JPS6149115B2 - - Google Patents
Info
- Publication number
- JPS6149115B2 JPS6149115B2 JP9443082A JP9443082A JPS6149115B2 JP S6149115 B2 JPS6149115 B2 JP S6149115B2 JP 9443082 A JP9443082 A JP 9443082A JP 9443082 A JP9443082 A JP 9443082A JP S6149115 B2 JPS6149115 B2 JP S6149115B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- weight
- inorganic fine
- porous
- porous ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 61
- 239000000843 powder Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 11
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 10
- 239000008394 flocculating agent Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000006260 foam Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 239000004604 Blowing Agent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 210000003429 pore cell Anatomy 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- 235000011128 aluminium sulphate Nutrition 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229920006319 cationized starch Polymers 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
本発明は、高多孔質セラミツク体の表裏両面ま
たはいずれか一方の面に低多孔性または非多孔質
セラミツク薄層を付設してなる積層軽量セラミツ
ク体の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a laminated lightweight ceramic body in which a thin layer of low porosity or non-porous ceramic is attached to either or both the front and back surfaces of a highly porous ceramic body. It is.
更に詳しくは特公昭52−5328号公報に記載され
ているように原料となる無機微粉末をパルプ等の
可燃性物質の水性分散液に懸濁させ、しかる後に
該無機微粉末を両性界面活性剤や凝集剤などを用
いて該可燃性物質表面に吸着凝集させ、通常の抄
紙法によりシート状または板状成形物を得る方法
があるが、本発明はこれらのセラミツク用の未焼
成成形物(以下単に生シートという)の無機微粉
末とパルプ、オガクズ等の可燃性物質との比率を
異ならせることにより、多孔質セラミツク用生シ
ートと低多孔質または非多孔質セラミツク用生シ
ートとを別個に作成し、これを積層一体化したの
ち焼成することにより、多孔質セラミツクの少な
くとも片面に密度の高い多孔質でないセラミツク
体を接合一体化して表面特性等の優れた多孔質セ
ラミツク体を得んとするものである。 More specifically, as described in Japanese Patent Publication No. 52-5328, an inorganic fine powder as a raw material is suspended in an aqueous dispersion of a flammable substance such as pulp, and then the inorganic fine powder is mixed with an amphoteric surfactant. There is a method of adsorbing and aggregating the combustible material on the surface using a coagulant or a flocculant, and obtaining a sheet-like or plate-like molded product by a normal papermaking method. A raw sheet for porous ceramics and a raw sheet for low porosity or non-porous ceramics are created separately by varying the ratio of inorganic fine powder (simply referred to as raw sheet) and combustible substances such as pulp and sawdust. This is then laminated and integrated, and then fired, thereby bonding and integrating a high-density non-porous ceramic body on at least one side of the porous ceramic to obtain a porous ceramic body with excellent surface properties etc. It is.
従来、この種の高多孔質軽量セラミツク発泡体
を得る方法として混練り法と称して無機微粉末と
共に発泡剤を多量に混練り成形して焼成する方法
が公知であるが、この方法では高発泡になると表
裏の表皮層が凹凸のある平滑性が失われた表面に
なつてしまう欠点がある。 Conventionally, a method known as a kneading method to obtain this type of highly porous lightweight ceramic foam is to knead a large amount of a blowing agent together with an inorganic fine powder, mold, and then sinter it. This has the disadvantage that the front and back skin layers become uneven and lack smoothness.
また、パルプ、おがくず等の夾雑物と樹脂バイ
ンダーを無機微粉体と共に混練り成形して焼成物
を得る方法も公知であるが、この方法では無機物
の分布状態の不均一さから焼成中の変形が生ずる
ことが避けられない。従つて、これらの未焼成成
形物の積層体の焼成中の変形から層間でのハクリ
などが生ずる。また、これらの方法では大面積の
成形物が得ることが困難である。更に、以上の欠
点を解決するために予め高発泡の多孔質セラミツ
ク板を予め成形焼成し、この表面の平滑性を解決
するために予め低多孔性または非多孔質セラミツ
ク薄板を成形焼成したものを無機質系接着剤など
を使用して積層する方法もあるが、接着剤の耐熱
性におのずとも問題があり、使用範囲が限定され
てしまう。 It is also known to obtain a fired product by kneading impurities such as pulp and sawdust and a resin binder together with inorganic fine powder, but this method causes deformation during firing due to the uneven distribution of the inorganic material. It is inevitable that it will occur. Therefore, deformation during firing of the laminate of these unfired molded products causes peeling between the layers. Furthermore, with these methods, it is difficult to obtain a molded product with a large area. Furthermore, in order to solve the above-mentioned drawbacks, a highly foamed porous ceramic plate is preformed and fired, and in order to solve this surface smoothness, a low porosity or non-porous ceramic thin plate is molded and fired in advance. Although there is a method of laminating using an inorganic adhesive or the like, there is a problem with the heat resistance of the adhesive, which limits its range of use.
