JPS6148591B2 - - Google Patents

Info

Publication number
JPS6148591B2
JPS6148591B2 JP55036905A JP3690580A JPS6148591B2 JP S6148591 B2 JPS6148591 B2 JP S6148591B2 JP 55036905 A JP55036905 A JP 55036905A JP 3690580 A JP3690580 A JP 3690580A JP S6148591 B2 JPS6148591 B2 JP S6148591B2
Authority
JP
Japan
Prior art keywords
cathode
plating
fine particles
electrode
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55036905A
Other languages
Japanese (ja)
Other versions
JPS56133484A (en
Inventor
Yasutaka Ozaki
Shunji Matsura
Yoshiaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3690580A priority Critical patent/JPS56133484A/en
Publication of JPS56133484A publication Critical patent/JPS56133484A/en
Publication of JPS6148591B2 publication Critical patent/JPS6148591B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水素過電圧が低く寿命の長い水素発
生陰極、特に塩化ナトリウム水溶液のイオン交換
膜法電解、あるいは隔膜法電解に好適な陰極に関
する。 従来、軟鋼等の電極基体上に、焼結、電気メツ
キ、真空蒸着等の方法により陰極活性物質の被覆
を形成させた電極が種々提案されている。例えば
特公昭55−6715号には、電極基体上にマンガンと
イオウを含有するニツケル薄膜を電気メツキ等の
方法によりコーテイングし、水素過電圧の低い陰
極を得ることが示されている。 本発明者等も陰極活性物質をメツキ手段により
基体上にコーテイングして陰極の性能向上をはか
ることを検討しているが、電導性微粒子と銀ある
いは周期表第4周期第族金属からなる複合メツ
キ層を施すことにより水素過電圧が更に低く、性
能の良好な陰極が得られることを見出し、本発明
を提供するに至つた。 電導性微粒子として、ニツケル、コバルト、銀
など微粒子をニツケルメツキ浴中に分散させて電
極基体上にニツケルメツキ等を施し、該ニツケル
層中に微粒子を固定した電極は知られている。か
かる電極は相当に水素過電圧の小さい陰極となる
が更に過電圧を低下させるために分散させる前記
ニツケル、コバルト或いは銀の微粒子としてそれ
ぞれの金属とアルミニウム、亜鉛、マグネシウ
ム、スズからなる第2の金属との合金を用い、電
極形成後にこれら第2の金属を溶解除去して、表
面積の増大を図ることにより水素過電圧を一層低
下せしめるという工夫が施されている。 この場合水素過電圧は或る程度更に低下させる
ことができるが第2の金属の溶解に手数がかか
る。また陰極として生成する苛性アルカリによつ
て溶解させることも可能ではあるが、生成物中に
不純物が混入したり、電極が安定するまでに時間
がかかること、耐久性が未だ十分でない等の問題
もあり、一層の改良が望まれていた。 そこで本発明は溶解などの後処理を施す必要が
なく、しかも極めて低い水素過電圧を示す陰極を
得るものである。即ち、本発明は、電極基体上に
タングステンカーバイト及びシリコンカーバイト
のうち少なくとも一方の微粒子(以下本明細書に
おいては、これらを該微粒子とも略称する)を含
有する銀あるいは周期律表第4周期第族金属即
ち、鉄、コバルト又は(及び)ニツケルのメツキ
を有してなることを特徴とする陰極を提供するに
ある。 電極基体としては電導性金属、例えば、鉄、
銅、ニツケル、チタン等の金属であり、通常好ま
しくは軟鋼およびその合金が挙げられる。また、
その形状としては特に制限されないが、エキスパ
ンドメタル、鑽孔板、金網、焼結板、プレス板等
の多孔板、平板、曲板等が採用される。特に多孔
板からなる電極基体を用いることが好ましいが、
一般にそれらの構造物はその製作過程において、
切断、剪断、折り曲げ、引張り、圧縮、圧延等の
操作を受け表面に活性化面を部分的に有している
とか、あるいは局部的に応力歪が残留している。
これらの多孔性電極基体にメツキの前処理である
エツチング処理を施すと、エツチング効果が均一
にあらわれず、これにメツキを施しても耐食性に
すぐれた陰極は得られない。本発明者等はこのよ
うな多孔性電極基体は一度熱処理し、次いでこれ
にエツチング処理を施すとエツチング効果が均一
にあらわれることを見い出し、先に提案した。従
つて、本発明においても多孔性電極基体を用いる
ときは予め熱処理を施すのが好ましい。熱処理は
一般に300〜1100℃で5分〜20時間、好ましくは
500〜900℃で30分〜2時間加熱し、次いで徐冷す
ることによつて行われる。熱処理は酸化性雰囲気
あるいは不活性雰囲気下いずれでもよいが電極の
形状、寸法を精度よく維持したい場合は、窒素、
アルゴン等の不活性雰囲気下で行うのがよい。 上記のように多孔性電極基体の場合は熱処理
し、平板電極基体の場合はそのままで、必要に応
じて除錆、脱脂、酸洗等を行つた後エツチング処
理するのが望ましい。 エツチング処理は特に限定されないが、一般に
塩酸、過塩素酸、硫酸等の適当な濃度のエツチン
グ溶液に電極基体を浸漬して行われる。なかでも
過塩素酸溶液を用いるのがエツチング効果が大き
いので特に好ましい。過塩素酸溶液を用いる場合
は20〜50重量%の濃度の水溶液で用い、常温以上
特に30〜80℃にて5分又はそれ以上数時間電極基
体を浸漬すればよい。 エツチング処理されて電極基板上にタングステ
ンカーバイト又は(及び)シリコンカーバイドを
含有した銀あるいは周期律表第4周期第族金属
のメツキ層を形成させるには、該微粒子が懸濁し
た銀、ニツケル、鉄、コバルトのメツキ浴を用い
て電気メツキすればよい。この時、メツキ層中に
該微粒子の含有量が2〜30容積%になるようにメ
ツキ条件を選定する必要がある。メツキ層中の該
微粒子の含有量が2容積%以下ではマイクロポー
ラス層が得られず電極性能が低下する。また30容
積%以上になると該微粒子とメツキ金属との密着
性が低下するので好ましくない。特に該微粒子の
含有量は、15〜25容積%とするのが電極性能が向
上し耐食性の良好な電極が得られるので好まし
い。 該微粒子は特にタングステンカーバイドが好ま
しく、また粒径は0.05〜50μ好ましくは、0.5〜
5μのものである。 本発明の陰極を製造するにさいしては、銀、ニ
ツケル、鉄及びコバツトのメツキ浴中に上記の該
微粒子を一般には1〜100g/の濃度で懸濁した
状態でメツキを行なう。かくしてメツキ層中に該
微粒子が均一に分散し、表面に微小の凹凸をもつ
マイクロポーラス層を形成させて本発明の陰極が
得られる。 メツキ浴としては従来公知のメツキ浴が何等制
限無く用いられ、例えばニツケルのメツキ浴とし
てはワツト浴、ニツケルブラツク浴、ニツケル錯
塩浴等が、また、銀のメツキ浴としてはシアン浴
等が、更に鉄のメツキ浴としては硫酸塩塩化物浴
等が用いられる。また、これらのメツキ浴にイオ
ウ、タングステン、マンガン、スズ、コバツト、
モリブテン等の金属を添加して合金メツキしても
よい。尚、メツキ浴に界面活性剤を適当量添加し
てもよい。 本発明の陰極はメツキ層中に該微粒子が均一に
分散し、メツキ層の表面は該微粒子群によつてマ
イクロポーラス層を形成している。このため電極
表面の有効面積が、微粒子を存在させない場合に
比して10〜20倍も大きくなり且つ両者の相互作用
によに水素過電圧が著るしく低下する。例えば軟
鋼製エキスパンドメタル単体の陰極に比して本発
明のものは一般に0.1〜0.2V低い水素電圧を示
す。しかも、その状態が長期に亘つて続き、耐食
性も優れている。 以下、実施例をあげて、説明するが、本発明は
これに限定されるものではない。 実施例 1 冷間圧延板を素材とした軟鋼製エキスパンドメ
タル(50mm×100mm×1.6mm)を防錆し、電気炉の
中へ入れ窒素ガスを電気炉の内容積の50倍流し、
炉内の空気を窒素と置換した。次に1/minの
窒素を流しながら900℃に昇温し、2時間保持し
た後、徐冷し、100℃まで冷却し炉外に取り出し
た。次いで40重量%60℃の過塩素酸溶液中に1時
間浸漬し、エツチング処理を行なつた。次いで酸
洗を施こし、水洗して平均粒径0.75μのタングス
テンカーバイトを添加したニツケルメツキ浴を用
いて、第1表の条件でメツキを行なつた。
