JPS6149514B2 - - Google Patents

Info

Publication number
JPS6149514B2
JPS6149514B2 JP53050394A JP5039478A JPS6149514B2 JP S6149514 B2 JPS6149514 B2 JP S6149514B2 JP 53050394 A JP53050394 A JP 53050394A JP 5039478 A JP5039478 A JP 5039478A JP S6149514 B2 JPS6149514 B2 JP S6149514B2
Authority
JP
Japan
Prior art keywords
opening
speed
signal
guide vane
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53050394A
Other languages
Japanese (ja)
Other versions
JPS54142440A (en
Inventor
Jiro Takamasu
Mitsuo Nomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP5039478A priority Critical patent/JPS54142440A/en
Publication of JPS54142440A publication Critical patent/JPS54142440A/en
Publication of JPS6149514B2 publication Critical patent/JPS6149514B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Control Of Velocity Or Acceleration (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は電気ガバナを適用した水車発電機の制
御方法に係り、特に負荷しや断時にガイドベーン
の閉鎖速度を制御する閉鎖速度制御ループを設け
る事によつて、常に所望の閉鎖速度特性が得ら
れ、且つ起動時より定常運転、または定常運転よ
り負荷遮断への移行がスムーズに行える制御方法
を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a water turbine generator using an electric governor, and in particular, by providing a closing speed control loop that controls the closing speed of the guide vane when the load is off, The object of the present invention is to provide a control method that can obtain desired closing speed characteristics and smoothly transition from startup to steady operation or from steady operation to load shedding.