本発明はこれらの問題点を解決した積層軽量セ
ラミツク発泡体を得ることができる製造法であ
る。 The present invention is a manufacturing method capable of obtaining a laminated lightweight ceramic foam that solves these problems.
すなわち、本発明は、焼結性の無機微粉末30〜
90重量%とパルプ、オガクズ等の可燃性物質70〜
10重量%を含有する多孔質セラミツク用生シート
を抄紙技術を用いて作成する工程と、焼結性の無
機微粉末90〜98重量%とパルプ等の可燃性物質10
〜2重量%を含有する低多孔質または非多孔質セ
ラミツク用生シートを抄紙技術を用いて作成する
工程と、前記多孔質セラミツク用生シートの表裏
両面もしくはいずれか片面に前記の低多孔質また
は非多孔質セラミツク用生シートを両者が湿潤状
態もしくは半乾燥状態で積層一体化する工程と、
乾燥させた後、酸化雰囲気中でパルプ、オガクズ
等の可燃性物質を燃焼飛散させ、無機微粉末を焼
結させる焼成を行なう工程、を具備することを特
徴とする積層セラミツク体の製造方法である。 That is, the present invention provides sinterable inorganic fine powder 30~
90% by weight and 70% to combustible materials such as pulp and sawdust
The process of creating a porous ceramic raw sheet containing 10% by weight using papermaking technology, 90 to 98% by weight of sinterable inorganic fine powder and 10% of combustible material such as pulp.
-2% by weight of a low-porous or non-porous ceramic raw sheet using papermaking technology; a step of laminating and integrating raw sheets for non-porous ceramics in a wet or semi-dry state;
A method for manufacturing a laminated ceramic body, which comprises the steps of drying, burning and scattering combustible substances such as pulp and sawdust in an oxidizing atmosphere, and performing firing to sinter the inorganic fine powder. .
以下さらに詳細に説明すると、本発明における
セラミツク用生シートは、多孔質セラミツクとす
るものについては、可燃性物質の量を70〜10重量
%と多く含ませるものであり、この範囲で用いら
れる可燃性物質としては、セルロースパルプ、合
成樹脂パルプ等繊維材のほか、オガクズ、もみが
ら、糸屑、活性炭、フレーク状パルプ等の薄片
状、粒状または粉末状のほとんど全ての可燃性物
質を用いることができる。多孔質のセラミツクと
するには可燃性物質は繊維材を使うよりも薄片
状、粒状または粉末状のものを使用するのが、空
孔率が高まり効果的である。 To explain in more detail below, the raw sheet for ceramics in the present invention contains as much as 70 to 10% by weight of combustible materials in the case of porous ceramics. In addition to fibrous materials such as cellulose pulp and synthetic resin pulp, almost all combustible materials in flaky, granular or powder form such as sawdust, rice husk, thread waste, activated carbon, and flaky pulp can be used as the flammable material. can. In order to make porous ceramics, it is more effective to use flaky, granular, or powdered combustible materials than to use fibrous materials because the porosity increases.
