JPS614874A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS614874A
JPS614874A JP59125192A JP12519284A JPS614874A JP S614874 A JPS614874 A JP S614874A JP 59125192 A JP59125192 A JP 59125192A JP 12519284 A JP12519284 A JP 12519284A JP S614874 A JPS614874 A JP S614874A
Authority
JP
Japan
Prior art keywords
compressor
temperature
cryopanel
working gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59125192A
Other languages
Japanese (ja)
Inventor
Norimoto Matsuda
松田 紀元
Norihide Saho
典英 佐保
Minoru Imamura
今村 実
Nobuyuki Hosomi
細見 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59125192A priority Critical patent/JPS614874A/en
Priority to KR1019850002010A priority patent/KR880002347B1/en
Publication of JPS614874A publication Critical patent/JPS614874A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the uselessness of the operation power of a compressor by controlling the amount of working gas discharged from the compressor according to the temperature of a cryopanel or the pressure of the exhausted gas by controlling the output frequency of a power frequency conversion means according to the above-described temperature and the pressure. CONSTITUTION:A cryopump is equipped with a compressor 10 which inhales working gas having a normal temperature and low pressure, expansion means 20 which adiabatically expands the working gas having normal temperature and high pressure which is discharged from the compressor 10 and generates coldness, and cryopanels 30 and 31 which are installed at the top edge parts of the first-stage and the second-stage expansion machines 21 and 22 of a coldness accumulator type expansion machine 20 and condenses the gas on the periphery. Further, the power-frequency conversion means for a motor for driving the compressor 10, for example, an inverter 40, temperature sensor 50 for detecting the temperature of the cryopanel 31, and a controller 60 which receives the signal of the temperature sensor 50 and controls the output frequency of the inverter 40 according to the temperature of the cryopanel 31 are provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、クライオポンプに関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a cryopump.

〔発明の背景〕[Background of the invention]

従来、クライオポンプとしては、常温、低圧のヘリウム
ガスを吸込んで常温、高圧のヘリウムガスを吐出する圧
縮機と、この圧縮機より吐出された常温、高圧のヘリウ
ムガスを断熱膨張させて寒冷を発生させる膨張機と、こ
の膨張機のコールドステーシロンに取り付けられて周辺
のガスを凝縮又は凝固して捕集するクライオパネルとで
構成されたものが知られている(米国特許第42857
10号明細書、特公昭58−25873号公報)。
Conventionally, cryopumps consist of a compressor that sucks in helium gas at room temperature and low pressure and discharges helium gas at room temperature and high pressure, and generates cold by adiabatically expanding the helium gas at room temperature and high pressure discharged from this compressor. A cryopanel that is attached to the cold station of the expander and collects the surrounding gas by condensing or solidifying it is known (US Pat. No. 42,857).
10 specification, Japanese Patent Publication No. 58-25873).

しかし、このようなりライオポンプでは、クライオパネ
ルの温度や被排気体の圧力に応じて圧縮機の吐出作動ガ
ス量を制御しようという認識を有していない。
However, such a cryopump does not recognize that the amount of working gas discharged from the compressor should be controlled in accordance with the temperature of the cryopanel and the pressure of the object to be pumped.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、クライオパネルの温度や被排気体の圧
力に応じて圧縮機の吐出作動ガス量を制御することで、
圧縮機の運転動力の無駄をな曵すことができるクライオ
ポンプを提供することにある。
The purpose of the present invention is to control the amount of working gas discharged from the compressor according to the temperature of the cryopanel and the pressure of the exhaust object.
An object of the present invention is to provide a cryopump capable of eliminating waste of operating power of a compressor.

〔発明の概要〕[Summary of the invention]

