ΘAZ=θAZ−θXEL ……(1) となるように設定される。ここでθAZ,θXELはそれぞ
れAZ軸,XEL軸の角度表示である。AZ軸は角度表
示θAZが指令角度ΘAZと等しくなるように位置制御され
るから、(1)式からθXEL=0゜となるような制御が行わ
れることにななる。次に、ステップ205においてEL
軸の角度表示θELが65゜〜70゜の間に軌道予測を行い、
最高仰角θELMが算出される。θELが70゜を越え、θELM
が83゜より大きい場合にはステップ206に移行し、角
度指令発生回路20から ΘAZ=θAZ−θXEL+(90゜−θELM)……(2) となるような指令角度情報が出され、EL軸を90゜の天
頂点を越えて回転させる天頂追尾モードの駆動が行われ
る。このとき、θAZ=ΘAZとなるような位置制御が行わ
れるから、(2)式からXEL軸の角度表示はθXEL=90゜
−θELMとなる。
FIG. 2 is a flow chart for explaining the operation of the embodiment of the angle command generating circuit shown in FIG. 1, showing the case of a three-axis mount antenna capable of rotating about the EL axis up to 180 degrees beyond the zenith. There is. When the satellite position exceeds the lower limit and the tracking receiver output becomes self-trackable, E
Self-tracking is performed by controlling the L-axis and XEL-axis drive systems, and as shown in step 204, the command angle Θ AZ for the AZ-axis drive system is set so that Θ AZ = θ AZ −θ XEL (1) To be done. Here, θ AZ and θ XEL are angle displays of the AZ axis and the XEL axis, respectively. Since the position of the AZ axis is controlled so that the angle display θ AZ becomes equal to the command angle θ AZ , the control is performed so that θ XEL = 0 ° from the equation (1). Next, in step 205, EL
The axis angle display θ EL makes a trajectory prediction between 65 ° and 70 °,
The maximum elevation angle θ ELM is calculated. θ EL exceeds 70 °, θ ELM
When is larger than 83 °, the process proceeds to step 206, and the angle command generating circuit 20 outputs the command angle information such that Θ AZ = θ AZ −θ XEL + (90 ° −θ ELM ) (2). Then, the zenith tracking mode for rotating the EL axis over the 90 ° zenith is driven. At this time, since the position control is performed so that θ AZ = θ AZ , the angle display of the XEL axis is θ XEL = 90 ° −θ ELM from the equation (2).

第3図は第2図の制御方法で最大仰角85゜の衛星を追尾
した場合の各軸の角度表示の変化を説明するベクトル図
である。第3図において、細い実線の矢印は衛星が方位
角0゜の基準線に平行にEからWまで通過したときのA
Z軸,EL軸の角度表示を示すベクトル、太い実線の矢
印はXEL軸の角度表示を示すベクトルである。衛星仰
角が70゜になるまではθXEL=0゜となるようにAZ
軸,EL軸による追尾が行われ、衛星仰角が70゜からほ
ぼ110゜までの間はθAZ=0゜,θXEL=5゜で一定とな
り、θELのみを変化して追尾が行われる。この方法は天
頂追尾時にAZ軸の指令角度がθELにかかわらず一定と
なり、θELの情報は軌道予測と天頂追尾モードへの切換
えのためのみに使用され、角度指令発生回路20の構成
が簡単で、各軸間の相互干渉も少なく安定な制御が容易
に行えるという特徴がある。
FIG. 3 is a vector diagram for explaining the change in the angle display of each axis when the satellite with the maximum elevation angle of 85 ° is tracked by the control method of FIG. In Fig. 3, the thin solid arrow indicates A when the satellite passes from E to W in parallel with the reference line of azimuth of 0 °.
A vector indicating the angle display of the Z axis and the EL axis, and a thick solid line arrow is a vector indicating the angle display of the XEL axis. AZ so that θ XEL = 0 ° until the satellite elevation angle reaches 70 °
Tracking is performed by the axis and EL axis, and becomes constant at θ AZ = 0 ° and θ XEL = 5 ° when the satellite elevation angle is from 70 ° to almost 110 °, and tracking is performed by changing only θ EL . With this method, the command angle of the AZ axis is constant regardless of θ EL during zenith tracking, and the information of θ EL is used only for trajectory prediction and switching to the zenith tracking mode, and the configuration of the angle command generation circuit 20 is simple. Therefore, there is a feature that mutual control between the axes is small and stable control can be easily performed.

第2図に示した流れ図には、ステップ206の天頂追尾
時に指令角度ΘAZがθELに無関係に(2)式で表される場
合を示したが、指令角度ΘAZがθELの関数で θAZH=θAZ−θXEL+f(θEL) ……(3) となるよう角度指令発生回路を構成してもよい。
The flow chart shown in FIG. 2 shows a case where the command angle Θ AZ is expressed by the equation (2) regardless of θ EL at the time of zenith tracking in step 206, but the command angle Θ AZ is a function of θ EL . The angle command generation circuit may be configured so that θ AZH = θ AZ −θ XEL + f (θ EL ) (3).