The present invention relates to a hydrogen generating cathode with low hydrogen overvoltage and long life, particularly a cathode suitable for ion exchange membrane electrolysis or diaphragm electrolysis of aqueous sodium chloride solutions. Conventionally, various electrodes have been proposed in which a coating of a cathode active material is formed on an electrode substrate made of mild steel or the like by methods such as sintering, electroplating, and vacuum evaporation. For example, Japanese Patent Publication No. 55-6715 discloses that a cathode with a low hydrogen overvoltage can be obtained by coating an electrode substrate with a nickel thin film containing manganese and sulfur by a method such as electroplating. The present inventors are also considering improving the performance of the cathode by coating a cathode active material on the substrate by plating means, but a composite plating consisting of conductive fine particles and silver or a metal from Group 4 of the periodic table may be used. The present inventors have discovered that by applying a layer, a cathode with a lower hydrogen overvoltage and better performance can be obtained, and the present invention has been provided. Electrodes are known in which conductive fine particles such as nickel, cobalt, and silver are dispersed in a nickel plating bath and then nickel plated or the like is applied to an electrode base to fix the fine particles in the nickel layer. Such an electrode becomes a cathode with a considerably low hydrogen overvoltage, but in order to further reduce the overvoltage, fine particles of nickel, cobalt, or silver are dispersed to form a mixture of each metal and a second metal of aluminum, zinc, magnesium, or tin. An attempt has been made to further reduce the hydrogen overvoltage by using an alloy and dissolving and removing these second metals after electrode formation to increase the surface area. In this case, the hydrogen overvoltage can be further reduced to some extent, but it takes time to melt the second metal. It is also possible to dissolve it using caustic alkali produced as a cathode, but there are problems such as impurities being mixed into the product, it takes time for the electrode to stabilize, and the durability is still insufficient. However, further improvements were desired. Therefore, the present invention provides a cathode that does not require post-treatment such as dissolution and exhibits an extremely low hydrogen overvoltage. That is, the present invention provides silver or silver containing fine particles of at least one of tungsten carbide and silicon carbide (hereinafter referred to as fine particles in this specification) on an electrode base. The object of the present invention is to provide a cathode characterized in that it has a plating of group metals, namely iron, cobalt and/or nickel. The electrode substrate may be a conductive metal such as iron,
It is a metal such as copper, nickel, titanium, etc., and mild steel and alloys thereof are usually preferred. Also,
Although its shape is not particularly limited, perforated plates such as expanded metal, perforated plates, wire mesh, sintered plates, and pressed plates, flat plates, curved plates, and the like are employed. In particular, it is preferable to use an electrode base made of a porous plate,
Generally, in the manufacturing process of these structures,
It has been subjected to operations such as cutting, shearing, bending, tensioning, compression, rolling, etc., and has a partially activated surface on its surface, or has stress strain remaining locally.
When these porous electrode substrates are subjected to etching treatment as a pretreatment for plating, the etching effect does not appear uniformly, and even if the porous electrode substrate is plated, a cathode with excellent corrosion resistance cannot be obtained. The inventors of the present invention have found that if such a porous electrode substrate is heat-treated and then subjected to etching treatment, the etching effect will appear uniformly, and the inventors have previously proposed this. Therefore, also in the present invention, when using a porous electrode substrate, it is preferable to perform heat treatment in advance. Heat treatment is generally at 300-1100℃ for 5 minutes to 20 hours, preferably
This is carried out by heating at 500 to 900°C for 30 minutes to 2 hours, and then slowly cooling. Heat treatment can be performed in either an oxidizing atmosphere or an inert atmosphere, but if you want to maintain the shape and dimensions of the electrode with high precision, use nitrogen,