本発明は、常温、低圧の作動ガスを吸込んで常温、高圧
の作動ガスを吐出する圧縮機を駆動するモータの電源周
波数変換手段と、圧縮機より吐出された作動ガスを断熱
膨張させて寒冷を発生させる膨張手段に取り付けられた
クライオパネルの温度若し畷は被排気体内の圧力を検知
する検知手段と、該手段の信号を受けてクライオパネル
の温度若し炙は被排気体内の圧力に応じて電源周波数変
換手段の出力周波数を制御する制御装置とを備えたこと
を特徴とするもので、クライオパネルの温度若しくは被
排気体内の圧力に応じて電源周波数変換手段の出力周波
数を制御することで、圧縮機の吐出作動ガス量をクライ
オパネルの温度若しくは被排気体内の圧力に応じて制御
するようにしたものである。
The present invention provides power supply frequency conversion means for a motor that drives a compressor that sucks working gas at room temperature and low pressure and discharges working gas at room temperature and high pressure, and adiabatically expands the working gas discharged from the compressor to cool it. The temperature or temperature of the cryopanel attached to the generating expansion means is determined by a detection means for detecting the pressure inside the exhaust object, and in response to a signal from the means, the temperature or roasting of the cryopanel is adjusted according to the pressure inside the exhaust object. and a control device for controlling the output frequency of the power supply frequency conversion means according to the temperature of the cryopanel or the pressure inside the exhaust body. , the amount of working gas discharged from the compressor is controlled according to the temperature of the cryopanel or the pressure inside the body to be exhausted.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図、$2図により説明する。 An embodiment of the present invention will be explained with reference to FIG. 1 and FIG.

第1図で、クライオポンプは、常温、低圧の作動ガスを
吸込んで常温、高圧の作動ガスを吐出する圧縮機10と
、圧縮45!10より吐出された常温、高圧の作動ガス
を断熱膨張させて寒冷を発生させる膨張手段、例えば、
2段の蓄冷器式膨張機(以下、膨張機と略)20と、膨
張′M!、20の第1段膨張戦21と第2段膨張機nと
の先端部にそれぞれ取り付けられ周辺のガスを凝縮又は
凝固捕集するクライオパネル(9)、 31とで構成さ
れ、圧縮機10を駆動するモータの電源周波数変換手段
、例えば、インバータ菊と、この場合クライオパネル3
1に取り付けられ −クライオパネル31の温度を検知
する検知手段である温度センサー関と、温度センサー沁
の信号を受けてクライオパネル31の温度に応じてイン
バータ菊の出力周波数を制御する制御装置ωとを備えて
いる。膨張a2oの第1段膨張機こと第2段膨張機4お
よびクライオパネル(9)、311 温度センサー(資
)は、クライオパネル阻に対応する側が開口した容器7
0に収納されている。クライオパネル31と容器70の
関口との間に位置するようにバッフル(資)がクライオ
パネル園に取り付けられている。圧縮機10とインバー
タ切とは接続され、インバータ旬と制御装置ωとは接続
され、制御装!旬と温度センサと −(資)とは接続されている。圧縮機10の吐出ロク膨
張機加の作動ガス入口とは、作動ガスの導入ライン匍で
連結され、膨張a20の作動ガス出口と圧縮機10の吸
入口とは、作動ガスの戻りライン91で連結されている
。容器70をその開口側が被排気体、例えば、真空チキ
ンバ100に連通して具役することで、クライオポンプ
は、真空チキンパー00を排気可能に設け、られる。
In Figure 1, the cryopump includes a compressor 10 that sucks in working gas at room temperature and low pressure and discharges working gas at room temperature and high pressure, and adiabatically expands the working gas at room temperature and high pressure discharged from the compressor 45!10. expansion means for generating refrigeration, e.g.
A two-stage regenerator type expander (hereinafter referred to as the expander) 20 and an expansion 'M! , 20, the first stage expansion tank 21 and the second stage expander n are each attached to the tip of the cryopanel (9), 31 which condenses or solidifies and collects the surrounding gas, and the compressor 10 is Power frequency conversion means for the driving motor, for example, an inverter and a cryopanel 3 in this case.
- A temperature sensor which is a detection means for detecting the temperature of the cryopanel 31, and a control device ω which receives a signal from the temperature sensor and controls the output frequency of the inverter according to the temperature of the cryopanel 31. It is equipped with The first stage expander 4 of the expansion a2o and the cryopanel (9), 311 temperature sensor (material) are installed in a container 7 which is open on the side corresponding to the cryopanel block.
It is stored in 0. A baffle is installed in the cryopanel garden so as to be located between the cryopanel 31 and the entrance of the container 70. The compressor 10 and the inverter switch are connected, the inverter switch and the control device ω are connected, and the control device! The temperature sensor and - (capital) are connected. The working gas inlet of the compressor 10 and the expansion machine are connected by a working gas introduction line, and the working gas outlet of the expansion a20 and the suction port of the compressor 10 are connected by a working gas return line 91. has been done. The cryopump is provided to be able to evacuate the vacuum chicken par 00 by connecting the container 70 with its opening side communicating with an object to be evacuated, for example, the vacuum chicken par 100.

