JPS5866122A - Controller for governor - Google Patents

Controller for governor

Info

Publication number
JPS5866122A
JPS5866122A JP56165464A JP16546481A JPS5866122A JP S5866122 A JPS5866122 A JP S5866122A JP 56165464 A JP56165464 A JP 56165464A JP 16546481 A JP16546481 A JP 16546481A JP S5866122 A JPS5866122 A JP S5866122A
Authority
JP
Japan
Prior art keywords
speed
opening
closing
guide vane
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56165464A
Other languages
Japanese (ja)
Other versions
JPS642787B2 (en
Inventor
Hide Saito
斎藤 秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP56165464A priority Critical patent/JPS5866122A/en
Publication of JPS5866122A publication Critical patent/JPS5866122A/en
Publication of JPS642787B2 publication Critical patent/JPS642787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Abstract

PURPOSE:To obtain an optional closing speed and to perform the switching from full opening to full closing without shock, by providing minor loops of an opening control system and a closing speed controlling system at the inside of a speed controlling system forming a major loop. CONSTITUTION:When an instruction to start and accelerate a water wheel is issued from a speed setter 1, a speed command voltage is given through the route of an amplifier 5 for speed control of a major loop and an amplifier 8 for opening control of a minor loop as it is because the output of a speed sensor 2 is 0, and a guide vane is opened through an amplifier 11 for closing speed control of the second minor loop and a servo system on the basis of the output voltage of a high-gain amplifier A2 which is limited to a certain value. When full closing is inputted from the speed setter 1 to a comparing circuit 4, the guide vane is closed without shock through the amplifier for closing speed control and the servo system on the basis of the error voltage between outputs of the amplifier 8 for opening control and a guide vane opening detecting circuit 7 while limiting the closing speed by the command voltage issued from a closing speed characteristic pattern setter 9.

Description

【発明の詳細な説明】 本発明は水車のガイドベーンを操作するガバナの制御装
置に係り、特にメジャーループの速度制御系の内側に開
度制御系と閉鎖速度制御系とのマイナーループを設ける
ことによって、任意の閉鎖速度特性が得られしかも全開
より全閉(又は全閉より全開)えの切換えを何らショッ
クなく行なえ、制御性がよ、い制御装置を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a governor control device for operating guide vanes of a water turbine, and in particular, a minor loop including an opening control system and a closing speed control system is provided inside a major loop speed control system. The present invention aims to provide a control device which can obtain arbitrary closing speed characteristics, can switch from fully open to fully closed (or from fully closed to fully open) without any shock, and has good controllability.

水車のガイドベーンの開度な操作するものとして、例え
ば速度制御系をメジャーループとし、この制御系の内側
にコンバーター配圧弁−サーボモータを主体とした油圧
サーボ系を配して、ガイドベーンの開度な操作すること
によって水車の起動および加速制御、さもKは所定の負
荷遮断を行なう電気式ガバナなるものはよく知られてい
る所である、かかるガバナの制御装置によって水車の起
動−加速一減速一停止と云う一連のモードを行なう場合
の、時間の経違に対するガイドベーンの開度θおよび操
作速度Vの特性を示したものが第1図で、この特性図で
実線はガイドベー7の開度特性を示し、同様に破線はガ
イドベーンを操作する操作速度特性を示している。この
特性図より明らかなよ5に、水車を所定の定格回転数ま
で加速するKは、一定の操作出力を以って図示するよう
な操作速度V・を与えてガイドベーンの開度な全開まで
操作すればよく、これに対して所定の負荷遮断を行なう
べくガイドベーンの開度な全開の位置まで閉鎖する場合
には、破線で示すようなV、 −V、−V。
To control the opening of the guide vanes of a water turbine, for example, the speed control system is a major loop, and inside this control system is placed a hydraulic servo system consisting mainly of a converter pressure distribution valve and a servo motor. It is well known that electric governors control the start-up and acceleration of water turbines, as well as perform predetermined load shedding through precise operations. Figure 1 shows the characteristics of the guide vane opening θ and operating speed V over time when performing a series of modes called one stop. In this characteristic diagram, the solid line indicates the opening of the guide vane 7. Similarly, the broken line indicates the operating speed characteristic for operating the guide vane. It is clear from this characteristic diagram that K to accelerate the water turbine to a predetermined rated rotational speed is given by the operating speed V as shown in the figure with a constant operating output until the guide vane is fully opened. On the other hand, when closing the guide vane to the fully open position to perform a predetermined load shedding, V, -V, -V as shown by the broken line.