This is preferably carried out under an inert atmosphere such as argon. As mentioned above, in the case of a porous electrode substrate, it is preferable to heat-treat the substrate, and in the case of a flat electrode substrate, it is preferable to leave it as is and perform etching treatment after performing rust removal, degreasing, pickling, etc. as necessary. Etching treatment is not particularly limited, but is generally carried out by immersing the electrode substrate in an etching solution of an appropriate concentration such as hydrochloric acid, perchloric acid, or sulfuric acid. Among these, it is particularly preferable to use a perchloric acid solution because it has a large etching effect. When a perchloric acid solution is used, it may be used as an aqueous solution with a concentration of 20 to 50% by weight, and the electrode substrate may be immersed at room temperature or above, particularly 30 to 80°C, for 5 minutes or more than several hours. In order to form a plating layer of silver containing tungsten carbide or (and) silicon carbide or a metal from the fourth period of the periodic table on the electrode substrate by etching, silver, nickel, etc. in which the fine particles are suspended, Electroplating can be done using an iron or cobalt plating bath. At this time, it is necessary to select plating conditions such that the content of the fine particles in the plating layer is 2 to 30% by volume. If the content of the fine particles in the plating layer is less than 2% by volume, a microporous layer cannot be obtained and the electrode performance deteriorates. Further, if the amount exceeds 30% by volume, the adhesion between the fine particles and the plating metal decreases, which is not preferable. In particular, it is preferable that the content of the fine particles be 15 to 25% by volume because this improves electrode performance and provides an electrode with good corrosion resistance. The fine particles are particularly preferably tungsten carbide, and the particle size is preferably 0.05 to 50μ, preferably 0.5 to 50μ.
It is 5μ. In producing the cathode of the present invention, plating is carried out in a state in which the above-mentioned fine particles are suspended in a plating bath of silver, nickel, iron, or kovat, generally at a concentration of 1 to 100 g/g. In this way, the fine particles are uniformly dispersed in the plating layer to form a microporous layer having minute irregularities on the surface, thereby obtaining the cathode of the present invention. As the plating bath, conventionally known plating baths can be used without any restrictions; for example, as a plating bath for nickel, a Watt bath, a nickel black bath, a nickel complex salt bath, etc.; as a plating bath for silver, a cyan bath, etc.; A sulfate chloride bath or the like is used as the iron plating bath. In addition, these metal baths contain sulfur, tungsten, manganese, tin, copper,
Alloy plating may be performed by adding a metal such as molybdenum. Incidentally, an appropriate amount of a surfactant may be added to the plating bath. In the cathode of the present invention, the fine particles are uniformly dispersed in the plating layer, and the fine particles form a microporous layer on the surface of the plating layer. Therefore, the effective area of the electrode surface becomes 10 to 20 times larger than that in the case where no fine particles are present, and the hydrogen overvoltage is significantly reduced due to the interaction between the two. For example, compared to a cathode made of a simple expanded metal made of mild steel, the cathode of the present invention generally exhibits a hydrogen voltage 0.1 to 0.2 V lower. Furthermore, this condition continues for a long time and the corrosion resistance is excellent. Examples will be described below, but the present invention is not limited thereto. Example 1 A mild steel expanded metal (50 mm x 100 mm x 1.6 mm) made from a cold rolled plate was rust-proofed, placed in an electric furnace, and nitrogen gas flowed 50 times the internal volume of the electric furnace.
The air in the furnace was replaced with nitrogen. Next, the temperature was raised to 900°C while flowing nitrogen at a rate of 1/min, held for 2 hours, and then slowly cooled to 100°C and taken out of the furnace. Next, it was immersed in a 40% by weight perchloric acid solution at 60° C. for 1 hour to perform an etching treatment. The pieces were then pickled, washed with water, and plated under the conditions shown in Table 1 using a nickel plating bath to which tungsten carbide with an average particle size of 0.75 μm was added.