一方、低多孔質または非多孔質のセラミツクと
するための生シートは、可燃性物質の量を10〜2
重量%と少なくするものである。この範囲で用い
られる可燃性物質としては、セルロースパルプ、
合成樹脂パルプ等の繊維材が多量の焼結性無機微
粉末を大量に保持できる担体として比較的好まし
いと言える。可燃性物質が2重量%以下では担体
不足によりシートとしての強度が弱く、取扱いが
困難となるので2重量%を可燃性物質の下限とす
る。可燃性物質は、未焼成のセラミツク用生シー
トにあつてはシート状成形物の構造を保持するた
めの担体であり、それは可燃性物質の形状が繊維
状、粉末状、粒状、薄片状であつても変わりな
い。 On the other hand, raw sheets for making low-porous or non-porous ceramics contain flammable substances of 10 to 2
The amount should be reduced to % by weight. Combustible materials used in this range include cellulose pulp,
It can be said that a fibrous material such as synthetic resin pulp is relatively preferable as a carrier capable of holding a large amount of sinterable inorganic fine powder. If the combustible material is less than 2% by weight, the strength of the sheet will be weak due to lack of carrier, making it difficult to handle, so 2% by weight is the lower limit for the combustible material. In the case of unfired ceramic green sheets, the combustible substance is a carrier for maintaining the structure of the sheet-like molded product, and it is important that the flammable substance is in the form of fibers, powder, granules, or flakes. It doesn't change.
このようなセラミツク用生シートの作成手段と
しては抄紙技術を用いるものである。すなわち、
具体的には、得ようとする生シートの焼結性無機
粉末と可燃性物質の比率を全く同じ比率かあるい
は焼結性無機粉末を多い目にした固形分材料を水
中に懸濁させた水性懸濁液に対して、無機凝集剤
や高分子凝集剤を少量添加することにより、無機
微粉末をパルプ等の可燃性物質の表面に吸着凝集
せしめ、通常の湿式抄紙法−例えばろ過装置や抄
紙装置を用いて、無機微粉末を所定の比率で含有
するシート状または板状の成形物を得るものであ
る。 Paper-making technology is used as a means for producing such raw ceramic sheets. That is,
Specifically, the ratio of the sinterable inorganic powder and combustible material of the raw sheet to be obtained is exactly the same, or the solid material containing a large amount of sinterable inorganic powder is suspended in water. By adding a small amount of an inorganic flocculant or a polymer flocculant to the suspension, the inorganic fine powder is adsorbed and flocculated on the surface of combustible materials such as pulp, and is used in normal wet papermaking methods such as filtration equipment and papermaking. The apparatus is used to obtain a sheet-like or plate-like molded product containing inorganic fine powder in a predetermined ratio.
本発明に使用される無機微粉末は、撹拌された
水中で充分に分散できる程度に小さいもので、通
常は粒度200メツシユ以下の粉末を選ぶのが適当
である。 The inorganic fine powder used in the present invention is small enough to be sufficiently dispersed in stirred water, and it is usually appropriate to select a powder with a particle size of 200 mesh or less.
種類としては水に不溶性で、金属、金属酸化物
およびその自身焼結するケイ酸塩、ホウ酸塩、リ
ン酸塩もしくは他の焼結材料と共存して焼結体を
構成しうる金属化合物であれば何でもよく、加え
て天然に産する窯業用の無機物であつても使用で
きることはもちろんである。本発明では可燃性物
質は焼成の初期段階で焼失するものであるから、
その後の焼結のための温度条件や雰囲気は任意に
決定でき、したがつてほとんど全ての窯業原料が
利用できる。更に必要に応じて、上記の無機微粉
末とは別にセラミツク多孔体の補強効果を目的と
したセラミツクフアイバー例えばシリカーアルミ
ナ系セラミツクフアイバー、アルミナ系セラミツ
クフアイバー等を可燃性物質と併用することもで
きる。 A type of metal compound that is insoluble in water and can coexist with metals, metal oxides, silicates, borates, phosphates, or other sintering materials to form sintered bodies. It goes without saying that any material can be used, and even naturally occurring inorganic materials for ceramics can be used. In the present invention, since the combustible material is burnt out in the initial stage of firing,
The temperature conditions and atmosphere for the subsequent sintering can be determined arbitrarily, so almost all ceramic raw materials can be used. Furthermore, if necessary, in addition to the above-mentioned inorganic fine powder, ceramic fibers such as silica-alumina ceramic fibers and alumina-based ceramic fibers for the purpose of reinforcing the ceramic porous body may be used in combination with a combustible substance.