一般に水車発電機に於ては負荷変動を生じた場
合に、所定の速度調定率に従つて速度をある所望
値に自動的にコントロールするものとして、電気
ガバナなるものが適用される事は従来周知であ
る。この種電気式ガバナを適用した第1図に示す
従来装置に関して説明する。同図で1は水車発電
機の回転数を検出するパイロツト発電機で、2は
F/V変換回路で入力されるパルス列の周波数信
号を直流レベルの電圧信号に変換する為のもの
で、3は速度設定指令信号とフイードバツクされ
る速度検出信号と、過渡調定率ならびに時定数を
定める弾性復原信号、及び調定率を定める剛性復
原信号との偏差分を増幅する速度制御用増幅器
で、4はリミツター回路でガイドベーンの閉鎖速
度あるいは開放速度の最大値を制限する為のもの
で、5はコンバータで図示はしないがその内部に
はムービングコイルが挿入され電気信号を機械的
な変位信号に変換する為のもので、6は配圧弁で
コンバータと操作軸6を介して結合されこの操
作軸の上下方向の如何によつて入力される圧油を
パイプ6,6を通して送り出す為のもので、
7はサーボモータで内部にはピストン7とピス
トンロツド7とが挿入され圧油がパイプ6
通して入つて来ると図示しない水車のガイドベー
ンを「開」の方向に操作し、これとは反対に圧油
がパイプ6を通して入つて来るとガイドベーン
を「閉」の方向に操作するものである。8はスト
ローク量検出回路でピストンロツドのストローク
量を検出する事によつて図示しない水車のガイド
ベーンの開度に関連した信号を取出す為のもの
で、9は入力される開度検出信号に応じて過渡
調定率ならびに時定数を定める弾性復原信号を発
生する弾性復原量発生回路で、同様に9は入力
される開度検出信号に応じて調定率を定める剛性
復原信号を発生する剛性復原量発生回路でこれら
各発生回路は、負荷変化に伴う速度変動時に生ず
るガイドベーンの開閉動作の行き過ぎを抑える。
10は速度調整器でその内部にはライン並列時に
発電機出力周波数と発電機出力との関係が非直線
となる様な速度調定曲線を発生する回路を内蔵
し、さらに速度設定指令量を与える回路も内蔵し
ている。11は起動装置でその内部には起動開度
設定指令信号、無負荷開度設定指令信号及び負荷
開度設定指令信号を夫々与える設定器が内蔵され
ており、12〜12は夫々比較回路で、例え
ば、12の回路は水車の起動命令が入力される
と、弾性復原量発生回路9より出力される信号
をそのまま後段の比較回路12に導く動作を行
ない、又、12の回路は速度調整器10よりの
速度設定信号と、剛性復原量発生回路9よりの
信号と弾性復原量発生回路9よりの信号とを加
え合せた復原信号とを比較する動作を行ない、さ
らに12の回路は、比較回路12より導かれ
る速度設定信号と前記復原信号との偏差分と、
F/V変換回路2より導かれる速度検出信号とを
比較する動作を行ない、従つて12の比較回路
で、速度設定信号とフイードバツクされる速度検
出信号、各復原信号とを加え合せた信号との偏差
分を取出すことになる。13は開度制御用増幅器
で比較回路12より導びかれる開度偏差分を増
幅する為のものである。14は操作軸6に介挿
される機械的なストツパーでこのストツパーは負
荷遮断時に水圧管の水圧、水車の回転数がある所
定値以上に上昇しない様に、図示しないガイドベ
ーンの閉鎖速度を調整する目的で挿入されたもの
で、S1及びS2,S3は起動開度設定指令信号及び無
負荷開度設定指令信号、負荷開度設定指令信号が
夫々与えられた時点で閉路する接点である。この
様に構成して成る従来装置の動作は、例えば水車
発電機を起動する場合を例にとると、先ず起動装
置11より起動開度設定指令量を接点S1を通して
与えると同時に速度設定指令信号を速度調整器1
0より速度制御ループに与えると、水車は未だ起
動してないのでフイードバツクされる速度検出信
号と開度検出信号は零で、例えば速度制御用増幅
器3より出力される速度設定電圧の方が起動開度
設定電圧より電圧レベルが高いので、リミツター
回路4より出力される開度指令信号は起動開度設
定電圧の値に制限され、このようにして制限され
た開度指令電圧が開度制御ループの比較回路12
→増幅器13及びサーボ制御機構のコンバータ
5→配圧弁6→サーボモータ7の経路で与えられ
て、図示しないガイドベーンの開度を開方向に制
御することによつて水車を起動させる。しかして
ガイドベーンの開度が次第に大きくなつて水車発
電機は加速されて行くが、起動初期は起動開度設
定電圧であるリミツト電圧値より、速度制御用増
幅器3より出力される信号電圧の方が依然として
大きいので、前記リミツト電圧がそのまま開度制
御用増幅器→サーボ制御機構に導かれて所定の開
度制御が行なわれる。このような制御を行なうこ
とによつて、例えば起動開度設定電圧とガイドベ
ーンの開度検出信号とが相等しくなつた時点で、
今度は起動装置11より無負荷開度設定指令信号
を与える事によつて、速度制御ループおよび開度
制御ループ、サーボ制御機構を介して、図示しな
いガイドベーンの開度を自動的にコントロールし
て、ガイドベーンの開度が無負荷開度設定指令信
号と相等しくなつた時点で、次に所定の負荷開度
設定指令信号を与えて起動時の開度制御より定常
時に行なうガバナ運転(速度制御又は回転数制
御)へと移行させるものである。なおガバナ運転
時に於ては、接点S3のみが閉路して負荷開度指令
が与えられている。かかるガバナ運転時に於て、
何らかの原因で負荷遮断を行なう様な必要性が生
じた場合、従来装置で問題となるのはこの種負荷
遮断時に於けるガイドベーンの閉鎖速度を調整す
る場合である。この負荷遮断時の状況を、第2図
のタイムチヤート図を参照しながら具体的に述べ
てみるに、第2図のt0点で第2図Aに示す如く速
度設定指令電圧を零にすると、例えば第2図Cに
示す様に水車のガイドベーンの開度は速度制御ル
ープ、開度制御ループ及びサーボ制御機構を介し
て急激に全閉方向に操作され負荷遮断が行なわれ
る。かかる負荷遮断の操作方法であれば従来周知
の如く水車の回転数は第2図Bのt0点以後に示す
様に負荷遮断した直後は急激に上昇し、同様に水
圧管の水圧も第2図Dのt0点以後に示す様に急激
に上昇して行つて、これら水車回転数及び水圧の
上昇度合は第2図Cに示すガイドベーンの閉鎖速
度Tに大きく影響を受ける。即ち閉鎖速度を早く
すればこれに比例して水圧の上昇率も高くなり、
これとは反対に水車の回転数の上昇率は小さくな
る。一方閉鎖速度を遅くすれば水圧の上昇率は低
くなるが水車の回転数の上昇率は高くなると言う
様に、水圧と回転数とは相反する関係にあり、従
つて、従来では水圧管の水圧上昇も水車の回転数
上昇も共に所定の範囲に抑えるべくガイドベーン
の閉鎖速度を調整する機械的ストツパー14を、
第1図に示すコンバータ5と配圧弁6との間に介
挿させている。かかる機械的ストツパーは、例え
ば、操作軸6が自由に上−下動できるように所
定径の穴が貫通してあつて、且つストツパー14
自体も操作軸6に沿つて上−下動できるような
構造になつている。一方、操作軸6の任意部に
突起部が設けてあつて、この突起部がストツパー
14に当接すると、操作軸6がストツパー14
の位置より配圧弁6側へ動けない構造になつてい
る。従つて、ストツパー14を固定する位置を調
整すれば、配圧弁6よりサーボモータ7に供給す
る油量が調整され、これによつて、サーボモータ
7のピストン7、が全閉の位置まで移動する動
作時間、即ち不図示のガイドベーンの閉鎖速度を
調整することができる。このように、ガイドベー
ンの閉鎖速度の調整は、保守員がストツパーの固
定位置を調整して行なつているので、最適な閉鎖
速度を得るのにストツパーの固定位置を略T/10
ミリ〜略1/100ミリのオーダーで調整しなければ
ならないとか、作業が至極困難で保守上非常な煩
わしさを生ずることである。特に重要なことは、
一旦所望の閉鎖速度を得るべくストツパーの固定
位置をセツトした場合でも、機械系の経年変化に
よりストツパーを固定した位置がずれて水圧の異
常上昇、或いは水車回転数の異常上昇を生ずるな
ど種々の問題がある。
Generally speaking, it is well known that an electric governor is used to automatically control the speed of a water turbine generator to a certain desired value according to a predetermined speed regulation rate when load fluctuations occur. It is. A conventional device shown in FIG. 1 to which this type of electric governor is applied will be explained. In the figure, 1 is a pilot generator that detects the rotation speed of the water turbine generator, 2 is a pilot generator that converts the frequency signal of the pulse train input to the F/V conversion circuit into a DC level voltage signal, and 3 is a pilot generator that detects the rotation speed of the water turbine generator. A speed control amplifier that amplifies the deviation between the speed setting command signal, the speed detection signal that is fed back, the elastic restoring signal that determines the transient adjustment rate and time constant, and the rigid restoring signal that determines the adjustment rate, and 4 is a limiter circuit. This is to limit the maximum closing speed or opening speed of the guide vane, and 5 is a converter (not shown), inside which a moving coil is inserted to convert an electrical signal into a mechanical displacement signal. 6 is a pressure regulating valve which is connected to the converter via an operating shaft 61 , and is used to send out pressurized oil through pipes 62 and 63 , which is input in any vertical direction of this operating shaft.
7 is a servo motor into which a piston 71 and a piston rod 72 are inserted, and when pressure oil enters through a pipe 62 , it operates a guide vane of a water turbine (not shown) in the "open" direction, and vice versa. When pressure oil enters through the pipe 63 , the guide vane is operated in the "close" direction. 8 is a stroke amount detection circuit for detecting the stroke amount of the piston rod to extract a signal related to the opening degree of a guide vane of a water turbine (not shown); 9 1 is a circuit that detects the stroke amount of the piston rod and extracts a signal related to the opening degree of a guide vane of a water turbine (not shown); Similarly, 92 is a rigid restoring amount generation circuit that generates an elastic restoring signal that determines the transient adjustment rate and time constant according to the input opening detection signal. Each of these generating circuits suppresses excessive opening/closing operations of the guide vanes that occur during speed fluctuations due to load changes.
10 is a speed regulator, which has a built-in circuit that generates a speed adjustment curve such that the relationship between the generator output frequency and the generator output becomes non-linear when the lines are parallel, and also provides a speed setting command amount. It also has a built-in circuit. Reference numeral 11 denotes a starting device, which has built-in setting devices for supplying a starting opening setting command signal, a no-load opening setting command signal, and a load opening setting command signal, respectively, and 12 1 to 12 4 are comparison circuits, respectively. For example, when the water turbine starting command is input, the circuit 121 operates to directly lead the signal output from the elastic restoring amount generating circuit 91 to the comparison circuit 122 in the subsequent stage, and also The circuit compares the speed setting signal from the speed regulator 10 with a restoring signal obtained by adding the signal from the rigid restoring amount generating circuit 92 and the signal from the elastic resting amount generating circuit 91 , and further The circuit 123 calculates the deviation between the speed setting signal derived from the comparator circuit 122 and the restoring signal;