【表】 得られたメツキ物の表面は電子顕微鏡写真観察
(倍率500倍)によると、多数の凹凸でマイクロポ
ーラス層が形成されており、タングステンカーバ
イトの含有量はメツキ層の約15容積%であつた。
このメツキ物を85℃、30重量%の水酸化ナトリウ
ム水溶液中において電流密度30A/dm2で陰極A−
1として使用した。また、第1表のメツキ浴組成
の中からタングステンカーバイトを除いたメツキ
浴で同様にメツキした電極を製作し、これを陰極
B−1として同様に使用した。除極A−1と陰極
B−1の30重量%水酸化ナトリウム水溶液中の水
素過電圧の変化を第2表に示した。
[Table] According to electron micrograph observation (magnification: 500x) of the surface of the plated material obtained, a microporous layer is formed with many irregularities, and the content of tungsten carbide is about 15% by volume of the plated layer. It was hot.
This plating was applied to the cathode A at a current density of 30 A/dm 2 at 85°C in a 30% by weight aqueous sodium hydroxide solution.
It was used as 1. Further, an electrode was similarly plated using a plating bath with the plating bath composition shown in Table 1 except for tungsten carbide, and this electrode was similarly used as cathode B-1. Table 2 shows the changes in hydrogen overvoltage in a 30% by weight aqueous sodium hydroxide solution for depolarized A-1 and cathode B-1.