なる操作速度特性が得られるべく所定の操作出力な−4
えれば、実線で示すような所望の閉鎖速度特性が得られ
水圧管の圧力上昇も所定の範囲内に抑えることができる
。かかる一連のモードで重要なことは負荷遮断時の閉鎖
モードである。この閉鎖モードは図示する如く不動時間
tと第1の閉鎖時間T1.第2の閉鎖時間T、と緩衝時
間T5、さらKは第1の閉鎖時間T1の一部と第2の閉
鎖時間TIとを含めた等価閉鎖時間πとで区分され、こ
のような閉鎖時間で表わせる閉鎖速度特性のパターン如
何によっては水圧管の圧力が急上昇し、重大事故を誘発
することKもなりかねない、従って従来では、例えば配
圧弁の機械的に定まる配油のボート位置と、油量を決定
するボート径の調整とで所望の閉鎖速度特性を得るよう
Kしているが、しかし乍らボートの位置は一度決定する
と変更できないものであり、%に変更するKは設計およ
び製作の変更を伴ない非常に面倒である。又、ボート径
を調整して油量な絞る場合は、油温によって油の粘性が
変りガイドベーンを操作する操作出力そのものが変化し
てしまちと云うように保守面で非常に煩雑化することで
ある。かかる問題点を解決する方法として、例えば特開
昭峠−へユ(くめ(特願昭55−50594号)で提案
されているようK、メジャーループの速度制御系にマイ
ナーループの閉鎖速度制御系なるものを設けて、この閉
鎖速度制御系にガイドベーンの開度検出信号を基にした
閉鎖速度指令な発生するパターン発生回路−を挿入し、
このパターン発生回路の可変抵抗器群を調整することに
よって、任意の閉鎖速度特性のものが得られるようにし
たものであるが、この方法は、得られる閉鎖速度特性そ
のものが油圧系の油に依存性がないようKし自由度の高
い装置を実現した点で画期的ではあるが、所定の閉鎖モ
ード時に於て開度制御系を開路して閉鎖速度制御系を新
たに挿入するものであるから、ガイドベーンの全開より
全閉えの切換え時さらKは全閉より全開えの切換え時の
過渡期に、制御系えのシ11vりが大きく・閉鎖出力が
大ぎく変動するとか動作上の安定性が悪い、さらに閉鎖
モード時は開度制御系を開路するものであるから、開度
そのものの制御性が悪くなると云うことである。
The predetermined operation output is -4 in order to obtain the operation speed characteristic.
By doing so, the desired closing speed characteristic as shown by the solid line can be obtained, and the pressure rise in the penstock can be suppressed within a predetermined range. What is important in this series of modes is the closing mode during load shedding. As shown in the figure, this closing mode includes an immobility time t and a first closing time T1. The second closing time T, the buffer time T5, and K are divided into an equivalent closing time π that includes a part of the first closing time T1 and the second closing time TI. Depending on the pattern of the closing speed characteristics expressed, the pressure in the penstock may rise rapidly and cause a serious accident. K is used to obtain the desired closing speed characteristics by adjusting the boat diameter, which determines the amount of K. It is very tedious and requires changes. In addition, when adjusting the boat diameter to reduce the amount of oil, the viscosity of the oil changes depending on the oil temperature, and the operating output for operating the guide vane itself changes, making maintenance extremely complicated. be. As a method to solve this problem, for example, as proposed in Japanese Patent Application Laid-Open No. 55-50594, K, a closed speed control system of a minor loop is added to a speed control system of a major loop. A pattern generating circuit that generates a closing speed command based on the opening detection signal of the guide vane is inserted into the closing speed control system.
By adjusting the variable resistor group of this pattern generation circuit, arbitrary closing speed characteristics can be obtained, but with this method, the closing speed characteristics themselves depend on the oil in the hydraulic system. Although it is revolutionary in that it has realized a device with a high degree of freedom without causing problems, it opens the opening control system in the predetermined closing mode and inserts a new closing speed control system. Therefore, when the guide vane is switched from fully open to fully closed, during the transition period when the guide vane is switched from fully closed to fully open, the control system has a large 11v error and the closing output fluctuates greatly, causing operational problems. The stability is poor, and since the opening control system is opened in the closed mode, the controllability of the opening itself becomes poor.

本発明はこの点に鑑みて発明されたものであって、特に
本願はマイナーループを開度制御系と閉鎖速度制御系と
で構成したことを一大特徴とし以下第2図の実施例に基
づど詳述する。
The present invention was invented in view of this point, and in particular, the main feature of the present application is that the minor loop is composed of an opening degree control system and a closing speed control system, and is based on the embodiment shown in FIG. 2 below. I will explain in detail.

