JPS6148720A - Measuring instrument for physical quantity in geothermal well - Google Patents

Measuring instrument for physical quantity in geothermal well

Info

Publication number
JPS6148720A
JPS6148720A JP17134084A JP17134084A JPS6148720A JP S6148720 A JPS6148720 A JP S6148720A JP 17134084 A JP17134084 A JP 17134084A JP 17134084 A JP17134084 A JP 17134084A JP S6148720 A JPS6148720 A JP S6148720A
Authority
JP
Japan
Prior art keywords
well
casing pipe
measurement
ground
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17134084A
Other languages
Japanese (ja)
Inventor
Masayuki Kondo
正幸 近藤
Makoto Yagi
誠 八木
Nobuhiro Fujiwara
藤原 伸公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDEMITSU CHINETSU KAIHATSU KK
Original Assignee
IDEMITSU CHINETSU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDEMITSU CHINETSU KAIHATSU KK filed Critical IDEMITSU CHINETSU KAIHATSU KK
Priority to JP17134084A priority Critical patent/JPS6148720A/en
Publication of JPS6148720A publication Critical patent/JPS6148720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure physical quantities if the chute continuously even during the digging of the well by providing a measurement cable which detects the temperature, pressure, etc., in the well between casing pipes, and connecting one terminal of the measurement cable to a measuring mechanism installed on the ground. CONSTITUTION:The measuring device has the casing pipes 3 and 6 and the measurement cable 6 which detects the temperature, pressure, etc., in the well is provided between the casing pipes. Further, one terminal of this measurement cable 6 is connected to the measuring mechanism 11 installed on the ground. When the pressure, temperature, etc., in the well are measured, a signal from a sensor is sent to the measuring mechanism 11 connected to one terminal of the cable 6 to perform signal control, display, and recording. This device eliminates the need to droop the measuring device in the chute every time a measurement is taken, and measures physical quantities in the well continuously even during the digging of the well.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、地熱発電において地熱流体を地下から噴出さ
せて地上に導く地熱井の内部の温度・圧力等の物理量を
δIII定する地熱井内の物理量測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a geothermal well in which physical quantities such as temperature and pressure inside a geothermal well are determined by δIII, in which geothermal fluid is ejected from underground and guided to the surface in geothermal power generation. It relates to a physical quantity measuring device.

[背景技術とその問題点] 一般に、地熱発電は、地下にあるマグマにより地下水等
が加熱されて貯溜している貯溜層から、蒸気及び熱水に
若干の塩分を含んだ流体を地熱井を通して噴出させ、そ
の流体を地上の抗日装置を経て匁水分敲装置へ送り、こ
こで熱水・塩分を除去し、残りの高温蒸気をタービンに
導き、このタービンで駆動する発電機により電力を発生
させるものである。
[Background technology and its problems] Generally, geothermal power generation involves ejecting fluid containing steam and hot water with some salt through a geothermal well from a reservoir where underground water is heated by magma and stored. The fluid is sent to the momme water pumping device via an anti-Japanese equipment on the ground, where hot water and salt are removed, and the remaining high-temperature steam is guided to a turbine, which generates electricity by a generator driven by the turbine. It is.

従って、地熱発電を行なうためには地熱井を掘削して前
記貯溜層から地熱流体を噴出させる必要があるが、貯溜
層からの地熱流体の取出しにあたり、地下の地熱流体の
物理的・化学的性質の調査、流体中に含まれる硫化水素
ガス等の有害物質のチェック、防噴対策等のために、常
に坑内の温度、圧力等の物理量を測定し、チェックする
必要がある。
Therefore, in order to generate geothermal power, it is necessary to drill a geothermal well and eject geothermal fluid from the reservoir. It is necessary to constantly measure and check physical quantities such as temperature and pressure inside the mine in order to investigate the presence of harmful substances such as hydrogen sulfide gas contained in the fluid, and to take measures to prevent blowouts.

ところが従来の測定では、地熱井の抗日に組立てられた
やぐら等から、測定器を坑内へ垂下させて計測しなけれ
ばならなかったので、設備が大がかりになって建設コス
トを増大させるばかりでなく、坑内に溜ったスケール除
去等のために坑内に掘削装置を挿入した状態では測定で
きないという問題があった。
However, in conventional measurements, it was necessary to suspend the measuring instrument into the pit from a tower built to resist the sun in a geothermal well, which not only required large-scale equipment and increased construction costs. There was a problem in that measurements could not be taken with a drilling device inserted into the mine to remove scale accumulated inside the mine.