【表】 第2表の結果から、A−1の陰極がB−1の陰
極に比して初期で0.17V、300日後に0.20V低い水
素過電圧を示していることがわかる。 比較例 1 実施例1で用いた電極基体に、実施例1と同様
な熱処理と過塩素酸溶液エツチングを行ない酸洗
と水洗を施こした後、第14表に示す条件でメツキ
を行つた。
[Table] From the results in Table 2, it can be seen that the cathode A-1 exhibits a hydrogen overvoltage that is 0.17 V lower at the initial stage and 0.20 V lower after 300 days than the cathode B-1. Comparative Example 1 The electrode substrate used in Example 1 was subjected to the same heat treatment and perchloric acid solution etching as in Example 1, followed by pickling and water washing, and then plating was performed under the conditions shown in Table 14.

【表】 第14表で用いたラネーニツケルは、川研フアイ
ンケミカル社製の展開前ラネーニツケル粉末
(Ni50wt% Al 50wt%平均粒径30μm)であ
る。このメツキ物を実施例1と同様な条件で陰極
C−1として使用した。陰極A−1と陰極C−1
の水素過電圧の変化を第15表に示した。
[Table] The Raney nickel used in Table 14 is Raney nickel powder (Ni 50wt% Al 50wt% average particle diameter 30 μm) manufactured by Kawaken Fine Chemical Co., Ltd. before development. This plated product was used as cathode C-1 under the same conditions as in Example 1. Cathode A-1 and Cathode C-1
Table 15 shows the changes in hydrogen overvoltage.

【表】 第15表より、初期は陰極A−1が陰極C−1と
比較して0.04V高いが100日後には0.07V、200日
後には、0.12V:300日後には0.20V低い水素過電
圧を示した。 実施例 2 実施例1で用いた電極基体に実施例1と同様な
熱処理と過塩素酸溶液エツチングを行ない、酸洗
と水洗を施した後、第3表に示したタングステン
カーバイト(平均粒径5μ)を添加した合金メツ
キ浴を用いて第3表に示す条件でメツキを行つ
た。
[Table] From Table 15, cathode A-1 is initially 0.04V higher than cathode C-1, but after 100 days it is 0.07V, and after 200 days it is 0.12V: after 300 days it is 0.20V lower. Indicated overvoltage. Example 2 The electrode substrate used in Example 1 was subjected to the same heat treatment and perchloric acid solution etching as in Example 1, and after acid washing and water washing, the tungsten carbide (average particle size Plating was carried out under the conditions shown in Table 3 using an alloy plating bath to which 5μ) was added.

【表】 得られたメツキ物の表面は電子顕微鏡写真観察
(倍率500倍)によるとやや大きい凹凸によりマイ
クロポーラス層が形成されており、タングステン
カーバイト含有量は、ニツケルメツキ層の約20容
積%であつた。このメツキ物を実施例1と同様な
条件で陰極A−2として使用した。また第3表の
メツキ浴組成の中からタングステンカーバイトを
除いたメツキ浴で同様にメツキした電極を製作
し、これを陰極B−2として同様に使用した。 陰極A−2と陰極B−2の水素過電圧の変化を
第4表に示した。
[Table] According to electron micrograph observation (magnification: 500x) of the surface of the plated material obtained, a microporous layer is formed due to somewhat large irregularities, and the tungsten carbide content is approximately 20% by volume of the nickel plated layer. It was hot. This plated material was used as cathode A-2 under the same conditions as in Example 1. Further, an electrode was similarly plated using a plating bath with the plating bath composition shown in Table 3 except for tungsten carbide, and this electrode was similarly used as cathode B-2. Table 4 shows the changes in hydrogen overvoltage of cathode A-2 and cathode B-2.

【表】 第4表の結果から、A−2の陰極がB−2の陰
極に比して初期で0.1V、300日後に0.12V低い水
素過電圧を示していることがわかる。 実施例 3 実施例1で用いた電極基体に実施例1と同様な
熱処理と過塩素酸溶液エツチングを行ない酸洗と
水洗を施した後、第5表に示すシリコンカーバイ
ト(平均粒径1μ)を添加したニツケルメツキ浴
を用い、第5表に示す条件でメツキを行なつた。
[Table] From the results in Table 4, it can be seen that the cathode A-2 exhibits a hydrogen overvoltage that is 0.1 V lower at the initial stage and 0.12 V lower after 300 days than the cathode B-2. Example 3 The electrode substrate used in Example 1 was subjected to the same heat treatment and perchloric acid solution etching as in Example 1, followed by pickling and water washing, and then silicon carbide (average particle size 1 μm) shown in Table 5 was prepared. Plating was carried out under the conditions shown in Table 5 using a nickel plating bath to which .

