JPS6148562B2 - - Google Patents
Info
- Publication number
- JPS6148562B2 JPS6148562B2 JP57223914A JP22391482A JPS6148562B2 JP S6148562 B2 JPS6148562 B2 JP S6148562B2 JP 57223914 A JP57223914 A JP 57223914A JP 22391482 A JP22391482 A JP 22391482A JP S6148562 B2 JPS6148562 B2 JP S6148562B2
- Authority
- JP
- Japan
- Prior art keywords
- pin
- zinc powder
- zinc
- pins
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 46
- 239000011701 zinc Substances 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 238000005303 weighing Methods 0.000 description 5
- 238000009689 gas atomisation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000002679 ablation Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明は、亜鉛粒の製造方法に関する。特に、
ガス噴霧等により得られる扁平若しくは角部の多
い微細な亜鉛末の球状化に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing zinc particles. especially,
This invention relates to the spheroidization of fine zinc powder with many flat or angular parts obtained by gas atomization.
亜鉛粉末は、電池等の極板用途に多く用いられ
ており、ガス噴霧法、水中滴下法等の方法によつ
て製造されている。例えば、亜鉛末をガス噴霧法
により製造した場合、40〜325メツシユの亜鉛粉
末が得られる。 Zinc powder is widely used for electrode plates in batteries and the like, and is produced by methods such as gas atomization and underwater dripping. For example, when zinc powder is produced by a gas atomization method, 40 to 325 meshes of zinc powder can be obtained.
これらの亜鉛粉末は、顕微鏡によりその形状を
見ると球状のものも存在するが、球状部と扁平
部、角部、突起等の直線部を有する粒も同時に存
在する。このような直線部を有する亜鉛粉末は、
例えば、電池用の亜鉛末として使用する場合に、
秤量、精度が悪くなるという問題があつた。これ
は、直線部を有する亜鉛粒が、ホツパ出口の堆積
した層中で楔状に他の粒間に食い込み、亜鉛粉末
全体の流動性を低下せしめ、それによりホツパ出
口からのスムーズな流出を妨げるためである。ま
た、電池組立前に計量する場合、計量器の升の内
に亜鉛粉末を入れ、盛り上り部をならし具でかき
取つた計量切面は凹凸が激しく、計量毎に升内の
亜鉛粉末量が変動し、所要の計量精度が得られな
かつた。電池電極用途においては極板を構成する
亜鉛量がその性能に著しく影響を与え、電池の高
性能化が益々要請される昨今、所定の計量精度の
下で亜鉛粉末を計量することが望まれている。 When looking at the shape of these zinc powders under a microscope, some of them are spherical, but there are also grains with spherical parts and straight parts such as flat parts, corners, and projections. Zinc powder with such straight parts is
For example, when used as zinc powder for batteries,
There was a problem with poor weighing and accuracy. This is because zinc grains with straight parts wedge into other grains in the accumulated layer at the hopper outlet, reducing the fluidity of the zinc powder as a whole, thereby preventing it from flowing out smoothly from the hopper outlet. It is. In addition, when weighing before assembling the battery, the amount of zinc powder in the square of the measuring instrument is extremely uneven, and the measurement surface after scraping off the raised part with a leveling tool is very uneven. It fluctuated, and the required weighing accuracy could not be obtained. In battery electrode applications, the amount of zinc that makes up the electrode plate has a significant impact on its performance, and as batteries are increasingly required to have higher performance, it is desirable to measure zinc powder under a specified measurement accuracy. There is.
計量精度は、亜鉛粉末の個々の粒子が扁平状や
細長状をとらずまた鋭尖な角部のある形状をとら
ないよう、粒子を球状化することによつて大巾に
改善される。これは、上述したホツパ流動問題や
升計量切面の凹凸の問題を回避すると共に、稠密
な堆積を可能ならしめるからである。 Metering accuracy is greatly improved by spheroidizing the individual particles of zinc powder so that they are neither flat nor elongated nor have sharp edges. This is because it avoids the above-mentioned problems of hopper flow and unevenness of the measuring surface of the square, and enables dense deposition.