An operation is performed to compare the speed detection signal derived from the F/V conversion circuit 2, and therefore, the 123 comparison circuit compares the speed setting signal, the feedback speed detection signal, and each restoring signal with the signal. The deviation will be extracted. Reference numeral 13 denotes an opening control amplifier for amplifying the opening deviation derived from the comparator circuit 124 . Reference numeral 14 denotes a mechanical stopper inserted into the operating shaft 61. This stopper adjusts the closing speed of the guide vane (not shown) so that the water pressure in the penstock pipe and the rotation speed of the water wheel do not rise above a predetermined value when the load is cut off. S1 , S2 , and S3 are contacts that close when the starting opening setting command signal, no-load opening setting command signal, and load opening setting command signal are respectively given. be. The operation of the conventional device configured in this way is, for example, when starting a water turbine generator, first, the starting opening setting command amount is applied from the starting device 11 through the contact S 1 , and at the same time a speed setting command signal is sent. The speed regulator 1
If 0 is applied to the speed control loop, the water turbine has not started yet, so the speed detection signal and opening detection signal that are fed back are 0. For example, the speed setting voltage output from the speed control amplifier 3 is higher than the starting voltage. Since the voltage level is higher than the opening opening setting voltage, the opening command signal output from the limiter circuit 4 is limited to the value of the starting opening opening setting voltage, and the opening command voltage thus limited is used to control the opening opening setting voltage. Comparison circuit 12
4 → amplifier 13 and converter 5 of the servo control mechanism → pressure distribution valve 6 → servo motor 7, and the water turbine is started by controlling the opening degree of a guide vane (not shown) in the opening direction. As the opening of the guide vanes gradually increases, the water turbine generator is accelerated, but at the beginning of startup, the signal voltage output from the speed control amplifier 3 is higher than the limit voltage value, which is the starting opening setting voltage. Since the limit voltage is still large, the limit voltage is directly guided to the opening control amplifier and then to the servo control mechanism to perform predetermined opening control. By performing such control, for example, when the starting opening setting voltage and the guide vane opening detection signal become equal,
Next, by giving a no-load opening setting command signal from the starting device 11, the opening of the guide vane (not shown) is automatically controlled via the speed control loop, opening control loop, and servo control mechanism. When the opening of the guide vane becomes equal to the no-load opening setting command signal, a predetermined load opening setting command signal is given to control the governor operation (speed control) performed during steady state rather than opening opening control at startup. or rotation speed control). Note that during governor operation, only contact S3 is closed and a load opening command is given. During such governor operation,
If the need to perform load shedding arises for some reason, a problem with conventional devices is adjusting the closing speed of the guide vane during this kind of load shedding. To describe the situation during load interruption in detail with reference to the time chart in Figure 2, if the speed setting command voltage is reduced to zero at point t0 in Figure 2 as shown in Figure 2A. For example, as shown in FIG. 2C, the opening degree of the guide vane of the water turbine is suddenly operated in the fully closed direction via the speed control loop, the opening degree control loop, and the servo control mechanism to perform load shedding. If such a load shedding operation method is used, as is conventionally known, the rotational speed of the water turbine will rise rapidly immediately after the load shedding, as shown after point t0 in Figure 2B, and similarly, the water pressure in the penstock will also rise at the second point. As shown after point t0 in Figure D, the water pressure increases rapidly, and the degree of increase in the water turbine rotation speed and water pressure is greatly influenced by the closing speed T of the guide vane shown in Figure 2C. In other words, if the closing speed is increased, the rate of increase in water pressure will be proportionally higher.
On the contrary, the rate of increase in the rotational speed of the water turbine decreases. On the other hand, if the closing speed is slowed down, the rate of increase in water pressure will be lower, but the rate of increase in the rotational speed of the water turbine will be higher.Therefore, water pressure and rotational speed are in a contradictory relationship. A mechanical stopper 14 that adjusts the closing speed of the guide vane in order to suppress both the rise and the increase in the rotational speed of the water turbine within a predetermined range.
It is inserted between converter 5 and pressure regulating valve 6 shown in FIG. Such a mechanical stopper has, for example, a hole of a predetermined diameter passing through it so that the operating shaft 61 can freely move up and down, and the stopper 14
It is also structured so that it can be moved up and down along the operating shaft 61 . On the other hand, a protrusion is provided at an arbitrary part of the operating shaft 61 , and when this protrusion comes into contact with the stopper 14, the operating shaft 61 moves to the stopper 14.
The structure is such that it cannot move toward the pressure regulating valve 6 side from the position. Therefore, by adjusting the position where the stopper 14 is fixed, the amount of oil supplied to the servo motor 7 from the pressure distribution valve 6 is adjusted, and thereby the piston 7 1 of the servo motor 7 moves to the fully closed position. The operating time, ie the closing speed of the guide vanes (not shown), can be adjusted. In this way, the closing speed of the guide vane is adjusted by maintenance personnel by adjusting the fixed position of the stopper, so in order to obtain the optimum closing speed, the fixed position of the stopper must be adjusted to approximately T/10.
Adjustments must be made on the order of millimeters to approximately 1/100 millimeters, which is extremely difficult work and causes a great deal of maintenance trouble. What is especially important is that
Even if the fixed position of the stopper is set to obtain the desired closing speed, the fixed position of the stopper may shift due to aging of the mechanical system, resulting in various problems such as an abnormal increase in water pressure or an abnormal increase in the rotational speed of the water wheel. There is.