【表】 得られたメツキ物の表面は電子顕微境写真観察
(倍率500倍)によれば、多数の小さい凹凸により
マイクロポーラス層が形成されており、ニツケル
メツキ層中のシリコンカーバイトの含有量は約15
容積%であつた。このメツキ物を実施例1と同様
な条件で陰極A−3として使用した。また第5表
のメツキ浴組成の中からシリコンカーバイトを除
いたメツキ浴で同様にメツキした電極を製作し、
これを陰極B−3として同様に使用した。 陰極A−3と陰極B−3の水素過電圧の変化を
第6表に示した。
[Table] According to electron micrograph observation (magnification: 500x) on the surface of the plated material obtained, a microporous layer is formed by many small irregularities, and the content of silicon carbide in the nickel plated layer is about 15
It was in volume %. This plated material was used as cathode A-3 under the same conditions as in Example 1. In addition, we produced electrodes plated in the same manner using a plating bath with silicon carbide excluded from the plating bath compositions shown in Table 5.
This was similarly used as cathode B-3. Table 6 shows the changes in hydrogen overvoltage of cathode A-3 and cathode B-3.

【表】 第6表の結果から、A−3の陰極がB−3の陰
極に比して初期で0.15V、300日後に0.18V低い水
素過電圧を示していることがわかる。 比較例 2 実施例1で用いた電極基体に実施例1と同様な
熱処理と過塩素酸溶液エツチングを行ない酸洗と
水洗を施こした後、第16表に示す条件でメツキを
行つた。
[Table] From the results in Table 6, it can be seen that the cathode A-3 exhibits a hydrogen overvoltage that is 0.15 V lower at the initial stage and 0.18 V lower after 300 days than the cathode B-3. Comparative Example 2 The electrode substrate used in Example 1 was subjected to the same heat treatment and perchloric acid solution etching as in Example 1, followed by pickling and water washing, and then plating was performed under the conditions shown in Table 16.

【表】 第16表で用いたラネーコバルトはCo50wt%、
Al 50wt%平均粒径30μmである。このメツキ物
を実施例1と同様な条件で陰極C−2として使用
した。陰極A−3と陰極C−2の水素過電圧の変
化を第17表に示した。
[Table] Raney cobalt used in Table 16 is Co50wt%,
The average particle size of 50wt% Al is 30μm. This plated product was used as cathode C-2 under the same conditions as in Example 1. Table 17 shows the changes in hydrogen overvoltage of cathode A-3 and cathode C-2.

【表】 第17表より、初期は陰極A−3が陰極C−2と
比較して0.02V高いが、100日後には、0.08V、
200日後には0.15V、300日後には、0.18V低い水
素電圧を示した。 実施例 4 実施例1で用いた電極基体に実施例1と同様な
熱処理と過塩素酸エツチングを行ない、酸洗と水
洗を施した後、第7表に示すタングステンカーバ
イト(平均粒径0.75μ)を添加した銀メツキ浴を
用い、第7表に示す条件でメツキを行なつた。
[Table] From Table 17, cathode A-3 is 0.02V higher than cathode C-2 at the beginning, but after 100 days, it is 0.08V higher than cathode C-2.
The hydrogen voltage was 0.15V lower after 200 days and 0.18V lower after 300 days. Example 4 The electrode substrate used in Example 1 was subjected to the same heat treatment and perchloric acid etching as in Example 1, followed by pickling and water washing. ) Plating was carried out under the conditions shown in Table 7 using a silver plating bath containing .

【表】 得られたメツキ物の表面は電子顕微鏡写真(倍
率500倍)によれば多数の小さい凹凸によりマイ
クロポーラス層が形成されており、銀メツキ層中
のタングステンカーバイトの含有量は約15容積%
であつた。 この電極を実施例1と同様な条件で陰極A−4
として使用した。また、第7表のメツキ浴組成の
中からタングステンカーバイトを除いたメツキ浴
中で同様にメツキした電極を製作し、これを陰極
B−4として同様に使用した。これらの陰極につ
いて水素過電圧の変化を第8表に示した。
[Table] According to an electron micrograph (magnification: 500x) of the surface of the obtained plated product, a microporous layer is formed by many small irregularities, and the content of tungsten carbide in the silver plated layer is approximately 15 volume%
It was hot. This electrode was used as cathode A-4 under the same conditions as in Example 1.
used as. In addition, an electrode was similarly plated in a plating bath with the plating bath composition shown in Table 7 except for tungsten carbide, and this electrode was similarly used as cathode B-4. Table 8 shows the changes in hydrogen overvoltage for these cathodes.