可燃性物質が焼失してできる多孔セル及びその
分布等に何んら影響するものではなく、該セラミ
ツクフアイバーが焼成物中に繊維同志が絡み合つ
た状態で存在する。この繊維同志の絡み合いの効
果によつてセラミツク多孔体を補強できる。 This does not affect the porous cells formed by burning off the combustible material and their distribution, and the ceramic fibers exist in the fired product in a state in which the fibers are entangled with each other. The effect of this intertwining of fibers can reinforce the ceramic porous body.
ここで使用できるセラミツクフアイバーはセラ
ミツク多孔体素地の無機微粉末の焼結温度では融
解せず繊維の形状を保持するもので、繊維長30〜
250mmのものが選ばれる。 The ceramic fiber that can be used here does not melt at the sintering temperature of the inorganic fine powder of the porous ceramic base and retains its fiber shape, and the fiber length is 30~
250mm is selected.
セラミツクフアイバーの混入量は無機微粉末に
対して0〜20重量%が望ましい。 The amount of ceramic fiber mixed is preferably 0 to 20% by weight based on the inorganic fine powder.
次に、凝集剤について述べると、凝集剤は大き
く分けて無機凝集剤と高分子凝集剤があげられ
る。無機凝集剤としては硫酸アルミニウム(硫酸
バン土)、アルミン酸ソーダ、塩化アルミニウ
ム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄等があ
り、高分子凝集剤としては、ポリアクリルアミド
系の高分子凝集剤が代表的であるが、その他にポ
リアミン、カチオン化デン粉、ポリエチレンイミ
ン、ポリアクリル酸ソーダ等の高分子凝集剤を用
いることもできる。 Next, when talking about flocculants, flocculants can be broadly divided into inorganic flocculants and polymer flocculants. Inorganic flocculants include aluminum sulfate (aluminium sulfate), sodium aluminate, aluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, etc., and polymer flocculants include polyacrylamide-based polymers. A typical example is a molecular flocculant, but other polymer flocculants such as polyamine, cationized starch, polyethyleneimine, and sodium polyacrylate can also be used.
高分子凝集剤は例えば無機微粉末に対して0.01
〜0.2重量%程度の無視できる小量の添加で吸着
凝集の効果が上がるのが特徴といえ、高分子凝集
剤の単独使用で充分である場合が多い。しかしな
がら、ポリアクリルアミド系の高分子凝集剤に加
えて硫酸バン土の如き無機凝集剤を同時併用する
と吸着凝集の歩留まりが一段と向上することがあ
る。無機凝集剤は、高分子凝集剤に比べると大量
に添加されがちで、無機微粉体に対して0.5〜3
重量%にもなることがある。しかし、無機凝集剤
は、焼成中に金属酸化物に変化し、多孔質セラミ
ツクを構成する成分となるから、特に問題はない
ものである。 For example, the polymer flocculant is 0.01 for inorganic fine powder.
It can be said that the adsorption and flocculation effect is enhanced by addition of a negligible small amount of about 0.2% by weight, and the use of a polymer flocculant alone is often sufficient. However, if an inorganic flocculant such as alba sulfate is used simultaneously in addition to a polyacrylamide-based polymer flocculant, the yield of adsorption and flocculation may be further improved. Inorganic flocculants tend to be added in large quantities compared to polymer flocculants, with a concentration of 0.5 to 3
It can even be % by weight. However, since the inorganic flocculant changes into a metal oxide during firing and becomes a component constituting the porous ceramic, there is no particular problem.
なお、付言すれば、本発明にあつては焼成中あ
るいは焼成後において多孔質セラミツク体と非多
孔質セラミツク体との界面での焼結が重要であ
る。多孔質セラミツク体に用いる無機微粉末と非
多孔質セラミツク体に用いる無機微粉末が同組成
であれば、両者間の焼結状態に問題を生じない
が、両者の無機微粉末の組成が異なる場合には、
両者の焼結後の熱膨張係数を一致させるべく、ア
ルカリ金属、アルカリ土類金属等を含んだ一般的
融剤などを添加することにより両者の熱膨張率を
調整することがある。 Additionally, in the present invention, it is important to sinter at the interface between the porous ceramic body and the non-porous ceramic body during or after firing. If the inorganic fine powder used for the porous ceramic body and the inorganic fine powder used for the non-porous ceramic body have the same composition, there will be no problem with the sintering state between them, but if the compositions of the two inorganic fine powders are different. for,
In order to match the coefficients of thermal expansion of both after sintering, the coefficients of thermal expansion of both may be adjusted by adding a general flux containing an alkali metal, an alkaline earth metal, etc.