まず、常温の状態から圧縮機lOおよび膨張機(9)を
運転開始する。ここで、真空チャンバ100内の粗引き
作業は終了している状態にあるものとする。
First, the compressor lO and the expander (9) are started operating from a state of room temperature. Here, it is assumed that the roughing work in the vacuum chamber 100 has been completed.

運転開始とともに第2段膨張機nの先端部の温度は低下
し始め、クライオポンプの大きさによってばらつきがあ
るものの1−2時間でほぼ一定温度になる。一方、膨張
機加側の要求する作動ガス流量Qは第2図の破線で示す
ように運転開始直後から第2段膨張機2の先端部の温度
Tの降下に呼応して増加し、運転時間11〜2時間後に
一定温度になると同時に一定になる。
When the operation starts, the temperature at the tip of the second stage expander n begins to decrease, and although it varies depending on the size of the cryopump, it becomes almost constant in 1 to 2 hours. On the other hand, the working gas flow rate Q required by the expansion side of the expander increases immediately after the start of operation in response to the drop in temperature T at the tip of the second stage expander 2, as shown by the broken line in Fig. 2, and increases over the operating time. After 11 to 2 hours, the temperature becomes constant and becomes constant at the same time.

そして運転開始直後から最終時に至る要求作動ガス流量
の増加割合は2〜3倍程度である。
The rate of increase in the required working gas flow rate from immediately after the start of operation to the end of operation is about 2 to 3 times.

すなわち、定常運転状態における要求作動ガス流量を1
00チとすれば運転開始直後は30〜50チ程度でよい
ことになる。
In other words, the required working gas flow rate in the steady state of operation is 1.
If it is set at 00 inches, it will be sufficient to use about 30 to 50 inches immediately after the start of operation.

そして、この増加割合はそれぞれの膨張機形状等によっ
て決まって鳴るものであるから、同一機種についてはあ
らかじめ、一度実験しておけば第2段膨張機ρの温度レ
ベルと必要作動ガス流量の関係が求められる。
This rate of increase is determined by the shape of each expander, so if you experiment with the same model once, you will be able to determine the relationship between the temperature level of the second stage expander ρ and the required working gas flow rate. Desired.

また、圧縮機lOの吐出ガス流量はモータの回転数に比
例するので汎用の交流モータを使用する場合は、そのま
ま電源周波数に比例する。
Further, since the discharge gas flow rate of the compressor IO is proportional to the rotation speed of the motor, when a general-purpose AC motor is used, it is directly proportional to the power frequency.

したがって上記から第2段膨張機乙の温度レベルと電源
周波数の関係が求まる。そこで、第2段膨張機ηの先端
部の温度を温度センサー団で検出して、制御装置ωに伝
達し、制御装置160はあらかじめ設定された第2段膨
張1122の先端部の温度と圧縮機用電源周波数の関係
から適正な電源周波数を選定してインバータ切に指令す
る。
Therefore, from the above, the relationship between the temperature level of the second stage expander B and the power frequency can be determined. Therefore, the temperature at the tip of the second stage expansion machine η is detected by a group of temperature sensors and transmitted to the control device ω, and the control device 160 uses the preset temperature at the tip of the second stage expansion machine 1122 and the compressor. Select an appropriate power frequency based on the power supply frequency and command the inverter to turn off.

本実施例によれば、圧縮機の回転数を膨張機先端部の温
度レベルに応じて変化させることができるので圧縮機は
膨張機が要求するだけ作動ガスを供給することになり、
圧縮機運転動力の無駄をなくすることができるという効
果がある。
According to this embodiment, the rotation speed of the compressor can be changed according to the temperature level at the tip of the expander, so the compressor supplies as much working gas as required by the expander.
This has the effect of eliminating waste of compressor operating power.