同実施例で1は水車の速度指令を与える速度設定器で、
2はその構成は図示しないがパイロート発電機より送出
されるパルス信号群を直流レベルの電圧信号に変換し水
車の回転数を取出す速度検出回路で、島は所定の剛性復
原量と弾性復原量との各信号を与える為の剛性復原−弾
性復原量発生回路で、4は速度設定指令信号と剛性復原
量1弾性復原量とを比較する為の比較回路で、Sは速度
誤差電圧を一旦増幅する為の速度制御用増幅器で、6は
ガイドベーンの開方向の操作時間を設定する設定回路で
、この回路は操作時間設定器VRI 4抗R1〜R1−
高利得増幅器A重とで構成される。1はガイドベーンの
開度な検出する開度検出回路で、8は可変リミッタ−回
路を備えた開度制御用増幅器で、この増幅器は抵抗Rt
r inよりなる可変リンツタ−回路と、入力抵抗R4
〜1Ls−帰還抵抗−−ダイオードDI−DI−高利得
増幅器A2よりなる増幅回路とで構成される。9は所望
の閉鎖速度特性のパターンを発生するパターン発生回路
で、この回路は最低操作速度に到達した時点での開度な
設定する開度設定器vR2と、最低操作速度指令を与え
る最低操作速度設定器vit4と、最高操作速度指令を
与える最高操作速度設定器VB4と、 IvIec第1
図に示す等価閉鎖時間丁0での操作出力のゲインを調整
するゲイン調整用設定器VR1と、入力抵抗4〜−及び
R1亡配錦−帰還抵抗”l@* 114−ダイオード)
〜Ds−高利得増幅器〜〜へとでそれぞれ構成される。
In the same example, 1 is a speed setting device that gives a speed command for the water turbine;
2 is a speed detection circuit whose configuration is not shown, but it converts the pulse signal group sent from the pilot generator into a DC level voltage signal and obtains the rotation speed of the water turbine. 4 is a rigid restoring/elastic restoring amount generation circuit for giving each signal, 4 is a comparison circuit for comparing the speed setting command signal and the rigid resting amount 1 elastic restoring amount, and S is a comparator circuit for once amplifying the speed error voltage. 6 is a setting circuit for setting the operation time in the opening direction of the guide vane.
It is composed of a high gain amplifier A-layer. 1 is an opening detection circuit for detecting the opening of the guide vane, 8 is an opening control amplifier equipped with a variable limiter circuit, and this amplifier is connected to a resistor Rt.
A variable Lindster circuit consisting of r in and an input resistor R4
It is composed of ~1Ls, a feedback resistor, a diode DI, and an amplifier circuit consisting of a high gain amplifier A2. Reference numeral 9 denotes a pattern generation circuit that generates a pattern with desired closing speed characteristics, and this circuit includes an opening setting device vR2 that sets the opening when the minimum operating speed is reached, and a minimum operating speed that provides the minimum operating speed command. The setting device vit4, the maximum operation speed setting device VB4 that gives the maximum operation speed command, and the IvIec first
The gain adjustment setting device VR1 that adjusts the gain of the operation output at the equivalent closing time 0 shown in the figure, the input resistance 4 to - and the feedback resistor "l@* 114-diode)"
~Ds-high gain amplifier~.

 1Gは開度検出信号を微分して所望の閉鎖速度信号を
取出す為の閉鎖速度検出回路で、この回路は微分用コン
デンサC1−人力抵抗R1G−帰還抵抗II、−高利得
増幅器ムlとでそれぞれ構成される。■は閉鎖速度の誤
差電圧を一旦増幅する為の閉鎖速度制御用増幅器で、こ
の増幅器は入力抵抗R11”−Ru−帰還抵抗w44−
積分用コンデンサC1−高利得増幅器〜−積分回路の時
定数を調整する可変抵抗Vliとでそれぞれ構成される
1G is a closing speed detection circuit for differentiating the opening detection signal to obtain a desired closing speed signal, and this circuit consists of a differentiation capacitor C1, a human resistance R1G, a feedback resistor II, and a high gain amplifier M1, respectively configured. ■ is a closing speed control amplifier that temporarily amplifies the error voltage of the closing speed, and this amplifier consists of an input resistor R11''-Ru-feedback resistor W44-
Each of them is composed of an integrating capacitor C1, a high gain amplifier, and a variable resistor Vli that adjusts the time constant of the integrating circuit.

以上のよ5に構成される本実施例の動作を第3図〜鮪6
図に示す各特性図を参照し乍ら述べると、先ず水車を所
定の定格回転数まで起動−加速する場合は、第2図のパ
ターン発生回路!が開路状態にあって速度設定器1より
所定の速度指令信号が比較回路4に、又、所定のガイド
ベーン開方向の操作時間指令電圧が操作時間設定回路6
よりりZツタ−回路の抵抗RIB−R1・にそれぞれ与
えられる。
The operation of this embodiment configured as described above is shown in Figures 3 to 6.
Referring to each characteristic diagram shown in the figure, first, when starting and accelerating the water turbine to a predetermined rated rotation speed, the pattern generation circuit shown in Figure 2 is used. is in the open state, a predetermined speed command signal is sent from the speed setter 1 to the comparator circuit 4, and a predetermined operation time command voltage for the guide vane opening direction is sent to the operation time setting circuit 6.
The resistors RIB-R1 and RIB-R1 of the Z-Twin circuit are respectively applied.