本発明は速度設定信号と、フイードバツクされ
る速度検出信号及び開度検出信号に応じた弾性、
剛性の各復原信号との3諸量を基に所定の速度制
御を行なう速度制御ループと、開度設定ループよ
りの開度設定信号を以つて速度制御ループの速度
制御用増幅器の最大出力値を制限して、この制限
した信号を開度指令とするリミツター回路と、こ
の回路よりの開度指令信号と開度検出信号との偏
差分を似つサーボ制御機構を制御する開度制御ル
ープと、入力される開度検出信号に対応した閉鎖
速度設定信号と閉鎖速度検出信号との偏差分を増
幅した信号を以つて、速度制御用増幅器の最大出
力値を制限し、この制限した信号を開度指令とす
る閉鎖速度制御ループと前記閉鎖速度ループより
与えられる開度指令信号を基にガイドベーンを操
作するサーボ制御機構とを具備し、起動時より定
常運転時までの期間は速度制御ループ及び開度設
定ループ、開度制御ループ、サーボ制御機構の3
つの制御ループを介してガイドベーンの開度を制
御し、負荷遮断時は、速度制御ループ及び前記開
度制御ループ、閉鎖速度制御ループ、サーボ制御
機構の各制御ループを介してガイドベーンの開度
を制御し、且つガイドベーンの閉鎖速度を制御す
るようにしたものである。以下第3図に示す本発
明の一実施例に基づき詳述する。第3図の実施例
で第1図と同一のものは同一符号を附しており、
15はガイドベーンの閉鎖速度を検出する閉鎖速
度検出回路で、この回路の構成は図示はしない
が、たとえばピストンロツド7のストロークを
検出したストローク検出量を微分すれば閉鎖速度
が得られるので、この閉鎖速度をそのまま利用す
るようにするか、さらにはピストンロツド7
任意部に所定長さのラツクを設けて、このラツク
上を回動するピニオンに速度検出用小発電機を取
付け、この発電機より所望の閉鎖速度信号を取出
すようにしてもよい。16は閉鎖速度設定回路
で、この回路の構成は、一例として第4図に示す
ように任意数の設定器群VR1〜VRnと接点群S4
Snとで構成し、各設定器の摺動位置を予じめ前
もつて適宜な位置にセツトして接点群と組合せれ
ば所望の閉鎖速度指令電圧が得られるようになつ
ている。このような構成以外に、例えば図示はし
ないが高利得増幅器を用いて、この増幅器の帰環
系にダイオードと抵抗との直列回路を多段に並列
接続した構成の、いわゆる“関数発生器”と称さ
れるものを利用してもよい。17は閉鎖速度指令
信号と閉鎖速度検出信号とを比較する比較回路
で、18はこの回路で得た偏差分を増幅する増幅
回路で、この増幅した信号をもつてリミツター回
路4のリミツト電圧が自動的に規制されるように
予じめ前もつて配慮してある。Msは所定の負荷
しや段時に投入される接点である。
The present invention provides elasticity according to the speed setting signal, the speed detection signal and the opening detection signal that are fed back.
The maximum output value of the speed control amplifier of the speed control loop is determined using the opening setting signal from the speed control loop that performs predetermined speed control based on three quantities including the stiffness restoring signal and the opening setting loop. a limiter circuit that limits the limited signal and uses the limited signal as an opening command; an opening control loop that controls a servo control mechanism that makes the deviation between the opening command signal from this circuit and the opening detection signal similar; The maximum output value of the speed control amplifier is limited using a signal obtained by amplifying the deviation between the closing speed setting signal and the closing speed detection signal corresponding to the input opening detection signal, and this limited signal is used to control the opening. It is equipped with a closing speed control loop for commands and a servo control mechanism for operating the guide vane based on the opening command signal given from the closing speed loop. 3: degree setting loop, opening control loop, servo control mechanism
The opening degree of the guide vane is controlled through two control loops, and when the load is cut off, the opening degree of the guide vane is controlled through the speed control loop, the opening control loop, the closing speed control loop, and the servo control mechanism control loop. and the closing speed of the guide vane. A detailed description will be given below based on an embodiment of the present invention shown in FIG. Components in the embodiment shown in FIG. 3 that are the same as those in FIG. 1 are given the same reference numerals.
Reference numeral 15 denotes a closing speed detection circuit for detecting the closing speed of the guide vane. Although the configuration of this circuit is not shown, the closing speed can be obtained by differentiating the stroke detection amount obtained by detecting the stroke of the piston rod 72 , for example. Either the closing speed can be used as is, or furthermore, a rack of a predetermined length can be provided at an arbitrary part of the piston rod 72 , and a small generator for speed detection can be attached to the pinion that rotates on this rack. A more desired closing speed signal may be extracted. 16 is a closing speed setting circuit, and the configuration of this circuit is, for example, as shown in FIG. 4, an arbitrary number of setter groups VR 1 to VRn and contact groups S 4 to
By setting the sliding position of each setter at an appropriate position in advance and combining it with the contact group, a desired closing speed command voltage can be obtained. In addition to this configuration, for example, although not shown, there is a so-called "function generator" that uses a high-gain amplifier and connects series circuits of diodes and resistors in multiple stages in parallel to the return loop of this amplifier. You may use what is provided. 17 is a comparison circuit that compares the closing speed command signal and the closing speed detection signal, 18 is an amplifier circuit that amplifies the deviation obtained by this circuit, and the limit voltage of the limiter circuit 4 is automatically adjusted using this amplified signal. Care has been taken in advance to ensure that the regulations are regulated accordingly. Ms is a contact that is closed at a predetermined load or stage.