次に本発明の他の実施例を第3図に示す。例えば真空チ
ャンバ100内の圧力をクライオポンプの到達圧力より
もかなり高いところで保持したい場合、真空チャンバ1
00内圧力を圧力センサー51で検出して制御装置ωに
伝達し、制御装置160においてあらかじめセットした
圧力と検出した真空チャンバ100内圧力との差に応じ
てインバータ切の出力周波数を変えることで対応するも
のである。
Next, another embodiment of the present invention is shown in FIG. For example, when it is desired to maintain the pressure within the vacuum chamber 100 at a level considerably higher than the ultimate pressure of the cryopump, the vacuum chamber 1
00 internal pressure is detected by the pressure sensor 51 and transmitted to the control device ω, and the control device 160 changes the output frequency of the inverter off according to the difference between the preset pressure and the detected internal pressure of the vacuum chamber 100. It is something to do.

この場合の圧力センサ51は真空チャンバ100に取り
付けたが、簡単にするにはクライオポンプのハウジング
70に取り付けても同様な作用をなしうる。
In this case, the pressure sensor 51 was attached to the vacuum chamber 100, but for simplicity, it may be attached to the housing 70 of the cryopump and the same effect can be achieved.

すなわち、セット圧力よりも検出圧力の方が低い場合は
周波数を下げ、逆の場合は周波数を上げることになる。
That is, if the detected pressure is lower than the set pressure, the frequency will be lowered, and if the opposite is the case, the frequency will be increased.

第3図で、その他第1図と同−装置等は同一符号で示し
説明を省略する。
In FIG. 3, other devices and the like that are the same as those in FIG. 1 are designated by the same reference numerals and their explanations will be omitted.

本実施例によれば、上記した一実施例での効果と同様の
効果を得ることができ、更に、圧縮機をON、OFFす
る場合に比して真空チャンバ内の圧力変動が小さ畷でき
るうえ、絞り弁方式よりも省エネルギになるという効果
がある。
According to this embodiment, it is possible to obtain the same effect as that of the above-mentioned embodiment, and furthermore, the pressure fluctuation in the vacuum chamber can be made smaller compared to the case where the compressor is turned on and off. This has the effect of being more energy efficient than the throttle valve method.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、常温、低圧の作動ガス
を吸込んで常温、高圧の作動ガスを吐出する圧縮機を駆
動するモータの電源周波数変換手段と、圧縮機より吐出
された作動ガスを断熱膨張させて寒冷を発生させる膨張
手段に取り付けられたクライオパネルの温度若し鳴は被
排気体内の圧力を検知する検知手段と、該手段の信号を
受けてクライオパネルの温度若しくは被排気体内の圧力
に応じて電源周波数変換手段の出力周波数を制御する制
御装置とを備えたことで、クライオパネルの温度若し鳴
は被排気体内の圧力に応じて圧縮機の吐出作動ガス量を
制御できるので、圧縮機の運転動力の無駄をなくすこと
ができるという効果がある。
As explained above, the present invention provides power supply frequency conversion means for a motor that drives a compressor that sucks working gas at room temperature and low pressure and discharges working gas at room temperature and high pressure, and a means for converting the working gas discharged from the compressor. The temperature or sound of the cryopanel attached to the expansion means that adiabatically expands to generate cold is detected by a detection means that detects the pressure inside the exhaust body and a detection means that detects the pressure inside the exhaust body. By being equipped with a control device that controls the output frequency of the power supply frequency conversion means according to the pressure, the temperature or noise of the cryopanel can be reduced by controlling the discharge working gas amount of the compressor according to the pressure inside the exhaust object. This has the effect of eliminating waste of operating power for the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるクライオポンプの一実施例を示
す構成図、第2図は、第1図の膨張機の要求作動ガス流
量、第2段膨張機の先端部の温度と運転時間との関係を
示す模式図、第3図は、本発明によるクライオポンプの
他の実施例を示す構成図である。 10・・・・・・圧縮機、加・・・・・・膨張機、30
.31・・・・・・クライオパネル、初・・・・・・イ
ンバータ、関・・・・・・温度センサー、51・・・・
・・圧力センサー、ω・・・・・・制御装置、100・
・・・・・真空チャンバ 代理人 弁理士  高 橋 明 夫 (才20
FIG. 1 is a configuration diagram showing an embodiment of the cryopump according to the present invention, and FIG. 2 shows the required working gas flow rate of the expander in FIG. 1, the temperature at the tip of the second stage expander, and the operating time. FIG. 3 is a schematic diagram showing the relationship between the above and FIG. 3, which is a configuration diagram showing another embodiment of the cryopump according to the present invention. 10... Compressor, expansion machine, 30
.. 31...Cryopanel, First...Inverter, Seki...Temperature sensor, 51...
...Pressure sensor, ω...Control device, 100.
...Vacuum chamber agent Patent attorney Akio Takahashi (20 years old)