【表】 第8表の結果から、A−4の陰極がB−4の陰
極に比して初期で0.11V、300日後に0.11V低い水
素過電圧を示していることがわかる。 実施例 5 実施例1で用いた電極基体に実施例1と同様な
熱処理と過塩素酸エツチングを行ない、酸洗と水
洗を施した後、第9表に示すタングステンカーバ
イト(平均粒径10μ)を添加したメツキ浴を用い
て第9表に示す条件でメツキを行なつた。
[Table] From the results in Table 8, it can be seen that the A-4 cathode exhibits a hydrogen overvoltage that is 0.11 V lower at the initial stage and 0.11 V lower after 300 days than the B-4 cathode. Example 5 The electrode substrate used in Example 1 was subjected to the same heat treatment and perchloric acid etching as in Example 1, and after acid washing and water washing, the tungsten carbide shown in Table 9 (average particle size 10μ) was formed. Plating was carried out under the conditions shown in Table 9 using a plating bath to which .

【表】 得られたメツキ物の表面は電子顕微鏡写真(倍
率500倍)によれば多数の凹凸によりマイクロポ
ーラス層が形成されており、メツキ層中のタング
ステンカーバイトの含有量は15容積%であつた。 この電極を実施例1と同様な条件で陰極A−5
として使用した。また第9表のメツキ浴組成物の
中からタングステンカーバイトを除いたメツキ浴
中で同様にメツキして電極を製作し、これを陰極
B−5として同様に使用した。これらの陰極につ
いて水素過電圧の変化を第10表に示した。
[Table] According to an electron micrograph (magnification: 500x) on the surface of the plated material obtained, a microporous layer is formed by numerous irregularities, and the content of tungsten carbide in the plated layer is 15% by volume. It was hot. This electrode was used as cathode A-5 under the same conditions as in Example 1.
used as. Further, an electrode was produced by plating in the same manner as in the plating bath composition shown in Table 9 excluding tungsten carbide, and this was similarly used as cathode B-5. Table 10 shows the changes in hydrogen overpotential for these cathodes.

【表】 第10表の結果から、A−5の陰極がB−5の陰
極に比して初期で0.11V、300日後に0.12V低い水
素過電圧を示していることがわかる。 実施例 6 冷間圧延板を素材とした軟鋼製エキスパンドメ
タル(800mmW×1200mmL×1.6mmT)を6枚を用
意し、そのうちの3枚をセツトC残りの3枚をセ
ツトDとした。セツトCの3枚を大型化電気炉に
入れ窒素ガスを流しながら900℃に昇温し、2時
間保持した後徐冷し100℃に冷却した後炉外に取
り出した。次にこのセツトCについて40Wt%80
℃の過塩素酸溶液で10分間エツチング処理を行つ
た。処理後15wt%のHCl水溶液で3分間洗浄後、
第11表に示したタングステンカーバイトを添加し
たニツケルメツキ浴を用いてメツキを行つた。
[Table] From the results in Table 10, it can be seen that the A-5 cathode exhibits a hydrogen overvoltage that is 0.11 V lower at the initial stage and 0.12 V lower after 300 days than the B-5 cathode. Example 6 Six sheets of expanded metal made of mild steel (800 mm W x 1200 mm L x 1.6 mm T) made of cold-rolled plates were prepared, three of which were set as set C, and the remaining three were set as set D. The three sheets of Set C were placed in a large electric furnace and heated to 900°C while flowing nitrogen gas, held for 2 hours, slowly cooled to 100°C, and then taken out of the furnace. Next, regarding this set C, 40Wt%80
Etching treatment was performed in a perchloric acid solution at ℃ for 10 minutes. After treatment, wash with 15wt% HCl aqueous solution for 3 minutes,
Plating was carried out using a nickel plating bath containing tungsten carbide as shown in Table 11.

【表】 メツキ処理したセツトCと無処理のセツトDを
徳山曹達社製イオン交換膜法食塩電解槽TSE−
270にスポツト熔接で取り付け第12表の電解条件
で工業的に食塩熱解を行なつた。その時の300日
間の電槽電圧の変化を第13表に示した。
[Table] Plating-treated set C and untreated set D were used in the ion-exchange membrane method saline electrolyzer TSE- manufactured by Tokuyama Soda Co., Ltd.
270 by spot welding and subjected to industrial salt thermal decomposition under the electrolytic conditions shown in Table 12. Table 13 shows the changes in battery voltage over the 300 days.

【表】【table】

【表】 第13表から、セル−Cがセル−Dより初期で約
0.17V、300日後に0.20V低い電槽電圧を示すこと
がわかる。これはセツトCの水素過電圧がセツト
Dの水素過電圧より低いことによると理解され
る。
[Table] From Table 13, cell-C is earlier than cell-D and approximately
It can be seen that the cell voltage is 0.17V, and after 300 days the cell voltage is 0.20V lower. This is understood to be because the hydrogen overvoltage of set C is lower than the hydrogen overvoltage of set D.