さらに、説明が前後したが、焼結性の無機微粉
末と可燃性物質を固形分とする水性懸濁液は、固
形分を充分に分散して均一にする必要があり、前
記の固形分に対して重量比で7〜20倍程度の水と
ともに懸濁させるのが妥当である。 Furthermore, although the explanation has been mixed, for an aqueous suspension whose solid content is sinterable inorganic fine powder and a combustible substance, it is necessary to sufficiently disperse the solid content and make it uniform. On the other hand, it is appropriate to suspend it with water in an amount of about 7 to 20 times by weight.
以下、さらに本発明の積層セラミツク体の製造
方法を説明する。上述したような抄紙技術により
作成された多孔質セラミツク用生シートと低多孔
質もしくは非多孔質セラミツク用生シートとは、
これらの生シートが充分乾燥していない湿潤状態
あるいは半乾燥状態において積層される。かかる
半乾燥状態もしくは湿潤状態とは、生シートの含
水率が例えば20〜40重量%程度の時であり、この
時成形適性や結合性に富むものである。積層の際
には必要に応じて20Kg/cm2以上の圧力でもつて加
圧するのが実際的である。 The method for manufacturing the laminated ceramic body of the present invention will be further explained below. Porous ceramic raw sheets and low-porous or non-porous ceramic raw sheets created using the papermaking technology described above are:
These green sheets are laminated in a wet or semi-dry state that is not sufficiently dry. Such a semi-dry state or a wet state is when the moisture content of the green sheet is, for example, about 20 to 40% by weight, and at this time, it has excellent moldability and bonding properties. During lamination, it is practical to apply pressure of 20 kg/cm 2 or more as necessary.
積層後は、乾燥して、焼成に付される。焼成は
酸化雰囲気中で徐々に昇温するのが良く、このよ
うにすれば無機微粉末が焼結する温度以下の温度
例えば600〜800℃程度の温度にて可燃性物質が燃
焼して飛散焼失する。しかるのちは通常の焼成方
法にて最高温度に一定時間保つて無機微粉体を焼
結させるものであり、冷却して焼成工程を終える
のが一般的である。 After lamination, the layers are dried and fired. It is best to gradually raise the temperature in an oxidizing atmosphere during firing, and in this way, the combustible material will burn and scatter at a temperature below the sintering temperature of the inorganic fine powder, for example, about 600 to 800 degrees Celsius. do. Thereafter, the inorganic fine powder is sintered by maintaining it at the highest temperature for a certain period of time using a normal firing method, and the firing process is generally completed by cooling.
本発明は以上のようなものであり、本発明によ
れば水性懸濁液よりシート状または板状成形物を
得るのに通常の抄紙法を用いるのでセラミツク用
生シートに必要とされるパルプ等の可燃性物質と
無機微粉末の均一な分散分布状態が抄紙段階にお
いてすでに実現されており、また無機微粉末の存
在状態も抄紙されて強制的に層状状態になつたパ
ルプ等の規則だつた並び方に沿つて並んでおり、
従つてシート状または板状成形物を焼成しても変
形等を生ずる恐れがないために、これらのシート
状または板状成形物を積層一体成形した後、焼成
しても変形、ハクリなどの恐れがない。さらに、
従来では困難とされた大面積の多孔質セラミツク
板が、本発明の製造方法によつて作成できるもの
である。 The present invention is as described above.According to the present invention, a normal papermaking method is used to obtain a sheet-like or plate-like molded product from an aqueous suspension. A uniformly dispersed distribution state of combustible substances and inorganic fine powder has already been achieved at the paper-making stage, and the state of existence of inorganic fine powder is also the regular arrangement of pulp, etc., which is forced into a layered state during paper-making. are lined up along
Therefore, there is no risk of deformation, etc. even when sheet-like or plate-like molded products are fired, so even if these sheet-like or plate-like molded products are laminated and integrally molded and then fired, there is no risk of deformation, peeling, etc. There is no. moreover,
A large-area porous ceramic plate, which has been difficult to produce in the past, can be produced by the manufacturing method of the present invention.