Claims (1)

【特許請求の範囲】[Claims] 1、常温、低圧の作動ガスを吸込んで常温、高圧の作動
ガスを吐出する圧縮機と、該圧縮機より吐出された常温
、高圧の作動ガスを断熱膨張させて寒冷を発生させる膨
張手段と、該膨張手段に取り付けられて周辺のガスを捕
集するクライオパネルとでなり被排気体を排気可能に設
けられるクライオポンプにおいて、前記圧縮機を駆動す
るモータの電源周波数変換手段と、前記クライオパネル
の温度若しくは被排気体内の圧力を検知する検知手段と
、該検知手段の信号を受けてクライオパネルの温度若し
くは被排気体内の圧力に応じて電源周波数変換手段の出
力周波数を制御する制御装置とを備えたことを特徴とす
るクライオポンプ。
1. A compressor that sucks working gas at room temperature and low pressure and discharges working gas at room temperature and high pressure; and an expansion means that adiabatically expands the working gas at room temperature and high pressure discharged from the compressor to generate cold; A cryopump is provided with a cryopanel attached to the expansion means to collect surrounding gas and capable of evacuating an object to be exhausted, the cryopump comprising: a power frequency converting means for a motor that drives the compressor; and a cryopanel for collecting surrounding gas. The apparatus includes a detection means for detecting temperature or pressure inside the exhaust object, and a control device that receives a signal from the detection means and controls the output frequency of the power supply frequency conversion means according to the temperature of the cryopanel or the pressure inside the exhaust object. A cryopump characterized by:
JP59125192A 1984-03-28 1984-06-20 Cryopump Pending JPS614874A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59125192A JPS614874A (en) 1984-06-20 1984-06-20 Cryopump
KR1019850002010A KR880002347B1 (en) 1984-03-28 1985-03-27 Cryopump and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125192A JPS614874A (en) 1984-06-20 1984-06-20 Cryopump

Publications (1)

Publication Number Publication Date
JPS614874A true JPS614874A (en) 1986-01-10

Family

ID=14904191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125192A Pending JPS614874A (en) 1984-03-28 1984-06-20 Cryopump

Country Status (1)

Country Link
JP (1) JPS614874A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386708A (en) * 1993-09-02 1995-02-07 Ebara Technologies Incorporated Cryogenic vacuum pump with expander speed control
US6259539B1 (en) 1990-06-11 2001-07-10 Minolta Co., Ltd. Facsimile device capable of properly recording halftone image and text image

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918284A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Exhaust device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918284A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Exhaust device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259539B1 (en) 1990-06-11 2001-07-10 Minolta Co., Ltd. Facsimile device capable of properly recording halftone image and text image
US5386708A (en) * 1993-09-02 1995-02-07 Ebara Technologies Incorporated Cryogenic vacuum pump with expander speed control

Similar Documents

Publication Publication Date Title
KR950033087A (en) Cryopump
US4667477A (en) Cryopump and method of operating same
JPS622241Y2 (en)
JPH03110359A (en) Air cycle air conditioner
JPH1082391A (en) Control device of two-stage screw compressor
JPS614874A (en) Cryopump
JPH06193579A (en) Variable capacity compressor
JPH03237276A (en) Cryopump operation control method
JPH1151502A (en) Turbo refrigerating machine
JPH03237275A (en) Cryopump operation control method
JP3297356B2 (en) Air conditioner
JP2003097500A (en) Operation method of oil diffusing pump and control device of oil diffusing pump and evacuation device and its control method
JP2507452B2 (en) Cooling device and operating method thereof
JP2994862B2 (en) Cryogenic refrigeration equipment
JPS6316178A (en) Cryopump
JPS5815793A (en) No-load operation control device of compressor
JP2651247B2 (en) Gas laser oscillator
JP2000283037A (en) Compressor
JP2646546B2 (en) Engine device with generator
JPH1183344A (en) Automatic vacuum controller for condenser
JPS6475846A (en) Method of controlling air conditioner
JPH0127017Y2 (en)
JPS63268990A (en) Control device for airconditioner
JPH01130077A (en) Capacity controller of compressor
JPH05223375A (en) Air cycle air conditioner