このように所定の速度設定指令信号と操作時間指令信号
とが入力されると、起動時は水車の速度検出信号とガイ
ドベーンの開度検出信号とは共に零であるので、速度指
令電圧がそのままメジャーループの速度制御用増幅器1
→マイナールーズの開度制御用増幅器$の経路を介して
与えられ、高利得増幅器A3の出力電圧値がVt−Rt
sAlls (但しVtは操作時間設定回路4の指令電
圧を、”1g −R11は各抵抗の抵抗値をそれぞれ示
す)なる電圧に達するまで、高利得増幅器A!の出力が
vt −11,/′@l−なる最大のリミット電圧に制
限され、このリミット電圧を基に第2のマイナーループ
の閉鎖速度制御用増幅器11および図示しないサーボ系
を介し【ガイドベーンの開度が開かれて行き、水車は起
動され加速されて行く、水車が加速され始めると速度指
令電圧と速度検出信号とに速度誤差電圧を生じ始め、こ
の速度誤差電圧を増幅した開度指令電圧と開度検出回路
7より与えられる開度検出信号との開度誤差電圧を増幅
した高利得増幅器Alの出力は、上記リミット電圧値y
t* JgALt−より依然として大ぎいので、このI
J ミツト電圧に制限された電圧を以ってガイドベーン
の開度が急速に開かれて行ぎ水車は定格回転数まで急激
に加速されて行く、なお定格回転数に達するまでのガイ
ドベーンの操作時間は、操作時間設定器Vllで任意に
設定されることは申すまでもない、さて開度制御用増幅
器・の高利得増幅器4の・出力がリミット電圧値Vt−
R1sAx・より低くなると、マイナーループの閉鎖速
度制御用増幅器11に入力される速度指令電圧はV<ッ
ト電圧より解放され、この指令電圧がそのまま閉鎖速度
制御系および図示しないサーボ系に与えられて加速状態
は除々に緩ぬられて行って遂には定格回転数に達するこ
とになる。
When the predetermined speed setting command signal and operation time command signal are input in this way, the water turbine speed detection signal and guide vane opening detection signal are both zero at startup, so the speed command voltage remains unchanged. Measure loop speed control amplifier 1
→The output voltage value of the high gain amplifier A3 is given through the path of the minor loose opening control amplifier $, and the output voltage value is Vt-Rt.
sAlls (where Vt is the command voltage of the operation time setting circuit 4, and 1g -R11 is the resistance value of each resistor) until the output of the high gain amplifier A! reaches vt -11,/'@ Based on this limit voltage, the opening of the guide vane is opened via the amplifier 11 for controlling the closing speed of the second minor loop and the servo system (not shown), and the water turbine is When the water turbine is started and accelerated, a speed error voltage begins to be generated between the speed command voltage and the speed detection signal, and the opening command voltage obtained by amplifying this speed error voltage and the opening given from the opening detection circuit 7 are generated. The output of the high gain amplifier Al that amplified the opening error voltage with the opening detection signal is the limit voltage value y
Since t* is still larger than JgALt-, this I
The opening of the guide vanes is rapidly opened using a voltage limited to the J-mit voltage, and the water turbine is rapidly accelerated to the rated rotation speed.The guide vanes must be operated until the rated rotation speed is reached. Needless to say, the time can be arbitrarily set using the operation time setting device Vll. Now, the output of the high gain amplifier 4 of the opening control amplifier is set to the limit voltage value Vt-
When it becomes lower than R1sAx, the speed command voltage input to the minor loop closing speed control amplifier 11 is released from the V<cut voltage, and this command voltage is directly applied to the closing speed control system and the servo system (not shown). The acceleration state gradually slows down and finally reaches the rated rotational speed.

次に所定の負荷遮断時の閉鎖モードにつ−・て説明する
に、閉鎖モード時に於ては第2図に示す操作時間設定回
路6が開路状態にあって、速度設定器1′より所定の全
閉指令(開度零を示す)b−比較回路4K、又、最低操
作速度設定器VB4より第3図に示すような特性の指令
電圧が加算器の高利得増幅器〜に、さらに最高操作速度
設定器vILsより加算器の高利得増幅器14WC所定
のtEEがそれぞれ入力される。このように各指令電圧
が入力されると、負荷遮断を開始するまではガイドベー
ンの開度は略全開の位置にあって、水車は定格回転数で
回転しているので、全閉を意味する速度指令電圧と速度
検出信号の電圧との速度誤差tEEは起動時と&1全く
逆の最大の負電圧となっている。この速度誤差電圧がメ
ジャーループの速度制御用増幅器5および第1のマイナ
ールーズの開度制御用増幅器8の経路を通して入力され
、増幅した速度誤差電圧と開度検出回路7より入力され
る開度検出信号との開度誤差電圧を基にガイドベーンの
開度を1閉方向に閉じられて行く訳であるが、この開度
誤差電圧が閉鎖モード時はノくターン発生回路!より出
力されるパターン指令電圧に規制されるようKなる。
Next, to explain the closing mode at the time of predetermined load shedding, in the closing mode, the operation time setting circuit 6 shown in FIG. Fully closed command (indicating zero opening) b - From the comparator circuit 4K and the minimum operating speed setter VB4, a command voltage with characteristics as shown in Fig. 3 is sent to the high gain amplifier ~ of the adder, and further to the maximum operating speed. A predetermined tEE is input from the setter vILs to the high gain amplifier 14WC of the adder. When each command voltage is input in this way, the guide vane is at the fully open position until load shedding starts, and the water turbine is rotating at the rated speed, meaning it is fully closed. The speed error tEE between the speed command voltage and the voltage of the speed detection signal is the maximum negative voltage, which is &1 completely opposite to that at startup. This speed error voltage is input through the path of the major loop speed control amplifier 5 and the first minor loose opening control amplifier 8, and the amplified speed error voltage and opening detection circuit 7 input the opening degree detection circuit. The opening of the guide vane is closed in the 1-close direction based on the opening error voltage with the signal, but when this opening error voltage is in the closing mode, the circuit generates a turn! K so that it is regulated by the pattern command voltage output.