以上のように構成される本発明による一実施例
の動作を詳述するに、水車発電機を起動し定格回
転数まで加速制御する定常時の動作は、接点Ms
が開路状態にあるので、第1図に示す従来装置と
全く同様に、起動初期は接点S1を介して導かれる
開度設定ループよりの起動開度指令電圧で、リミ
ツター回路4のリミツト電圧が設定されるので、
速度設定電圧と、この電圧に対して逆極性で入力
される速度検出信号および開度検出信号に対応す
る各復元信号との偏差分を増幅した速度制御用増
幅器の最大出力値がリミツト電圧に制限され、こ
の制限された開度指令電圧を基に開度制御用増幅
器13、及びコンバータ5を含めたサーボ制御機
構を介して図示しないガイドベーンの開度が制御
され、この開度量に応じて水車を加速制御する。
ガイドベーンの開度が起動開度設定電圧まで開か
れると、起動開度設定信号を解除し新たに接点S2
を通して無負荷開度設定電圧が入力され、この無
負荷開度設定電圧は、起動開度設定電圧で生ずる
開度変化量より小さい変化量を与える電位である
ので、これによりガイドベーンの開度が起動開度
位置より無負荷開度の相当位置まで次第に閉じら
れて行く。これに対し水車速度は、ガイドベーン
の開度が開じられて行くのに応じて、徐々に加速
制御され定格回転数まで上昇するようになる。こ
のように水車の速度が定格回転数の近くまで加速
されると、速度制御用増幅器の出力電圧が遂には
リミツト電圧より小さくなり、速度制御用増幅器
の出力電圧そのものがリミツト電圧に何ら制限を
受けなくなるので、速度制御用増幅器の出力電圧
がそのまま開度制御用増幅器13→サーボ制御機
構に与えられてガイドベーンは無負荷開度の位置
まで徐々にとじられて行く。かかる動作状態をガ
バナフリーと称するものであるが、ガバナフリー
となつた状態で次に無負荷開度設定信号を解除し
接点S3を通して負荷開度設定信号を入力すること
によつて、定常時のガバナ運転へと移行させるも
のである。次に負荷しや断時の動作について第5
図のタイムチヤート図を参照しながら詳述する
に、第5図Aは時間の経緯に対するガイドベーン
の閉鎖速度を、同時に第5図B及びCは時間の経
緯に対する閉鎖速度設定電圧とリミツター回路の
リミツト電圧をそれぞれ示している。さて負荷し
や断指令が入力されると第3図の接点Msが閉路
すると同時に、負荷開度設定電圧を与える接点S5
は開路し、これによつてリミツター回路4に開度
設定電圧を与える開度設定ループが開路し、さら
に速度調整器10より図示しない水車発電機の速
度を零とする意味の零速度指令が入力される。か
かる動作と並行して、第4図に示す閉鎖速度設定
回路ではストローク検出回路8より導かれる信号
を基に、例えば第5図BのO−t1期間に相当する
設定電圧を設定器VR1−接点S4の経路で与えるよ
うに、同様に第5図Bのt1−t2期間に相当する設
定電圧を設定器VR2−接点S5の経路と設定器VR3
−接点S6の経路とを通して与えるようにし、さら
に第5図Bのt2−t3期間に相当する設定電圧を設
定器VRn−接点Snの経路を通して与えるように
それぞれ予じめ前もつて規定しているので、所定
の負荷しや断指令が入力されると、まずストロー
ク検出回路8で得たストローク検出信号を基にガ
イドベーンの閉鎖速度を15の閉鎖速度検出回路
で検出し、これと平行してストローク検出信号を
基ににした閉鎖速度設定電圧を設定器VR1−接点
S4の経路で第3図の比較回路17に導く。しかし
て負荷しや断指令が入力される過渡期は閉鎖速度
検出信号値が零レベルにあるので、この閉鎖速度
検出信号と第5図BのO−t1期間に示す閉鎖速度
設定電圧とで決定される第3図のリミツター回路
4のリミツト電圧は、第5図CのO−t1期間に示
す如く最大のレベルに設定される。
To explain in detail the operation of one embodiment of the present invention configured as described above, the steady operation of starting the water turbine generator and controlling the acceleration to the rated rotation speed is performed by contact Ms
is in an open state, so in the initial stage of startup, the limit voltage of the limiter circuit 4 is set by the startup opening command voltage from the opening setting loop guided through the contact S1 , just like the conventional device shown in Fig. 1. Since it is set,
The maximum output value of the speed control amplifier, which amplifies the deviation between the speed setting voltage and each restoration signal corresponding to the speed detection signal and opening detection signal that are input with the opposite polarity to this voltage, is limited to the limit voltage. Based on this limited opening command voltage, the opening of the guide vane (not shown) is controlled via the opening control amplifier 13 and a servo control mechanism including the converter 5, and the water turbine control the acceleration.
When the guide vane opening reaches the starting opening setting voltage, the starting opening setting signal is canceled and a new contact S 2 is opened.
The no-load opening setting voltage is input through , and this no-load opening setting voltage is a potential that gives a smaller change in opening than that caused by the starting opening setting voltage, so this changes the guide vane opening. It is gradually closed from the starting opening position to a position corresponding to the no-load opening position. On the other hand, the water turbine speed is gradually accelerated and controlled to increase to the rated rotation speed as the guide vanes are opened. When the speed of the water turbine is accelerated to near the rated rotational speed in this way, the output voltage of the speed control amplifier finally becomes smaller than the limit voltage, and the output voltage of the speed control amplifier itself is no longer limited by the limit voltage. Therefore, the output voltage of the speed control amplifier is directly applied to the opening control amplifier 13 and then to the servo control mechanism, and the guide vane is gradually closed to the no-load opening position. This operating state is called governor-free, and in the governor-free state, by canceling the no-load opening setting signal and inputting the load opening setting signal through contact S 3 , the steady state can be changed. This will cause the system to shift to governor operation. Next, see the fifth section regarding the operation when the load is interrupted.
To explain in detail with reference to the time chart shown in the figure, Figure 5A shows the closing speed of the guide vane over time, and at the same time, Figures 5B and C show the closing speed setting voltage and limiter circuit over time. Each limit voltage is shown. Now, when the load cutoff command is input, the contact Ms shown in Fig. 3 closes, and at the same time, the contact S5 which gives the load opening setting voltage
is opened, thereby opening the opening setting loop that applies the opening setting voltage to the limiter circuit 4, and furthermore, a zero speed command is input from the speed regulator 10 to set the speed of the water turbine generator (not shown) to zero. be done. In parallel with this operation, the closing speed setting circuit shown in FIG. 4 uses the setting device VR 1 to set a set voltage corresponding to the O-t 1 period in FIG. - Similarly, the set voltage corresponding to the period t 1 - t 2 in FIG .
- the path of the contact S 6 , and the setting voltage corresponding to the period t 2 - t 3 of FIG. Therefore, when a predetermined load cutting command is input, the closing speed of the guide vane is first detected by the closing speed detection circuit 15 based on the stroke detection signal obtained by the stroke detection circuit 8, and then the closing speed of the guide vane is detected by the closing speed detection circuit 15. In parallel, the closing speed setting voltage is set based on the stroke detection signal VR 1 - contact
It leads to the comparator circuit 17 in FIG. 3 via the path S4 . However, during the transition period when the load-off command is input, the closing speed detection signal value is at zero level, so this closing speed detection signal and the closing speed setting voltage shown in the O-t 1 period in Fig. 5B are The determined limit voltage of the limiter circuit 4 in FIG. 3 is set to the maximum level as shown in period O- t1 in FIG. 5C.