また、従来の地熱井における坑内の物理量のδIII定
は、前述のように必要時に温度・圧力計等の測定器を挿
入するスポット的計測であったため、坑内の温度、圧力
測定によりスケールの発生に大きな影響を与えるフラッ
シングポイントの連続監視や坑内の温度回復状況、貯′
gj層圧力の変動等のl佇溜層評価上必要なデータを連
続記録することができなかった。
In addition, conventional δIII determination of underground physical quantities in geothermal wells was a spot measurement in which measuring instruments such as temperature and pressure gauges were inserted when necessary, as described above. Continuous monitoring of flushing points that have a major impact, temperature recovery status inside the mine, and storage
It was not possible to continuously record the data necessary for evaluating the l accumulation layer, such as changes in gj layer pressure.

この為、掘削中でも坑内の物理量を測定でき、かつ、必
要なデータを常時監視できる測定装置が望まれていた。
For this reason, there has been a demand for a measuring device that can measure physical quantities inside a mine even during excavation, and that can constantly monitor necessary data.

〔発明の目的コ 本発明の目的は、坑井を掘削中においても坑内の物理量
を連続測定できる地熱井内の物理量測定装置1′!iを
提供することである。
[Object of the Invention] The object of the present invention is to provide a physical quantity measuring device for a geothermal well that can continuously measure physical quantities inside the well even while the well is being excavated! i.

[問題点を解決するための手段] 本発明は、地表近傍の地下水の流入及び地層の崩壊等を
防止するため、地中にケーシングパイプを略同心円状に
多重に挿入配はして地熱井が形成されているので、この
ケーシングパイプ間に、坑内の温度、圧力等を検知でき
る測定ケーブルを設け、その測定ケーブルの一端に地上
に設置した計測機構に接続することにより、地熱井内の
圧力、温度等の物理量を連続して計測できるようにし、
前記目的を達成しようとするものである・[実施例] 以下、本発明の実施例を図面に基づいて説明する。
[Means for Solving the Problems] In order to prevent the inflow of groundwater near the earth's surface and the collapse of the strata, the present invention provides a geothermal well by inserting and arranging multiple casing pipes into the ground in substantially concentric circles. A measurement cable that can detect the temperature, pressure, etc. inside the well is installed between the casing pipes, and by connecting one end of the measurement cable to a measurement mechanism installed on the ground, the pressure and temperature inside the geothermal well can be measured. It enables continuous measurement of physical quantities such as
[Embodiments] Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は本発明の物理量測定装置を用いた地熱井の一実
施例を示すもので、この図において、地熱井は、比較的
地上に近い位置にあるケーシングパイプ部1と、このケ
ーシングパイプ部1の下方で、地熱流体貯溜層へ至る裸
坑部2とからなり。
FIG. 1 shows an embodiment of a geothermal well using the physical quantity measuring device of the present invention. In this figure, a geothermal well has a casing pipe section 1 located relatively close to the ground, and a It consists of an open pit section 2 below which leads to a geothermal fluid reservoir.

その裸坑部2は、硬質な岩石等から構成され、地層の崩
壊等のおそれがないため、ケーシングパイプ等を挿入し
ない掘削した構成そのままになっている。
The bare pit section 2 is made of hard rock and the like, and since there is no risk of collapse of the strata, etc., the structure remains as it was excavated without inserting a casing pipe or the like.

前記ケーシングパイプ部1は、複数の直径の異なるパイ
プが略同心状に配置されて構成され、具体的には、前記
流体貯溜層から地熱流体を地上に導く内側ケーシングパ
イプとしての仕上げケーシングパイプ3と、その仕上げ
ケーシングパイプ3の上部を保護するとともに、仕上げ
ケーシングパイプ3と適宜なセントラライザーで所定間
隔を保持された保護ケーシングパイプ4と、この保護ケ
ーシングパイプ4の外方に配置された地表面近傍の地表
ケーシングパイプ5を有し、前記仕上ケーシングパイプ
3と保護ケーシングパイプ4の間には測定ケーブル6が
設けられ、更に、各ケーシングパイプ間3.4間、4.
5間及びケーシングパイプ3,4.5と地層7間にセメ
ント8を打設した構成である。
The casing pipe section 1 is composed of a plurality of pipes having different diameters arranged approximately concentrically, and specifically includes a finished casing pipe 3 as an inner casing pipe that guides geothermal fluid from the fluid reservoir to the ground. , a protective casing pipe 4 that protects the upper part of the finished casing pipe 3 and is maintained at a predetermined distance from the finished casing pipe 3 by an appropriate centralizer, and a protective casing pipe 4 that is placed outside of this protective casing pipe 4 near the ground surface. A measuring cable 6 is provided between the finishing casing pipe 3 and the protective casing pipe 4, and a distance of 3.4 between each casing pipe, 4.
5 and between the casing pipes 3, 4.5 and the stratum 7, cement 8 is placed.