しかも本発明によれば、積層により多孔質セラ
ミツク体の補強を兼ねた緊質で平滑な表面層を有
するものであるから、得られた製品の表面への絵
付、施釉等の装飾が可能であり、単なる断熱材や
吸音板のほかに壁装材のような建造物関係の装飾
板としての用途にも適用できる。その際にも、本
発明による積層セラミツク板は、軽量大面積であ
るので取付け施工がしやすく、また積層に無機接
着剤などを用いていないため耐熱性に優れるなど
本発明により得られる積層セラミツク板は、その
製造方法の特長を生かしたものとなる。 Moreover, according to the present invention, since the layered product has a tight and smooth surface layer that also serves as reinforcement for the porous ceramic body, it is possible to decorate the surface of the obtained product by painting, glazing, etc. In addition to being a simple heat-insulating material and sound-absorbing board, it can also be used as a decorative board for buildings such as wall coverings. In this case, the laminated ceramic board of the present invention is lightweight and has a large area, so it is easy to install, and since no inorganic adhesive is used for lamination, it has excellent heat resistance. takes advantage of the features of its manufacturing method.
そのほか、可燃性物質を抄紙技術にて無機微粉
末と一体にした本発明では、無機、有機の発泡剤
を練り込み法により添加した生シートに比べて焼
成過程での変形が少なく、寸法安定性が大きいと
いう特徴がある。 In addition, the present invention, in which combustible substances are integrated with inorganic fine powder using paper-making technology, has less deformation during the firing process and improved dimensional stability compared to green sheets in which inorganic and organic blowing agents are added by kneading. It is characterized by a large
以下に本発明の実施例を述べるが、もちろんこ
れによつて限定されるものではない。 Examples of the present invention will be described below, but of course the present invention is not limited thereto.
積層軽量セラミツク発泡体の実施例
実施例 1
粘土60部、長石33部、合成硅灰石7部からなる
組成の微粉末95重量%と繊維長2〜3mmのパルプ
5重量%を分散させた懸濁水溶液となし、無機微
粉末に対して硫酸バン土1.5重量%とポリアクリ
ルアシド系高分子凝集剤0.02重量%を添加し、パ
ルプ繊維表面に該微粉末を吸着凝集させ、通常の
湿式抄紙法により厚さ1.8mmの非多孔質セラミツ
ク用生シート(A)を得た。Examples of Laminated Lightweight Ceramic Foam Example 1 A suspension containing 95% by weight of fine powder having a composition of 60 parts of clay, 33 parts of feldspar, and 7 parts of synthetic wollastonite and 5% by weight of pulp having a fiber length of 2 to 3 mm dispersed therein. A turbid water solution is prepared, 1.5% by weight of sodium sulfate and 0.02% by weight of a polyacrylic acid polymer flocculant are added to the inorganic fine powder, and the fine powder is adsorbed and flocculated on the surface of the pulp fibers, followed by a normal wet papermaking method. A non-porous ceramic green sheet (A) with a thickness of 1.8 mm was obtained.
一方、上記と同一組成無機微粉末50重量%と20
〜40メツシユに分級したオガクズ50重量%を分散
させた懸濁水溶液となし、無機微粉末に対して硫
酸バン土重量%とポリアクリルアミド系高分子凝
集剤0.06重量%を添加し、オガ屑粉末表面に該微
粉末を吸着凝集させ、通常の湿式抄紙法により厚
さ20mmの板状の多孔質セラミツク用生シート(B)を
得た。 On the other hand, the same composition as above, 50% by weight of inorganic fine powder and 20%
A suspended aqueous solution was prepared by dispersing 50% by weight of sawdust classified into ~40 meshes, and 0.06% by weight of sulfuric acid clay and 0.06% by weight of a polyacrylamide polymer flocculant were added to the inorganic fine powder. The fine powder was adsorbed and agglomerated to obtain a porous ceramic raw sheet (B) in the form of a plate having a thickness of 20 mm by a normal wet paper making method.