かかる状態で速度制御ループに前述した零速度
設定信号が入力されると、F/V変換回路2より
導かれる速度検出信号は最大レベル、又、ストロ
ーク検出回路8より導かれるガイドベーンの開度
検出信号は最大レベルにあるので、これら零速度
設定信号と速度検出信号、開度検出信号に対応す
る各復原信号の3諸量を比較回路12で比較
し、回路12より速度制御用増幅器3に導かれ
る信号は、水車の回転数を零速度まで絞り込む最
大の下げ命令となる。この信号を速度制御用増幅
器3で一旦増幅してリミツター回路4に与えら
れ、リミツター回路4では、増幅回路18の出力
電圧で決定されるリミツト電圧に比し速度制御用
増幅器3の出力電圧が高いことを条件に、増幅器
3の出力電圧をリミツト電圧値に制限する。この
ようにして制限された開度指令電圧をもつてコン
バータ5を含めたサーボ制御機構を介して図示し
ないガイドベーンの開度が制御されることにな
る。かかるガイドベーンの閉鎖過程を速度に対応
して示したものが第5図Aの閉鎖速度特性図で、
ガイドベーンの開度を絞る閉鎖速度が負荷しや断
指令の入力後は、第5図AのO−t1期間に示す如
く急速に増大しつつ開度が閉じられて行くのが理
解できる。なおガイドベーンの開度が徐々に閉じ
られて行くと、ストローク検出信号を基にした閉
鎖速度が検出回路15を通して検出され、閉鎖速
度設定信号と閉鎖速度検出信号との偏差分が次第
に小さくなつて行き、これに対応してリミツター
回路4のリミツト電圧を低下して行くので、この
リミツト電圧の開度指令通りに開度制御用増幅器
13及びサーボ制御機構を介してガイドベーンが
徐々に閉じられて行き、その閉鎖速度は、閉鎖速
度制御ループを介して自動的にコントロールさ
れ、第5図AのO−t1期間に示す如く負荷しや段
時の始めの期間だけ閉鎖速度を早めてガイドベー
ンの開度を閉じていく。さてガイドベーンの開度
が所定の開度位置(第5図Cのt1点を示す)まで
閉じられると、これを条件にして第4図の接点S4
が開路され、これと平行して接点S5及び接点S6
通して第5図Bのt1〜t2期間に示すような閉鎖速
度設定電圧が入力されるようになる。この閉鎖速
度設定電圧と閉鎖速度検出信号との偏差分をもつ
てリミツト電圧が新たに設定され、この新たに設
定したリミツト電圧のレベルは第5図Cのt1−t2
期間に示す如く閉鎖初期に比し電位そのものが低
いので、サーボ制御機構を介して閉じられて行く
ガイドベーンの開度変化量の範囲は相対的に低下
し、開度を閉じて行く閉鎖速度そのものは、閉鎖
速度制御ループを介して自動的にコントロールさ
れ、第5図Aのt1−t2期間に示すように徐々に低
下して行く。さてガイドベーンの開度が一層閉じ
られて行き全閉の近くまで接近する(第5図Cの
t2点を示す)と、この開度位置に応じて水車の速
度は急速に低下して行き零速度設定信号と速度検
出信号、開度検出信号に対応する復原信号との偏
差分も漸次低下して行く。ガイドベーンの開度が
所定の位置まで閉じられた旨をストローク検出信
号を基に確認すると、次に第4図の接点Sn−t
を通して第5図Bのt2−t3期間に示すような閉鎖
速度設定電圧が比較回路17→増幅回路18の経
路でリミツター回路4に入力され、この閉鎖速度
設定電圧と閉鎖速度検出信号との偏差分に応じた
リミツト電圧が再び設定されて、このリミツト電
圧を基にしたガイドベーンの開度を閉じて行く閉
鎖速度は、その後、第5図Bのt2−t3期間に示す
指令電圧通りに自動的にコントロールされてガイ
ドベーンの開度を全閉の位置まで絞り込んで行
く。
When the above-mentioned zero speed setting signal is input to the speed control loop in such a state, the speed detection signal derived from the F/V conversion circuit 2 is at the maximum level, and the opening degree of the guide vane is detected by the stroke detection circuit 8. Since the signal is at the maximum level, the comparator circuit 123 compares the three quantities of the zero speed setting signal, the speed detection signal, and each restoring signal corresponding to the opening detection signal, and the circuit 123 then outputs the speed control amplifier 3. The signal guided by is the maximum command to reduce the rotation speed of the water turbine to zero speed. This signal is once amplified by the speed control amplifier 3 and given to the limiter circuit 4. In the limiter circuit 4, the output voltage of the speed control amplifier 3 is higher than the limit voltage determined by the output voltage of the amplifier circuit 18. Under this condition, the output voltage of the amplifier 3 is limited to a limit voltage value. The opening degree of the guide vane (not shown) is controlled by the servo control mechanism including the converter 5 using the opening command voltage thus limited. The closing speed characteristic diagram in FIG. 5A shows the closing process of the guide vane in response to speed.
It can be seen that after the load reduction command is input, the closing speed for reducing the opening of the guide vane increases rapidly as the opening is closed, as shown in the O-t 1 period of FIG. 5A. Note that as the opening degree of the guide vane gradually closes, the closing speed based on the stroke detection signal is detected through the detection circuit 15, and the deviation between the closing speed setting signal and the closing speed detection signal gradually becomes smaller. In response to this, the limit voltage of the limiter circuit 4 is lowered, so that the guide vane is gradually closed via the opening control amplifier 13 and the servo control mechanism in accordance with the opening command of this limit voltage. The closing speed of the guide vane is automatically controlled via the closing speed control loop to accelerate the closing speed only during the beginning of the loading stage as shown in the O-t 1 period of Figure 5A. Close the opening. Now, when the opening degree of the guide vane is closed to the predetermined opening position (point t 1 in Figure 5 C), under this condition, the contact point S 4 in Figure 4 is closed.
is opened, and in parallel with this, a closing speed setting voltage as shown in the period t 1 to t 2 of FIG. 5B is inputted through contacts S 5 and S 6 . A limit voltage is newly set based on the deviation between this closing speed setting voltage and the closing speed detection signal, and the level of this newly set limit voltage is t 1 - t 2 in FIG. 5C.
As shown in the period, the potential itself is lower than at the initial stage of closing, so the range of the amount of change in the opening of the guide vane as it is closed via the servo control mechanism is relatively reduced, and the closing speed itself at which the opening is closed is lowered. is automatically controlled via a closed speed control loop and gradually decreases as shown in the t 1 -t 2 period of FIG. 5A. Now, the opening degree of the guide vane is further closed and approaches the fully closed position (as shown in Figure 5 C).
t (2 points shown), the speed of the water turbine rapidly decreases according to this opening position, and the deviation between the zero speed setting signal, the speed detection signal, and the righting signal corresponding to the opening detection signal also gradually decreases. I'll go. After confirming that the guide vane has been closed to the predetermined position based on the stroke detection signal, the contact point Sn-t in Fig. 4 is confirmed.
The closing speed setting voltage as shown in the period t 2 - t 3 in FIG. The limit voltage corresponding to the deviation is set again, and the closing speed at which the guide vane is closed based on this limit voltage is then set to the command voltage shown in the period t 2 - t 3 in FIG. 5B. The opening of the guide vane is automatically controlled to the fully closed position.