上記仕上げケーシングパイプ3は、例えば直径が957
8 インチ、長さが1600mのもので。
The finished casing pipe 3 has a diameter of, for example, 957 mm.
8 inches long and 1600m long.

■木のパイプでもよいが、図示例は上下2木のパイプと
して上側の仕上ケーシングパイプ3Aの下端をすぼませ
て下側の仕上げケーシングパイプ3Bの上端に嵌合させ
たものである。前記保護ケーシングパイプ4は、例えば
直径が135/8  インチ、長さが900mのもので
、地表に突出する上端部には口元管9を介して主弁10
につながっている。前記地表ケーシングパイプ5は、例
えば直径が20インチ、長さが70mのもので、特に地
表付近は土砂等がくずれやすいので、それを防止するた
めのパイプである。
(2) A wooden pipe may be used, but the illustrated example is a two-wood pipe, upper and lower, in which the lower end of the upper finished casing pipe 3A is constricted and fitted into the upper end of the lower finished casing pipe 3B. The protective casing pipe 4 has a diameter of, for example, 135/8 inches and a length of 900 m, and has a main valve 10 connected to the upper end projecting above the ground via a mouth pipe 9.
connected to. The surface casing pipe 5 has a diameter of, for example, 20 inches and a length of 70 m, and is used to prevent earth and sand from collapsing especially near the surface of the earth.

前記測定ケー!ル6は、一端を地上に設置した計Δ11
機構11にvc続され、他端は圧力、温度等の物理量を
計測するセンサを宥するとともにL型に折曲げられ、そ
の折曲げ部6Aは前記上側の仕上げケーシングパイプ3
Aに形成された小孔12に通して仕上げケーシングパイ
プ3A内に露出されている。このとき、仕上げケーシン
グパイプ3A内に露出される測定ケーブル6の他端の深
さは坑内の物理量を測定するに充分な深度、例えば、地
下700m程度とされている。
Said measurement case! Le 6 has a total of Δ11 with one end installed on the ground.
It is VC connected to the mechanism 11, and the other end accommodates a sensor for measuring physical quantities such as pressure and temperature, and is bent into an L shape, and the bent portion 6A is connected to the upper finishing casing pipe 3.
It passes through a small hole 12 formed in A and is exposed in the finished casing pipe 3A. At this time, the depth of the other end of the measurement cable 6 exposed inside the finished casing pipe 3A is set to be a depth sufficient to measure physical quantities in the mine, for example, about 700 m underground.

iia記計ll11機構11は、前記センサからの信号
を適宜に処理する変換器、この変換されたデータを連続
表示するモニタリング器、前記変換データをI!l!続
して記録する記録計等から構成されている。
The iia recorder 11 mechanism 11 includes a converter that appropriately processes the signal from the sensor, a monitor that continuously displays the converted data, and an I! l! It consists of a recorder, etc. that continuously records data.

上記の構成からなる地熱井を形成する場合1例えば以下
の掘削手段により行なう。
When forming a geothermal well having the above configuration, for example, the following excavation method is used.

地表から地表ケーシングパイプ5を挿入するに見合った
坑井を掘り、地表ケーシングパイプ5を挿入し、次にそ
の掘削した穴底から更にその穴より小さい径の穴を掘っ
て保護ケーシングパイプ4を挿入する。更に、この保護
ケーシングパイプ4を挿入した穴底からこの穴より小さ
い径の穴を掘って仕上げケーシングパイプ3A、3Bを
挿入する。ついで、セメント8を各ケーシングパイプ3
B、4間、4.5間及びケーシングパイプ3B、4.5
と地層7間に打設し、セメント8を硬化させた後、この
状態において、ケーシングバイブ部1より下方の裸孔部
2を掘削する。ここで、予め仕上げケーシングパイプ3
Aの外側に測定ケーブル6を不図示のバンド、その他の
固着具で取付けておいて保護ケーシングパイプ4の内側
に位置させる。その後、セメント8をケーシングパイプ
3Aと4との間に打設し、セメント8の硬化後、抗日よ
り測定ケーブル6の一端を取出し、地上の記録計11に
接続する。
A well suitable for inserting the surface casing pipe 5 is dug from the ground surface, the surface casing pipe 5 is inserted, and then a hole with a smaller diameter than that hole is further dug from the bottom of the excavated hole and the protective casing pipe 4 is inserted. do. Furthermore, a hole with a smaller diameter than this hole is dug from the bottom of the hole into which the protective casing pipe 4 was inserted, and the finished casing pipes 3A and 3B are inserted therein. Next, apply cement 8 to each casing pipe 3.
B, 4 spaces, 4.5 spaces and casing pipe 3B, 4.5
After the cement 8 is placed between the earth layer 7 and hardened, the open hole 2 below the casing vibe section 1 is excavated in this state. Here, pre-finished casing pipe 3
The measurement cable 6 is attached to the outside of A with a band or other fixing device (not shown) and is positioned inside the protective casing pipe 4. Thereafter, cement 8 is placed between the casing pipes 3A and 4, and after the cement 8 has hardened, one end of the measurement cable 6 is taken out from the sunscreen and connected to the recorder 11 on the ground.