Claims (1)

【特許請求の範囲】 1 電極基体上にタングステンカーバイド及びシ
リコンカーバイドのうち少なくとも一方の微粒子
を2〜30容積%含有する銀あるいは周期律表第4
周期第族金属のメツキ層を有してなることを特
徴とする陰極。 2 電極基体がエキスパンドメタル、鑽孔板、金
網等の軟鋼製多孔板である特許請求の範囲第1項
記載の陰極。 3 多孔板電極基体が予め熱処理されたものであ
る特許請求の範囲第2項記載の陰極。 4 電極基体が過塩素酸溶液でエツチング処理さ
れたものである特許請求の範囲第1項記載の陰
極。 5 粒径0.05〜5.0μであるタングステンカーバ
イド及びシリコンカーバイドのうち少なくとも一
方の微粒子を2〜30容積%含有する金属メツキ層
を有する特許請求の範囲第1項記載の陰極。 6 周期律表第4周期第族金属がニツケルであ
る特許請求の範囲第1項記載の陰極。
[Scope of Claims] 1. Silver containing 2 to 30 volume % of fine particles of at least one of tungsten carbide and silicon carbide on an electrode base, or silver containing 2 to 30 volume % of fine particles of at least one of tungsten carbide and silicon carbide.
A cathode comprising a plating layer of a periodic group metal. 2. The cathode according to claim 1, wherein the electrode substrate is a perforated plate made of mild steel such as an expanded metal, a perforated plate, or a wire mesh. 3. The cathode according to claim 2, wherein the porous plate electrode substrate is heat-treated in advance. 4. The cathode according to claim 1, wherein the electrode substrate is etched with a perchloric acid solution. 5. The cathode according to claim 1, having a metal plating layer containing 2 to 30 volume % of fine particles of at least one of tungsten carbide and silicon carbide having a particle size of 0.05 to 5.0 μm. 6. The cathode according to claim 1, wherein the metal of the fourth period group of the periodic table is nickel.
JP3690580A 1980-03-25 1980-03-25 Cathode Granted JPS56133484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3690580A JPS56133484A (en) 1980-03-25 1980-03-25 Cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3690580A JPS56133484A (en) 1980-03-25 1980-03-25 Cathode

Publications (2)

Publication Number Publication Date
JPS56133484A JPS56133484A (en) 1981-10-19
JPS6148591B2 true JPS6148591B2 (en) 1986-10-24

Family

ID=12482780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3690580A Granted JPS56133484A (en) 1980-03-25 1980-03-25 Cathode

Country Status (1)

Country Link
JP (1) JPS56133484A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113781A (en) * 1984-11-08 1986-05-31 Tokuyama Soda Co Ltd Cathode for generating hydrogen
EP3336221A1 (en) * 2016-12-19 2018-06-20 Franz GmbH Method for producing a grid for an electric device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112785A (en) * 1978-02-24 1979-09-03 Asahi Glass Co Ltd Electrode and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112785A (en) * 1978-02-24 1979-09-03 Asahi Glass Co Ltd Electrode and manufacture thereof

Also Published As

Publication number Publication date
JPS56133484A (en) 1981-10-19

Similar Documents

Publication Publication Date Title
US3878083A (en) Anode for oxygen evolution
JPH0357198B2 (en)
CA1184871A (en) Low overvoltage hydrogen cathodes
US3272728A (en) Method of producing activated electrodes
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
US4414064A (en) Method for preparing low voltage hydrogen cathodes
JPS6136591B2 (en)
JP7097042B2 (en) Electrode for chlorine generation
CN113463148A (en) Method for electroplating gold on surface of titanium or titanium alloy substrate
JPH0310099A (en) Insoluble electrode for electroplating and production thereof
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
US3357858A (en) Platinizing process
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
GB2046795A (en) Porous nickel electrode and process for its production
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JPS6148591B2 (en)
CN113293411B (en) Gradient composite lead dioxide anode plate and preparation method and application thereof
JPS6341994B2 (en)
JPH11229170A (en) Activated cathode
JP4612572B2 (en) Manufacturing method of high purity Ni diffusion plated steel sheet
JP2839153B2 (en) Process for producing alkali dichromates and chromic acid
US4177129A (en) Plated metallic cathode
JPS6146556B2 (en)
JPS6211075B2 (en)
JP2610937B2 (en) High durability low hydrogen overvoltage cathode