以下同様に第4図の接触Snが閉路し設定器
VRnより与えられる閉鎖速度設定電圧(第5図B
のt3以後に示す)と閉鎖速度検出信号との偏差分
で決定されるリミツト電圧を基に、ガイドベーン
の開度を全閉の位置まで絞り込んで行く閉鎖速度
が自動的にコントロールされる。
Similarly, contact Sn in Figure 4 closes and the setting device
Closing speed setting voltage given by VRn (Fig. 5B
The closing speed , which narrows down the opening of the guide vane to the fully closed position, is automatically controlled based on the limit voltage determined by the deviation between the closing speed detection signal and the closing speed detection signal.

なお、以上の説明では閉鎖速度設定回路16で
各可変抵抗器単独で所要の閉鎖速度設定信号を順
次出力する場合の具体例を述べたが、何もこのよ
うに各可変抵抗器単独で所要の閉鎖速度設定信号
を出力する方法ではなく、例えば第4図に示す可
変抵抗器群で第1発目の閉鎖速度指令量はVR1
VR3とを組合せたものを出力とし、第2発目の閉
鎖速度指令量はVR2とVR5とを組合せたものを出
力とすると言う様に、可変抵抗器群を適宜任意に
組合せて所要の閉鎖速度指令量を適宜出力する様
にすれば、閉鎖速度特性そのものをより理想的な
特性に近づけ得る利点がある。
In the above explanation, a specific example was described in which the closing speed setting circuit 16 sequentially outputs the required closing speed setting signal from each variable resistor alone. Instead of outputting the closing speed setting signal, for example, the first closing speed command amount is VR 1 using the variable resistor group shown in Figure 4.
The output is the combination of VR 3 and the second closing speed command is the output of the combination of VR 2 and VR 5 . By appropriately outputting the closing speed command amount, there is an advantage that the closing speed characteristics themselves can be made closer to ideal characteristics.

以上のように、本発明は速度制御ループと、起
動、無負荷、負荷の各開度設定信号を基に速度制
御用増幅器の出力値を制限するリミツタ回路と、
該回路の開度指令信号と開度検出信号とを基に開
度を制御する開度制御ループと、閉鎖速度設定信
号と閉鎖速度検出信号とを基に前記速度制御用増
幅器の出力値を制限する閉鎖速度制御ループと、
ガイドベーンを操作するサーボ制御機構とで制御
装置を構成し、ガイドベーンを開方向に操作する
場合は速度制御ループ、開度設定ループ及び開度
制御ループ、サーボ制御機構を介して制御し、所
定の負荷遮断時は、速度制御ループ及び閉鎖速度
制御ループ、前記開度制御ループ、サーボ制御機
構を介してガイドベーンを閉方向に制御するもの
であるから、以下に示す様に種々の効果を奏する
ものである。
As described above, the present invention includes a speed control loop, a limiter circuit that limits the output value of a speed control amplifier based on the start, no-load, and load opening setting signals,
an opening control loop that controls the opening based on the opening command signal and the opening detection signal of the circuit; and limiting the output value of the speed control amplifier based on the closing speed setting signal and the closing speed detection signal. a closed speed control loop that
A control device is configured with a servo control mechanism that operates the guide vane, and when the guide vane is operated in the opening direction, it is controlled via a speed control loop, an opening degree setting loop, an opening degree control loop, and a servo control mechanism, and a predetermined When the load is cut off, the guide vane is controlled in the closing direction via the speed control loop, the closing speed control loop, the opening control loop, and the servo control mechanism, so various effects are achieved as shown below. It is something.

従来にみられるような機械的ストツパーに依
存する方法ではなく、純電気的に閉鎖速度を自
動的にコントロールするので、閉鎖速度設定指
令量を任意に可変すれば閉鎖速度特性そのもの
を自由に調整でき、所望の閉鎖速度特性を容易
に得る事ができる。
Since the closing speed is automatically controlled purely electrically, rather than relying on a mechanical stopper as seen in the past, the closing speed characteristic itself can be adjusted freely by arbitrarily varying the closing speed setting command amount. , the desired closing speed characteristics can be easily obtained.

上記の理由によりサーボ系の圧油の油温、
油圧あるいは機械系の経年変化等により閉鎖速
度特性が変化する事なく、安定した閉鎖速度を
保持して負荷遮断時の水圧上昇及び水車回転数
の上昇を所望の範囲内に制限する事ができる。
Due to the above reasons, the oil temperature of the servo system pressure oil,
It is possible to maintain a stable closing speed without changing the closing speed characteristics due to aging of the hydraulic pressure or mechanical system, and to limit increases in water pressure and water turbine rotation speed during load shedding to within a desired range.

所要の閉鎖速度設定指令量を与える場合は容
易にプログラム化が可能となり、このプログラ
ム化と相俟つて圧油の影響を何ら受けないと言
う特徴をもつて発電所の無人化を図る様な場合
には、その特徴を如何なく発揮でき最適な装置
を提供できる。
When giving the required closing speed setting command amount, it can be easily programmed, and in conjunction with this programming, it has the characteristic that it is not affected by pressure oil in any way, so it is possible to make the power plant unmanned. We can provide an optimal device that can take full advantage of its features.