坑内の圧力+ li!度等を計測するとき、前記′A1
1定ケーブル6の折曲げ部6A先端のセンサがケーシン
グパイプ3Aに露出されているので、センサからの信号
がδ11定ケーブル6の一端に接続された計測機構11
に送られ、ここで信号処理1表示、記録されるものであ
る。
Pressure inside the mine + li! When measuring degrees, etc., the 'A1
Since the sensor at the tip of the bent portion 6A of the 1 constant cable 6 is exposed to the casing pipe 3A, the signal from the sensor is transmitted to the measuring mechanism 11 connected to one end of the δ11 constant cable 6.
The signal is sent to , where it is processed, displayed, and recorded.

上述のような本実施例によれば、地熱井に測定ケーブル
6を一体に設け、その測定ケーブル6の一端を地上に設
置した計測機構11に接続したから、測定の度に坑内に
測定装置を垂下させる必要がなく、坑内への掘削装置の
挿入時においても連続して温度、圧力等の変動が記録で
きる。また、フラッシンポイントの連続監視、坑内の回
復情況、貯溜層圧力の変動等の地熱貯溜層評価のために
必要なデータを連続的に記録できる効果がある。更に、
坑内への測定装置の挿入が不要となることから、測定装
置の吊下げ用設備を不要にでき、設備コストを低減でき
る。また、測定装置の坑内への挿入作業を皆無にできる
ことから、作業能率を向上でき、ライニングコストも低
減できる。
According to this embodiment as described above, the measurement cable 6 is integrally installed in the geothermal well, and one end of the measurement cable 6 is connected to the measurement mechanism 11 installed on the ground, so that the measurement device can be installed in the well every time a measurement is made. There is no need to hang it down, and fluctuations in temperature, pressure, etc. can be continuously recorded even when the drilling equipment is inserted into the mine. It also has the effect of continuously recording data necessary for geothermal reservoir evaluation, such as continuous monitoring of flushing points, underground recovery status, and reservoir pressure fluctuations. Furthermore,
Since it is not necessary to insert the measuring device into the mine, equipment for hanging the measuring device can be eliminated, and equipment costs can be reduced. Furthermore, since the work of inserting the measuring device into the mine can be completely eliminated, work efficiency can be improved and lining costs can also be reduced.

なお、実施にあたり、前記測定ケーブル6は、その材質
、厚さ或いは測定する物理量の性質等により、その先端
を必ずしも図示例のように仕上げケーシングバイブ3A
内に露出させる必要はなく、ケーシングパイプ3・4間
に挿入するだけでよい。
In addition, in carrying out the measurement, the tip of the measurement cable 6 may not necessarily be finished as shown in the illustrated example, depending on its material, thickness, or the nature of the physical quantity to be measured.
There is no need to expose it inside the casing pipes 3 and 4, and it is enough to insert it between the casing pipes 3 and 4.

[発明の効果コ 本発明は、坑井を掘削中においても坑内の物理量を連続
測定できる地熱井内の物理量測定装置を提供できるとい
う効果がある。
[Effects of the Invention] The present invention has the effect of providing an apparatus for measuring physical quantities in a geothermal well that can continuously measure physical quantities in the pit even while the well is being excavated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を適用した地熱井の縦断断面
図、第2図は第1図の■−■線に沿う矢視断面図である
。 1・・・ケーシング部、2・・・裸坑部、3,3A、3
B・・・内側ケーシングとしての仕上げケーシングパイ
プ、4・・・外側ケーシングとしての保護ケーシングパ
イプ、6・・・測定ケーブル、8・・・セメント、11
・・・計測機構。
FIG. 1 is a vertical cross-sectional view of a geothermal well to which an embodiment of the present invention is applied, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1... Casing part, 2... Bare pit part, 3, 3A, 3
B... Finished casing pipe as inner casing, 4... Protective casing pipe as outer casing, 6... Measuring cable, 8... Cement, 11
...Measurement mechanism.