即ちパターン発生回路9は入力抵抗R0を介して入力さ
れる開度検出信号を基に、この開度検出信号と開度設定
器vR2より与えられる最低操作速度到達時の開度指令
電圧とを高利得増幅器Mで比較し、この開度誤差電圧を
増幅した信号と最低操作速度設定器VR,より入力され
る第3図に示す特性の指令電圧とを、高利得増幅器編の
加算器で加算するようにする。ここでガイドベールの最
低操作速度到達時の開度位置を設定する開度指令電圧と
開度検出信号との開度誤差電圧の特性は、第4図の特性
図で示すようにガイドベーンの開度θが除々に閉じられ
て行(のに応じて直線的に低下して行ぎ、設定した開度
位置θ■に到達した時点で零となる特性であって、この
特性の傾きはゲイン調整用設定器Via3でそのゲイ、
ンを調整するようにすれば、第4図の特性図に示すよう
に任意に変えることができる。かかる開度誤差電圧の操
作速度出力と第3図に示す最低操作速度出力とを高利得
増幅器^の加算器で加算するものであるから、開度位置
に対しての操作速度出力は第5図の実線で示すような特
性となって、この操作速度出力が開度制御用増幅器すの
リミット電圧を決定することになる。従つて閉鎖モード
に移行した時点より所定期間は、第4図の特性に示す操
作速度出力と第6図の特性に示す操作速度出力とを加算
した値が、最高操作速度設定器VR6で設定したリミッ
ト電圧値より大ぎいので、このリミット電圧に制限され
た第5図に示す最大操作速度出力V、が第2図の開度制
御用増幅器8の各抵抗R1?−R11K与えられ、これ
ら抵抗器R17−Rllで開度制御用増幅器のリミット
電圧vHが1=v。
That is, the pattern generation circuit 9 increases the opening detection signal and the opening command voltage given by the opening setting device vR2 when the minimum operation speed is reached, based on the opening detection signal inputted through the input resistor R0. A gain amplifier M compares the opening error voltage, and the signal obtained by amplifying this opening error voltage and the command voltage input from the minimum operating speed setter VR, which has the characteristics shown in Figure 3, are added together using an adder in the high gain amplifier section. Do it like this. Here, the characteristics of the opening error voltage between the opening command voltage, which sets the opening position when the guide veil reaches the minimum operating speed, and the opening detection signal are as shown in the characteristic diagram of Fig. 4. It is a characteristic that decreases linearly as the degree θ is gradually closed and becomes zero when it reaches the set opening position θ■, and the slope of this characteristic is determined by gain adjustment. That gay with the setting device Via3,
By adjusting the voltage, it is possible to arbitrarily change the characteristics as shown in the characteristic diagram of FIG. Since the operating speed output of the opening error voltage and the minimum operating speed output shown in FIG. 3 are added by the adder of the high gain amplifier, the operating speed output for the opening position is as shown in FIG. 5. The operating speed output determines the limit voltage of the opening control amplifier. Therefore, for a predetermined period from the time of transition to the closing mode, the value set by the maximum operating speed setting device VR6 is the sum of the operating speed output shown in the characteristics of FIG. 4 and the operating speed output shown in the characteristics of FIG. 6. Since it is larger than the limit voltage value, the maximum operating speed output V shown in FIG. 5, which is limited to this limit voltage, is the resistor R1 of the opening control amplifier 8 shown in FIG. -R11K is given, and the limit voltage vH of the opening control amplifier is 1=v with these resistors R17-Rll.

・R,、、A18なる式(但しvlは最大操作速度出力
電圧を”17*fllaは各抵抗値をそれぞれ示す)で
決定されて、速度誤差電圧を増幅した開度指令電圧と開
度検出信号との開度誤差電圧を増幅した閉鎖速度指令信
号が、上記IJ ミツト電圧V[Vc制限されて閉鎖速
度制御用増幅器11に入力され、この閉鎖速度指令信号
と閉鎖速度検出回路10より入力される速度検出信号と
の速度誤差電圧を基に、ガイドベーンの開度が閉方向に
操作されることに′なる。従って閉鎮モードに移行した
時点の閉鎖速度指令信号は最大出力であるので、ガイド
ベーンの開度は第6図の第1の閉鎖時間TIK示す如く
急激に閉鎖されて行く、このようにガイドベーンの開度
が急激に閉鎖されていってパターン発生回路9の加算器
の出力型E(これは第6図の出力電圧と第4図−の出力
11Eとを加算した電圧値を示す)が、設定器VR1で
設定した最大操作速度指令のリミット電圧以下罠なると
、当該加算器の加算出力がそのまま第2図の開度制御用
増幅器6に導びかれてIJ ミツト電圧が新たに設定さ
れることKなる。このリミット電圧は上記したよ5に加
算器の出力電圧を分圧したものであり、しかも加算器の
出力電圧は第5図の実線で示す特性の如く開度θの閉鎖
度合に応じて除々に低下して行くものであるから、開度
制御用増幅器すのりミツト電圧の低下に応じて閉鎖速度
指令tEEも次第に低下して行ぎ、この指令電圧通りに
ガイドペ−7の閉鎖速度も低下して行く。
・The opening command voltage and opening detection signal are determined by the formula R, ..., A18 (where vl is the maximum operating speed output voltage and 17*flla is each resistance value), and the speed error voltage is amplified. A closing speed command signal obtained by amplifying the opening error voltage with respect to IJ is inputted to the closing speed control amplifier 11 with the voltage V [Vc limited, and this closing speed command signal is inputted from the closing speed detection circuit 10. The opening degree of the guide vane is operated in the closing direction based on the speed error voltage with the speed detection signal.Therefore, the closing speed command signal at the time of transition to the closing mode is at the maximum output, so the guide vane The opening degree of the guide vane is rapidly closed as shown in the first closing time TIK in FIG. When E (this indicates the voltage value obtained by adding the output voltage in Fig. 6 and the output 11E in Fig. 4) falls below the limit voltage of the maximum operation speed command set with the setting device VR1, the adder The added output is directly led to the opening control amplifier 6 shown in Fig. 2, and the IJ limit voltage is newly set.This limit voltage is determined by dividing the output voltage of the adder into 5 as described above. Moreover, since the output voltage of the adder gradually decreases according to the degree of closure of the opening θ, as shown by the solid line in FIG. As the voltage decreases, the closing speed command tEE also gradually decreases, and the closing speed of the guide page 7 also decreases in accordance with this command voltage.