次いで、上記で得られた含水率30重量%の非多
孔質セラミツク用生シート(A)の上に含水率25重量
%の多孔質セラミツク用生シート(B)を載置し、更
にその上に上記含水率30重量%の非多孔質セラミ
ツク用生シート(A)を載置し、三層となし、圧力25
Kg/cm2で加圧し、未焼成積層体を得た。 Next, a porous ceramic green sheet (B) with a moisture content of 25% by weight was placed on the non-porous ceramic green sheet (A) with a moisture content of 30% by weight obtained above, and then The above raw non-porous ceramic sheet (A) with a water content of 30% by weight was placed to form three layers, and the pressure was 25%.
Pressure was applied at Kg/cm 2 to obtain an unfired laminate.
この積層体を乾燥した後、酸化雰囲気中で8時
間を要して徐々に昇温して可燃性物質パルプおよ
びオガクズを焼失させ、しかるのち1250℃で1時
間保持焼成し、三層からなる表面の平滑なしかも
中間層の空孔セルが均一に分布した嵩比重0.65の
積層軽量セラミツク発泡体を得た。 After drying this laminate, the temperature was gradually increased over 8 hours in an oxidizing atmosphere to burn out the combustible pulp and sawdust, and then the laminate was held and fired at 1250°C for 1 hour to form a three-layer surface. A laminated lightweight ceramic foam with a bulk specific gravity of 0.65 was obtained, which was smooth and had uniformly distributed pore cells in the intermediate layer.
実施例 2
実施例1と同一の組成を有する焼結性無機微粉
末67重量%と10メツシユ篩通過のフレーク状パル
プ33重量%を分散させた懸濁水溶液となし、無機
微粉末に対し、硫酸バン土2重量%とポリアクリ
ルアシド系高分子凝集剤0.06重量%を添加し、フ
レーク状パルプ表面に該微粉末を吸着凝集させ通
常の湿式抄紙法により厚さ10mmの板状生シート(C)
を得た。Example 2 A suspended aqueous solution was prepared by dispersing 67% by weight of sinterable inorganic fine powder having the same composition as in Example 1 and 33% by weight of flaky pulp that had passed through a 10-mesh sieve. Adding 2% by weight of clay and 0.06% by weight of a polyacrylic acid polymer flocculant, the fine powder is adsorbed and aggregated on the surface of the flaky pulp, and a 10 mm thick plate-shaped green sheet (C) is produced using a normal wet papermaking method.
I got it.
次いで、実施例1で得られた含水率20%の非多
孔質セラミツク用生シート(A)の上に上記含水率25
%の板状生シート(C)を載置、更にその上に実施例
1で得た含水率25%の多孔質セラミツク用生シー
ト(B)を載置し、以下同様に本実施例2で得られた
含水率25%の板状生シート(C)、実施例1で得られ
た含水率20%の非多孔質セラミツク用生シート(A)
を順次載置して5層となし、圧力25Kg/cm2の加圧
により未焼成積層体を得た。 Next, on the non-porous ceramic raw sheet (A) with a moisture content of 20% obtained in Example 1, the above moisture content of 25% was applied.
% of the raw sheet for porous ceramics (B) obtained in Example 1 was placed on top of it, and the raw sheet for porous ceramics (B) with a moisture content of 25% obtained in Example 1 was placed on top of it. The obtained plate-shaped green sheet with a moisture content of 25% (C), the non-porous ceramic green sheet with a moisture content of 20% obtained in Example 1 (A)
were placed one after another to form five layers, and a green laminate was obtained by applying a pressure of 25 kg/cm 2 .
この積層体を乾燥した後、酸化雰囲気中で10時
間を要して昇温させて可燃性物質を焼失させ、最
高温度1280℃で1時間保持、焼成し5層からなる
表面の平滑な然も多孔質セラミツクの空孔セルの
均一に分布した。嵩比重0.92の積層軽量セラミツ
ク発泡体を得た。 After drying this laminate, it is heated in an oxidizing atmosphere for 10 hours to burn out the flammable substances, held at a maximum temperature of 1280℃ for 1 hour, and fired to create a smooth surface consisting of 5 layers. Uniform distribution of pore cells in porous ceramic. A laminated lightweight ceramic foam with a bulk specific gravity of 0.92 was obtained.