例えば、θELが70゜及び110゜のときf(θEL)=0
゜、θELが90゜のときf(θEL)=90゜−θELM=5゜
となり、この間でf(θEL)が余弦関数状に連続的に変
化するように設定すれば、第3図の場合と同じ衛星を追
尾したときの各軸の角度表示は第4図に示すような変化
を示し、θXELに急激な変化が生じない特徴がある。
For example, when θ EL is 70 ° and 110 °, f (θ EL ) = 0
When θ and θ EL are 90 °, f (θ EL ) = 90 ° −θ ELM = 5 °, and if f (θ EL ) is set to continuously change like a cosine function during this period, the third The angle display of each axis when tracking the same satellite as in the case of the figure shows changes as shown in FIG. 4, and there is a characteristic that θ XEL does not change suddenly.

以上の説明はEL軸のまわりに0゜から180゜まで回転
可能な3軸マウントアンテナを制御する場合について述
べたが、本発明はEL軸まわりの回転範囲が0゜から90
゜までの3軸マウントアンテナに対しても適用すること
ができる。すなわち、軌道予測により最高仰角θELM
一定値を越すと予想される場合に、従来の技術で述べた
特開昭60−22803 号公報記載の方法と同様なAZ軸の先
行駆動を、仰角が一定値に達した後AZ軸とEL軸の角
度表示のベクトルがあらかじめ定めた一定の軌跡を通っ
て移動するように行えばよい。第5図は、衛星が方位角
0゜方向から180゜方向にアンテナの真上を通過する場
合の各軸の角度表示の変化を示すベクトル図であり、第
1図に示す角度指令発生回路20からの指令角度が、仰
角70゜までは(1)式であり70゜を越すと(3)式となり、f
(θEL)を太い実線矢印のベクトルの長さとなるように
設定した場合に、AZ軸およびEL軸の角度表示はθEL
=70゜から破線に沿って変化することを表している。
Although the above description has been made on the case of controlling a three-axis mount antenna rotatable from 0 ° to 180 ° around the EL axis, the present invention has a rotation range around the EL axis of 0 ° to 90 °.
It can also be applied to a 3-axis mount antenna up to °. That is, when the maximum elevation angle θ ELM is expected to exceed a certain value by orbit prediction, the AZ-axis preceding drive similar to the method described in Japanese Patent Application Laid-Open No. 60-22803 described in the prior art is used. After reaching a certain value, the vector for the angle display of the AZ axis and the EL axis may be moved along a predetermined certain locus. FIG. 5 is a vector diagram showing changes in the angle display of each axis when the satellite passes right above the antenna in the azimuth angle direction of 0 ° to 180 °, and the angle command generation circuit 20 shown in FIG. The command angle from is up to 70 ° in Eq. (1), and above 70 ° becomes Eq. (3), f
When (θ EL ) is set to be the length of the thick solid arrow vector, the angle display of the AZ axis and EL axis is θ EL
It shows that it changes from = 70 ° along the broken line.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、3軸マウントア
ンテナを用いて天頂付近を通過する衛星を自己追尾モー
ドで追跡する場合、追跡中に追尾受信機の出力をAZ軸
からXEL軸に接続変更する必要がなく、切換えに伴う
諸問題を除去できるという効果がある。
As described above, according to the present invention, when the satellite passing near the zenith is tracked in the self-tracking mode by using the 3-axis mount antenna, the output of the tracking receiver is connected from the AZ axis to the XEL axis during tracking. There is an effect that it is not necessary to change and various problems associated with switching can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のブロック図、第2図は第1
図に示した角度指令発生回路の一実施例の動作を説明す
る流れ図、第3図〜第5図は衛星追尾時の各軸の角度表
示の変化を示すベクトル図、第6図は従来の3軸アンテ
ナ制御方法の一例のブロック図、第7図は第6図の動作
を説明する流れ図である。 1……追尾受信機、2,3,4……角度検出器、5……
天頂追尾装置、6,7,8……駆動系、9,10……A
−D変換器、11,12,21,22,23……サーボ
制御回路、13,13a……追尾モード切換器、14,
15……D−A変換器、16,17,18……レゾルバ
変換器、19……座標変換器、20……角度指令発生回
路。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG.
FIG. 3 is a flow chart for explaining the operation of the embodiment of the angle command generating circuit shown in FIG. 3, FIGS. 3 to 5 are vector diagrams showing changes in the angle display of each axis during satellite tracking, and FIG. A block diagram of an example of the axial antenna control method, and FIG. 7 is a flow chart for explaining the operation of FIG. 1 ... Tracking receiver, 2, 3, 4 ... Angle detector, 5 ...
Zenith tracking device, 6, 7, 8 ... Drive system, 9, 10 ... A
-D converter, 11, 12, 21, 22, 23 ... Servo control circuit, 13, 13a ... Tracking mode selector, 14,
15 ... DA converter, 16, 17, 18 ... Resolver converter, 19 ... Coordinate converter, 20 ... Angle command generating circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】垂直に設けられた方位軸と、この方位軸の
まわりに回転できる水平な俯仰軸と、この俯仰軸のまわ
りに回転できこれと直交する直交俯仰軸と、この直交俯
仰軸のまわりに限定された角度範囲内で回転できるよう
に取付けられた指向性アンテナと、この指向性アンテナ
の指向方向誤差を検出する追尾受信機とを備えた3軸マ
ウントアンテナを自己追尾モードで制御する3軸アンテ
ナ制御方法において、常時前記俯仰軸および直交俯仰軸
の回転を前記追尾受信機からの互いに直交する誤差信号
成分がそれぞれ最小となるように速度制御し、前記方位
軸,俯仰軸および直交俯仰軸の各回転軸の角度表示から
あらかじめ定められた関数関係により算出される指令角
度と前記方位軸の角度表示とが一致するように前記方位
軸の回転を位置制御することを特徴とする3軸アンテナ
制御方法。
1. An azimuth axis provided vertically, a horizontal elevation / depression axis rotatable about the azimuth axis, an orthogonal elevation / depression axis rotatable about the depression / elevation axis and orthogonal to the elevation axis, and an orthogonal elevation axis of the orthogonal elevation axis. Controlling in a self-tracking mode a three-axis mount antenna equipped with a directional antenna mounted so as to be able to rotate within a limited angular range and a tracking receiver for detecting pointing error of this directional antenna In a three-axis antenna control method, rotations of the elevation axis and the orthogonal elevation axis are always controlled so that error signal components orthogonal to each other from the tracking receiver are minimized, and the azimuth axis, elevation axis and orthogonal elevation axis are controlled. The rotation of the azimuth axis is controlled so that the command angle calculated by a predetermined functional relationship from the angle display of each rotation axis of the axis coincides with the angle display of the azimuth axis. 3-axis antenna control method characterized by.
JP27715686A 1986-05-21 1986-11-19 3-axis antenna control method Expired - Lifetime JPH0626284B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27715686A JPH0626284B2 (en) 1986-11-19 1986-11-19 3-axis antenna control method
DE3789162T DE3789162T2 (en) 1986-05-21 1987-05-20 Tracking control device for triaxial antenna support systems.
EP87107347A EP0246635B1 (en) 1986-05-21 1987-05-20 Tracking controller for three-axis mount antenna systems
US07/324,951 US4994815A (en) 1986-05-21 1989-03-16 Tracking controller for three-axis mount antenna systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27715686A JPH0626284B2 (en) 1986-11-19 1986-11-19 3-axis antenna control method