かかる状態を示したものが第6図の第2の閉鎖時間Ts
であって、この第6図より明らかなようにガイドベーン
の操作速度特性電E V4の直線的な低下に応じて、ガ
イドベージの開度は放物線のループを福いて閉鎖して行
く、このよう罠開度が放物線を描いて閉鎖して行く主た
る要因は、本発明に於てはパターン発生回路9の設定器
V−で開度位置に応じた操作速度出力電圧のゲインを第
4図の特性図で示す如く任意に可変できるので、このゲ
イ/を適宜な値に調整すれば所望の閉鎖速度特性のもの
が得られるようKなる。又、本発明によれば最高操作速
度を設定器V−で最低操作速度を他方の設定器vit、
でそれぞれ与えるようにしているので、これら設定器v
l14.v−を適宜な位置に調整すれば、第5図の破線
で示すように開度θに対する操作速度特性は任意のもの
が得られその自由度は非常に大ぎい、さて第6図の特性
図で示す第2の閉鎖時間T2での操作も次第に終了点に
近づぎ、ガイドベーンの開度θが最低操作速度に対応し
た位置まで閉鎖されると、開度検出信号と設定器VB!
で設定した開度指令電圧との偏差が零となって、加算器
の高利得増幅器A4に、は設定器vit、で設定した第
5図に示す特性の操作速度出力信号のみが入力されるこ
とKなる。この開度位置を示したものが第4図および第
5図の開度θ騙で、かかる開度位置θ閤の時点で出力さ
れる最低操作速度出力電圧vsを分圧したリミット電E
 Vs−RtyAn K対して、速度指令電圧と速度検
出信号との速度誤差電圧を増幅した高利得増幅器A3の
出力電圧の方が依然として大ぎいので、上記リミット電
圧値vs ’ RtyAsaK制限された電圧が、閉鎖
速度指令電圧として第2のマイナールーズの閉鎖速度制
御用増幅器11に入力され、その後はこの閉鎖速度指令
信号と10の速度検出回路より導びかれる閉鎖速度検出
信号との速度誤差電圧を以って、ガイドベーンの開度が
全閉の位置まで閉鎖されることKなる。この状態を示し
たものが第6図の緩衝閉鎖時間丁、であって、このT1
での%性をみれば明らかなようにガイドベーンの開度0
は除々に閉鎖されて行くことが理解できる。さてガイド
ベーンの開度0が全閉の位置近くまで閉鎖されて行き、
開度制御用増幅器−の高利得増幅器〜で増幅した速度誤
差電圧がv、 ” R17−−なるり1ツト電圧より低
くなると、リミット状態は解除され増幅器A、の速度誤
差電圧がそのまま閉鎖速度制御用増幅器111’C入力
され、その彼は出回路より導びかれる閉鎖速度検出信号
との偏差量を基に、この偏差量を零にすべく図示しない
サーボ系を介してガイドベーンの開度が閉鎖されて行ぎ
、全閉の位置まで自動的にコントロールされるものであ
る。
This state is shown in the second closing time Ts in FIG.
As is clear from Fig. 6, the opening degree of the guide vane gradually closes a parabolic loop as the operating speed characteristic electric current E V4 of the guide vane decreases linearly. The main reason why the trap opening closes in a parabolic manner is that in the present invention, the setting device V- of the pattern generation circuit 9 sets the gain of the operating speed output voltage according to the opening position with the characteristics shown in FIG. As shown in the figure, since it can be arbitrarily varied, the desired closing speed characteristic can be obtained by adjusting this gain to an appropriate value. Further, according to the present invention, the maximum operating speed is set by the setting device V-, and the minimum operating speed is set by the other setting device vit,
Since I am trying to give each of them, these setting devices v
l14. By adjusting v- to an appropriate position, you can obtain any operating speed characteristics with respect to the opening θ, as shown by the broken line in Figure 5, and the degree of freedom is extremely large.The characteristic diagram in Figure 6 The operation during the second closing time T2 shown by is gradually approaching the end point, and when the guide vane opening θ is closed to the position corresponding to the minimum operation speed, the opening detection signal and the setting device VB!
The deviation from the opening command voltage set in is zero, and only the operating speed output signal with the characteristics shown in Fig. 5 set by the setting device VIT is input to the high gain amplifier A4 of the adder. K becomes. This opening position is indicated by the opening θ shown in Figs. 4 and 5, and the limit voltage E which is the divided minimum operating speed output voltage vs output at the opening position θ is shown in Figures 4 and 5.
Since the output voltage of the high gain amplifier A3 which amplified the speed error voltage between the speed command voltage and the speed detection signal is still larger than Vs-RtyAn K, the above-mentioned limit voltage value vs ' RtyAsaK limited voltage is It is input to the second minor loose closing speed control amplifier 11 as the closing speed command voltage, and then the speed error voltage between this closing speed command signal and the closing speed detection signal derived from the speed detection circuit 10 is used. As a result, the opening degree of the guide vane is closed to the fully closed position. This state is shown in the buffer closing time T1 in FIG.
As is clear from the percentage ratio at
It is understandable that they will gradually close down. Now, the guide vane is closed from its opening degree of 0 to close to the fully closed position.
When the speed error voltage amplified by the high gain amplifier of the opening control amplifier becomes lower than the voltage V, R17, the limit state is released and the speed error voltage of amplifier A directly controls the closing speed. Based on the amount of deviation from the closing speed detection signal derived from the output circuit, the opening degree of the guide vane is adjusted via a servo system (not shown) in order to reduce this amount of deviation to zero. It is automatically controlled to the fully closed position.