Claims (1)
プ、オガクズ等の可燃性物質70〜10重量%を含
有する多孔質セラミツク用生シートを抄紙技術
を用いて作成する工程 b 焼結性の無機微粉末90〜98重量%とパルプ等
の可燃性物質10〜2重量%を含有する低多孔質
または非多孔質セラミツク用生シートを抄紙技
術を用いて作成する工程 c 前記多孔質セラミツク用生シートの表裏両面
もしくはいずれか片面に前記の低多孔質または
非多孔質セラミツク用生シートを、両者が湿潤
状態もしくは半乾燥状態で積層一体化する工程 d 乾燥させた後、酸化雰囲気中でパルプ、オガ
クズ等の可燃性物質を燃焼飛散させ、無機微粉
末を焼結させる焼成を行なう工程、上記a〜d
の工程を具備することを特徴とする積層セラミ
ツク体の製造方法。[Claims] 1 a. A raw sheet for porous ceramic containing 30 to 90% by weight of sinterable inorganic fine powder and 70 to 10% by weight of flammable substances such as pulp and sawdust is produced using papermaking technology. Step b: Creating a low-porous or non-porous ceramic raw sheet containing 90-98% by weight of sinterable inorganic fine powder and 10-2% by weight of combustible material such as pulp using papermaking technology. c. A step of laminating and integrating the low-porous or non-porous ceramic green sheet on both the front and back surfaces or either one side of the porous ceramic green sheet while both are in a wet or semi-dry state. (d) After drying. , a step of burning and scattering combustible substances such as pulp and sawdust in an oxidizing atmosphere, and performing a firing process to sinter the inorganic fine powder;
A method for manufacturing a laminated ceramic body, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9443082A JPS58213684A (en) | 1982-06-02 | 1982-06-02 | Manufacture of laminate ceramic body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9443082A JPS58213684A (en) | 1982-06-02 | 1982-06-02 | Manufacture of laminate ceramic body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58213684A JPS58213684A (en) | 1983-12-12 |
JPS6149115B2 true JPS6149115B2 (en) | 1986-10-28 |
Family
ID=14110013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9443082A Granted JPS58213684A (en) | 1982-06-02 | 1982-06-02 | Manufacture of laminate ceramic body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58213684A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0314576Y2 (en) * | 1986-06-02 | 1991-04-02 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU640722B2 (en) * | 1990-11-05 | 1993-09-02 | Asahi Tec Corporation | Method of producing a porous metal and a metal product using the same such as a catalyst carrier |
-
1982
- 1982-06-02 JP JP9443082A patent/JPS58213684A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0314576Y2 (en) * | 1986-06-02 | 1991-04-02 |
Also Published As
Publication number | Publication date |
---|---|
JPS58213684A (en) | 1983-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2787909C (en) | Filter used for filtering molten metal and preparation method thereof | |
TW200904612A (en) | Acoustical gypsum board panel and method of making it | |
EP0073854B1 (en) | Fibrous materials | |
IE48622B1 (en) | Compositions of vermiculite lamellae and solid particulate materials and process for the production of vermiculite articles | |
DE3463139D1 (en) | A process for the manufacture of autoclaved fibre-reinforced shaped articles | |
JPS6255600B2 (en) | ||
CN105251375A (en) | Preparation method of multilayered gradient ceramic membrane | |
JP7297218B2 (en) | High noise reduction factor, low density acoustic tiles | |
JPS6149115B2 (en) | ||
JPS5988378A (en) | Lightweight refractories and manufacture | |
JPS6186473A (en) | Manufacture of inorganic formed article | |
JPH0283254A (en) | Honeycomb structure having thermal shock resistance and production thereof | |
JP4939144B2 (en) | Mineral fiberboard and manufacturing method thereof | |
JPH0465372A (en) | Production of high strength porous ceramics | |
JPH04240168A (en) | Production of sound-absorbing lightweight ceramic plate | |
JP2008001574A (en) | Inorganic fiber laminated body and method of manufacturing the same | |
JPS6210959B2 (en) | ||
JPS60126450A (en) | Production of reinforced tile | |
JPS6150914B2 (en) | ||
JPH01224281A (en) | Porous refractory solid form | |
JPS59165614A (en) | Method of molding raw pottery board | |
US3348996A (en) | Acoustical panel having openings and ceramic surfacing material bonded to the panel | |
JPH0459271B2 (en) | ||
JPS5939765A (en) | Manufacture of porous alumina sintered body | |
JP2614809B2 (en) | Manufacturing method of heat-resistant low specific gravity fibrous molding |