Claims (1)

【特許請求の範囲】[Claims] (1)地中に挿入され地熱流体を地上に導く内側ケーシ
ングパイプと、この内側ケーシングパイプの外側に略同
心円状に配置された外側ケーシングパイプと、前記両ケ
ーシングパイプ間に設けられるとともに一端を地上に出
され他端を所定深さ位置に配置された測定ケーブルと、
この測定ケーブルに接続されるとともに坑井内の物理量
を測定する計測機構とを具備したことを特徴とする地熱
井内の物理量測定装置。
(1) An inner casing pipe inserted underground to guide geothermal fluid to the ground, an outer casing pipe arranged approximately concentrically outside the inner casing pipe, and an outer casing pipe provided between the two casing pipes with one end connected above the ground. a measurement cable that is placed at a predetermined depth position and the other end is placed at a predetermined depth;
A device for measuring physical quantities in a geothermal well, characterized in that it is connected to the measurement cable and includes a measurement mechanism for measuring physical quantities in the well.
JP17134084A 1984-08-17 1984-08-17 Measuring instrument for physical quantity in geothermal well Pending JPS6148720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17134084A JPS6148720A (en) 1984-08-17 1984-08-17 Measuring instrument for physical quantity in geothermal well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17134084A JPS6148720A (en) 1984-08-17 1984-08-17 Measuring instrument for physical quantity in geothermal well

Publications (1)

Publication Number Publication Date
JPS6148720A true JPS6148720A (en) 1986-03-10

Family

ID=15921401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17134084A Pending JPS6148720A (en) 1984-08-17 1984-08-17 Measuring instrument for physical quantity in geothermal well

Country Status (1)

Country Link
JP (1) JPS6148720A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234001U (en) * 1975-09-02 1977-03-10
JPS5818119A (en) * 1981-07-24 1983-02-02 Kyowa Dengiyou:Kk Displacement gauge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234001U (en) * 1975-09-02 1977-03-10
JPS5818119A (en) * 1981-07-24 1983-02-02 Kyowa Dengiyou:Kk Displacement gauge

Similar Documents

Publication Publication Date Title
US4252015A (en) Wellbore pressure testing method and apparatus
CA2501480C (en) System and method for installation and use of devices in microboreholes
EP1623090B1 (en) Formation testing apparatus and method for optimizing draw down
CN105318824B (en) A kind of method that wall rock loosening ring is measured based on distributed resistance foil gauge
NO342382B1 (en) Method for logging soil formations during drilling of a wellbore
CA2451822A1 (en) Intelligent perforating well system and method
CN107299833A (en) A kind of Casing Detection leak source apparatus and method
BR112016011163B1 (en) WELL HOLE PROFILING METHOD
US4794791A (en) Method and device for making measurements characterizing geological formations, in a horizontal borehole formed from an underground way
CN105041294A (en) Conveying and storing type produced fluid profile testing technique for coiled tube of horizontal well
CN106595548A (en) Displacement measuring method for the inner part of enclosing rock for tunnel inner face
US9631474B2 (en) Systems and methods for real-time evaluation of coiled tubing matrix acidizing
CN108507734A (en) The detection method of salt cave leakproofness
CN106761709A (en) Store the logging method of correlative flow
CN107567532A (en) Lifted by nitrogen, production logging and recovery test extend the method for carrying out well testing operation with single coiled tubing
US5138876A (en) Method and apparatus for measuring steam profiles in steam injection wells
US3583219A (en) Bore hole logging
US5372038A (en) Probe to specifically determine the injectivity or productivity of a petroleum well and measuring method implementing said probe
JPH01312115A (en) Hydraulics testing method for controlling low water pressure
US7770639B1 (en) Method for placing downhole tools in a wellbore
JPS6148720A (en) Measuring instrument for physical quantity in geothermal well
JP3353714B2 (en) Pore water measurement method and apparatus
CN107703055A (en) Country rock relaxation monitoring device and its relaxation depth method of discrimination
CN207019718U (en) A kind of multi-functional subsurface water measurement device
Newman et al. A flowmeter for measuring subsurface flow rates