以上のように本発明に於ては、メジャーループの速度制
御系の内側に第1のマイナールーズの開度制御系と第2
のマイナーループの閉鎖速度制御系とをそれぞれ設けて
、負荷遮断時の閉鎖モードでのガイドベーンを操作する
ものであるからして、以下に示すように種々の効果を奏
すものである。
As described above, in the present invention, the first minor loose opening control system and the second minor loop opening control system are installed inside the major loop speed control system.
Since a minor loop closing speed control system is provided to operate the guide vane in the closing mode during load shedding, various effects are achieved as shown below.

■ 閉鎖モード時さらには開き方向の加速制御時を問わ
ずマイナーループの開度制御系を挿入したままで、ガイ
ドベーンの開度な操作するものであるから、特に閉鎖モ
ードでの制御性がよ(1つ非常に安定性のある制御装置
を提供することができる。
■ Since the opening control system of the minor loop remains inserted regardless of the closing mode or even during acceleration control in the opening direction, the opening of the guide vane is controlled, so controllability is particularly improved in the closing mode. (One can provide a very stable control device.

■ ガイドベーンの閉鎖速度特性はパターン発生回路で
任意のものが得られるので、その自由度は非常に大ぎく
、又、操作が非常に容易な制御装置を提供することがで
きる。
(2) Since any closing speed characteristic of the guide vane can be obtained by the pattern generation circuit, the degree of freedom is extremely large, and a control device that is extremely easy to operate can be provided.

■ 理想的な閉鎖速度特性のものが容易に得られるので
、閉鎖モード時にみられる水圧管の圧力の異常上昇を完
全に解決することができ、非常に安定性の高い装置を実
現することかできる。
■ Since ideal closing speed characteristics can be easily obtained, it is possible to completely solve the abnormal increase in pressure in the penstock that occurs during the closing mode, and it is possible to realize an extremely stable device. .

■ 加速モード時と閉鎖モード時との切換えは、開度制
御系は挿入したままで行なうので、切換え時にみしれる
制御系えのショックは何らな(特に動作面で優れた装置
を提供することができる。
■ Switching between the acceleration mode and the closing mode is performed with the opening control system inserted, so there is no shock to the control system during switching (especially by providing a device that is superior in terms of operation). I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水車の加速モードと閉鎖モードとに於けるガイ
ドベーンの操作速度出力と開度との対応関係を示す一般
的な特性図、第2図は本発明による一実施例を示すガバ
ナ制御装置の具体的な回路構成図、第3図は本発明に係
る最低操作速度設定力WFf:、どの対応関係を示す特
性図、第5図は本発明に係るパターン発生回路の開度と
出力電圧との対応関係を示す特性図、第6図は本発明に
よる閉鎖モードでの動作特性を示す操作速度出力とり度
との対応関係図。 1は速度設定器、2は速度検出回路、1は剛性復原量−
弾性復原量発生回路、6は操作時間設定回路、7は開度
検出回路、・は開度制御用増幅器。 9はパターン発生回路、 10は閉鎖速度検出回路。 11は閉鎖速度制御用増幅器。 第1図 第3図 第5図 □謂丸eT″ 第4図 第6図 −◆吋mt
Fig. 1 is a general characteristic diagram showing the correspondence between the operating speed output and the opening degree of the guide vane in the acceleration mode and closing mode of the water turbine, and Fig. 2 is a governor control diagram showing one embodiment of the present invention. A specific circuit configuration diagram of the device, FIG. 3 is a characteristic diagram showing the correspondence relationship between the minimum operating speed setting force WFf according to the present invention, and FIG. 5 is a diagram showing the opening degree and output voltage of the pattern generation circuit according to the present invention. FIG. 6 is a characteristic diagram showing the correspondence relationship between the operation speed and the output level, and FIG. 1 is the speed setting device, 2 is the speed detection circuit, 1 is the stiffness restoration amount -
Elastic restoring amount generation circuit, 6 is an operation time setting circuit, 7 is an opening detection circuit, and . is an opening control amplifier. 9 is a pattern generation circuit, and 10 is a closing speed detection circuit. 11 is an amplifier for controlling the closing speed. Figure 1 Figure 3 Figure 5 □Yomaru eT'' Figure 4 Figure 6 - ◆ mt