水車発電機の起動より定常時のカバナ運転及
び負荷遮断まで、サーボ制御機構に与える開度
指令を設定信号と検出信号との偏差分で自動的
に調整したので、起動時より定常運転、又は定
常運転より負荷遮断の移行をスムーズに行なえ
る。
The opening command given to the servo control mechanism is automatically adjusted by the deviation between the setting signal and the detection signal from the startup of the water turbine generator to the cabana operation during steady state and load shedding. A smooth transition from load shedding to operation can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置を示す具体的なブロツク構成
図、第2図はその動作を示すタイムチヤート図、
第3図は本発明による一実施例を示す具体的なブ
ロツク構成図、第4図は本発明に係る閉鎖速度設
定回路を示す具体的な回路例、第5図は本発明に
係る負荷遮断時の動作を示すタイムチヤート図。 1はパイロツト発電機、2はF/V変換回路、
3は速度制御用増幅器、4はリミツター回路、5
はコンバータ、6は配圧弁、7はサーボモータ、
8はストローク検出回路、9は弾性復原量発生
回路、9は剛性復原量発生回路、10は速度調
整器、11は起動装置、12〜12及び17
は比較回路、13は開度制御用増幅器、15は閉
鎖速度検出回路、16は閉鎖速度設定回路、Ms
はスイツチ。
Fig. 1 is a concrete block configuration diagram showing a conventional device, Fig. 2 is a time chart showing its operation,
FIG. 3 is a specific block configuration diagram showing one embodiment of the present invention, FIG. 4 is a specific circuit example showing a closing speed setting circuit according to the present invention, and FIG. A time chart diagram showing the operation of. 1 is a pilot generator, 2 is an F/V conversion circuit,
3 is a speed control amplifier, 4 is a limiter circuit, 5
is a converter, 6 is a pressure distribution valve, 7 is a servo motor,
8 is a stroke detection circuit, 9 1 is an elastic restoring amount generation circuit, 9 2 is a rigid restoring amount generation circuit, 10 is a speed regulator, 11 is a starting device, 12 1 to 12 4 and 17
is a comparison circuit, 13 is an opening control amplifier, 15 is a closing speed detection circuit, 16 is a closing speed setting circuit, Ms
is a switch.

Claims (1)

【特許請求の範囲】[Claims] 1 速度設定信号と速度検出信号、開度検出信号
に応じた復原信号とを基に速度制御を行なう速度
制御ループと、起動開度設定信号、無負荷開度設
定信号および負荷開度設定信号を与える各設定器
からそれぞれ設定される前記3種類の開度設定信
号を基に前記速度制御ループの速度制御用増幅器
の出力を制限して、ガイドベーンの開方向の開度
制御量を決定する開度設定ループと、前記開度検
出信号を基にガイドベーンの閉鎖速度を設定する
閉鎖速度設定信号と、開度検出信号を基にガイド
ベーンの閉鎖速度を検出した検出信号との偏差分
を以つて、前記速度制御用増幅器の出力を制限し
てガイドベーンの閉方向の前記開度制御量を決定
する閉鎖速度制御ループと、前記開度制御量と、
前記開度検出信号との偏差分を基にガイドベーン
の開度を制御する開度制御ループと、この制御ル
ープの出力信号を以つてガイドベーンを開方向或
いは閉方向に操作するサーボ制御機構とを具備
し、ガイドベーンを開方向に操作する場合は、前
記速度制御ループと前記開度設定ループと前記開
度制御ループ、前記サーボ制御機構との各制御ル
ープを介して開度を制御し、ガイドベーンを閉方
向に操作する場合は、前記速度制御ループと前記
閉鎖速度制御ループと前記開度制御ループ、前記
サーボ制御機構との各制御ループを介して開度を
制御したことを特徴とする水車発電機の制御方
法。
1 A speed control loop that performs speed control based on a speed setting signal, a speed detection signal, and a restoring signal according to an opening detection signal, and a starting opening setting signal, a no-load opening setting signal, and a load opening setting signal. An opening control device that limits the output of the speed control amplifier of the speed control loop based on the three types of opening setting signals respectively set from each setting device to determine the opening control amount in the opening direction of the guide vane. The following is the deviation between the closing speed setting signal that sets the closing speed of the guide vane based on the opening detection signal, and the detection signal that detects the closing speed of the guide vane based on the opening detection signal. a closing speed control loop that limits the output of the speed control amplifier to determine the opening control amount in the closing direction of the guide vane; and the opening control amount;
an opening control loop that controls the opening of the guide vane based on the deviation from the opening detection signal; and a servo control mechanism that operates the guide vane in the opening or closing direction using the output signal of this control loop. When operating the guide vane in the opening direction, the opening is controlled through each control loop of the speed control loop, the opening setting loop, the opening control loop, and the servo control mechanism, When operating the guide vane in the closing direction, the opening degree is controlled through each control loop of the speed control loop, the closing speed control loop, the opening degree control loop, and the servo control mechanism. How to control a water turbine generator.
JP5039478A 1978-04-27 1978-04-27 Method of adjusting speed of closing of guide valve for hydraulic turbine generator Granted JPS54142440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039478A JPS54142440A (en) 1978-04-27 1978-04-27 Method of adjusting speed of closing of guide valve for hydraulic turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039478A JPS54142440A (en) 1978-04-27 1978-04-27 Method of adjusting speed of closing of guide valve for hydraulic turbine generator

Publications (2)

Publication Number Publication Date
JPS54142440A JPS54142440A (en) 1979-11-06
JPS6149514B2 true JPS6149514B2 (en) 1986-10-29

Family

ID=12857647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039478A Granted JPS54142440A (en) 1978-04-27 1978-04-27 Method of adjusting speed of closing of guide valve for hydraulic turbine generator

Country Status (1)

Country Link
JP (1) JPS54142440A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120459A (en) * 2005-10-31 2007-05-17 Toshiba Corp Guide vane closing control device for power generation hydraulic machine, and method for controlling it

Also Published As

Publication number Publication date
JPS54142440A (en) 1979-11-06

Similar Documents

Publication Publication Date Title
US5953902A (en) Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding
JPH09166029A (en) Adjusting method of flow rate of fuel to combustion apparatus of gas turbine
US4292534A (en) Power and speed control device for a turbo-generator set
JPS5812443B2 (en) Turbine Seigiyosouchi
JPS6149514B2 (en)
JPH0370088B2 (en)
JP2003083226A (en) Speed adjustment control method for hydraulic power generation plant and speed adjuster
US4297589A (en) Speed governor for a hydroelectric unit
JPS5946373A (en) Controller for speed of water wheel
JPH046011B2 (en)
CN117452850A (en) Analog quantity pulse control method
JPH01240775A (en) Speed control device for hydraulic turbine generator
RU2292483C1 (en) Speed checking device for hydraulic turbine speed governor
JPS6111444Y2 (en)
JPS6226278B2 (en)
JPS6141926Y2 (en)
JPS6139112A (en) Electric speed governor
JPH06317244A (en) Speed control device for speed governor in water turbine generator
SU1002657A1 (en) Hydraulic unit power controller
JPS6337241B2 (en)
JPH06272233A (en) Automatic load control device for hydraulic power plant
JPS5866122A (en) Controller for governor
JPH07324603A (en) Controller for water feed turbine
JP2987765B2 (en) Load limiting device for water turbine for power generation
JPS62291403A (en) Speed governing device for turbine