Publications (2)

Publication Number Publication Date
JPS63129702A JPS63129702A (en) 1988-06-02
JPH0626284B2 true JPH0626284B2 (en) 1994-04-06

Family

ID=17579580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27715686A Expired - Lifetime JPH0626284B2 (en) 1986-05-21 1986-11-19 3-axis antenna control method

Country Status (1)

Country Link
JP (1) JPH0626284B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573465B2 (en) * 1993-12-28 1997-01-22 宇宙開発事業団 3-axis control antenna unit
SG11201906993RA (en) * 2017-02-17 2019-09-27 Mitsubishi Electric Corp Antenna device, antenna control device, and method for controlling antenna device

Also Published As

Publication number Publication date
JPS63129702A (en) 1988-06-02

Similar Documents

Publication Publication Date Title
EP0461394B1 (en) Spacecraft earth-pointing attitude acquisition method
CN111897357B (en) Attitude tracking control method for satellite earth scanning
US5202695A (en) Orientation stabilization by software simulated stabilized platform
JP2625336B2 (en) Method and apparatus for controlling a solar wing of a satellite using a sun sensor
JPH0420124B2 (en)
US4994815A (en) Tracking controller for three-axis mount antenna systems
JP2004538439A (en) Momentum position control device
CN113568442A (en) Satellite alignment control system and method
JP4489654B2 (en) Antenna control device for satellite tracking
JP2573465B2 (en) 3-axis control antenna unit
JPH0626284B2 (en) 3-axis antenna control method
JPS6022803A (en) Controller of satellite tracking antenna
JPH098533A (en) Antenna posture controller
JPH1114729A (en) Pursuit type antenna device
JP2973919B2 (en) Acquisition control device for satellite antenna and control method therefor
JP3428858B2 (en) Three-axis controller for directional antenna
JP2842963B2 (en) Mobile antenna device
JPH028411Y2 (en)
JPH0192677A (en) Automatic satellite tracking device
US20210119319A1 (en) Controllable multi-axis antenna mount for use on aerial vehicles
JPH07176935A (en) Antenna mount for travelling object
JPH0758853B2 (en) 3-axis control antenna device
JPH11298889A (en) Automatic direction adjustment system for fpu mounted on mobil body
JPH0294801A (en) Antenna mount device
JPH08164898A (en) Attitude control device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term