Claims (1)

【特許請求の範囲】[Claims] 速度設定指令信号と逆極性で入力される速度検出信号、
剛性復原量1弾性復原量との速度誤差電圧を基に水車の
速度を制御するメジャーループの速度制御系と、入力さ
れる開度検出信号を基に実開度とガイドベーン操作速度
出力との対応関係をパターン化し、パターン化した操作
速度出力で開度制御用増幅器の最大出力電圧を制限する
パターン発生回路と、速度制御系より入力される開度設
定指令信号と開度検出信号との開度誤差電圧を基にガイ
ドベーンの開度を操作し、且つ閉鎖モード時に上記パタ
ーン発生回路より出力される操作速度出力で、開度誤差
電圧を増幅した開方向−閉方向の操作速度指令信号の最
大値が制限される第1のマイナーループの開度制御系と
、ガイドベーンの操作速度を検出した操作速度検出信号
と開度制御系より入力される開方向−閉方向の操作速度
指令信号との速度誤差電圧を基K、ガイドベーンの操作
速度を制御する第2のマイナーループの操作速度制御系
とで構成したことを特徴とするガバナの制御装置。
Speed detection signal input with opposite polarity to speed setting command signal,
A major loop speed control system that controls the speed of the water turbine based on the speed error voltage between the rigid restoring amount and the elastic resting amount, and the actual opening and guide vane operation speed output based on the input opening detection signal. A pattern generation circuit that patterns the correspondence relationship and limits the maximum output voltage of the opening control amplifier using the patterned operation speed output, and an opening between the opening setting command signal and the opening detection signal input from the speed control system. The opening degree of the guide vane is controlled based on the degree error voltage, and the operation speed command signal in the opening direction-closing direction is generated by amplifying the degree of opening error voltage using the operation speed output output from the pattern generation circuit in the closing mode. The opening control system of the first minor loop whose maximum value is limited, the operation speed detection signal that detects the operation speed of the guide vane, and the operation speed command signal in the opening direction-closing direction input from the opening control system. 1. A governor control device comprising: a speed error voltage based on K; and a second minor loop operating speed control system for controlling the operating speed of a guide vane.
JP56165464A 1981-10-16 1981-10-16 Controller for governor Granted JPS5866122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165464A JPS5866122A (en) 1981-10-16 1981-10-16 Controller for governor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165464A JPS5866122A (en) 1981-10-16 1981-10-16 Controller for governor

Publications (2)

Publication Number Publication Date
JPS5866122A true JPS5866122A (en) 1983-04-20
JPS642787B2 JPS642787B2 (en) 1989-01-18

Family

ID=15812908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165464A Granted JPS5866122A (en) 1981-10-16 1981-10-16 Controller for governor

Country Status (1)

Country Link
JP (1) JPS5866122A (en)

Also Published As

Publication number Publication date
JPS642787B2 (en) 1989-01-18

Similar Documents

Publication Publication Date Title
US6681573B2 (en) Methods and systems for variable geometry turbocharger control
CA1112741A (en) Automatic control system with gain switching
JPS6412200B2 (en)
JPH01116250A (en) Actuator controller by directly driven motor to bleed-valve
JPS5866122A (en) Controller for governor
KR900003799B1 (en) Flow rate control system
JPS58197522A (en) Controlling method of hydraulic turbine generator
CA1149910A (en) Fuel systems for gas turbine engines
JP2865670B2 (en) Variable speed pumping equipment
JPS636751B2 (en)
JPS6149514B2 (en)
JPS59231105A (en) Electric governor
JPS6122807B2 (en)
JPS6093527A (en) Controller of motor-driven servo system governor
JPH01240775A (en) Speed control device for hydraulic turbine generator
SU1067581A1 (en) Method of floating control of speed of d.c.motor
JPS62291403A (en) Speed governing device for turbine
JPH0245661A (en) Governor controller for water wheel
JPH07324603A (en) Controller for water feed turbine
JPS6176705A (en) Turbine starting operation controller
JPS59221716A (en) Limiter of speed governor for water turbine
JPS5823233A (en) Accelerating/decelerating performance compensating circuit for gas turbine
JPH04314902A (en) Governor follow-up device for back pressure turbine
JPS61266083A (en) Servo circuit
JPH0562199U (en) Output adjustment device