亜鉛粉末の球状化に当つては、(イ)40〜325の小
さな亜鉛粉末を対象として簡単にしかも短時間で
効率的に球状化を計れること、(ロ)量産に適するこ
と、(ハ)球状化作業中の亜鉛粉末の昇温による酸化
問題を生じないこと等の要件が必要とされる。本
発明者は、ミリングマシーン、スクリユマシーン
等の幾つかの装置を使用して試行を重ねたが、満
足すべき結果は得られなかつた。 Regarding the spheroidization of zinc powder, (a) it is possible to easily and efficiently spheroidize small zinc powders of 40 to 325, (b) it is suitable for mass production, and (c) it is spherical. Requirements such as not causing oxidation problems due to temperature rise of zinc powder during oxidation work are required. The present inventor made repeated trials using several devices such as a milling machine and a screw machine, but no satisfactory results were obtained.
更に検討の結果、多数のピンを植立した一対の
ピン盤を対接状態として回転せしめ、中央部から
回転中のピン群を通して外周部に亜鉛粉末を通過
させることにより、きわめて効果的な球状化作用
が得られることが見出された。亜鉛粉末は、回転
ピン群を通過中、反覆的な衝撃及び切除作用を受
け、これにより短時間に球状化が実現される。処
理中の亜鉛粉末の昇温を回避するために不活性ガ
スを流すようにすることもできる。 As a result of further study, we found that extremely effective spheroidization was achieved by rotating a pair of pin disks with a large number of pins facing each other, and passing the zinc powder from the center through the rotating pins to the outer periphery. It was found that the effect was obtained. While passing through the group of rotating pins, the zinc powder is subjected to repeated impact and ablation effects, thereby achieving spheroidization in a short time. It is also possible to flow an inert gas to avoid raising the temperature of the zinc powder during treatment.
斯くして、本発明は、中央部を除いて多数のピ
ンを狭い間隔で植立した一対のピン盤であつて、
一方のピン盤のピン半径位置が他方のピン盤のピ
ン半径位置と交互しそしてピン同志を食違い関係
として対接される一対のピン盤をハウジング内で
その少くとも一方を回転し、ハウジング内にピン
盤対間の前記中央部において亜鉛粉末を投入し、
そしてピン盤対の外周部から放出される球状化し
た亜鉛粒をハウジングから回収することを特徴と
する球状化亜鉛粒の製造方法を提供する。 Thus, the present invention provides a pair of pin disks in which a large number of pins are planted at narrow intervals except for the central portion,
A pair of pin discs are arranged such that the pin radial position of one pin disc alternates with the pin radial position of the other pin disc, and the pins face each other in a staggered relationship, and at least one of them is rotated within the housing. Inject zinc powder in the central part between the pair of pin disks,
The present invention also provides a method for producing spheroidized zinc particles, characterized in that the spheroidized zinc particles released from the outer periphery of a pair of pin disks are recovered from a housing.
以下本発明について詳細に説明する。 The present invention will be explained in detail below.
本発明方法により処理される亜鉛粉末は、従来
からのどの方法によつて製造されたものでも良
い。例えば、溶融した亜鉛を噴霧状に吹き飛ばし
空中で冷却する前記ガス噴霧法が代表例である。
いずれの方法であれ、生成亜鉛粉末は球状部と直
線部を有する粒子を少くとも一部含んでいる。 The zinc powder treated by the method of the present invention may be produced by any conventional method. For example, a typical example is the aforementioned gas atomization method in which molten zinc is blown off in the form of a spray and cooled in the air.
Regardless of the method, the produced zinc powder contains at least some particles having spherical portions and straight portions.
この直線部を、本発明では、交互に向い合わせ
たピン群を備える一対のピン盤を有し、その一方
あるいは両方を回転せしめる装置に亜鉛粉末を通
すことにより処理する。 In the present invention, this straight section is treated by passing zinc powder through a device that has a pair of pin disks each having groups of pins facing each other alternately and rotates one or both of the pin disks.
第1図は、装置の一例を示し、一対のピン盤
1,1′がハウジング10内に少くとも一方が回
転駆動されるよう納置されている。ピン盤1,
1′は、例えば円盤2に直径3〜5mmそして長さ
1〜3cmの硬質材料製ピン3を多数植立したもの
である。ピン盤1,1′は第1図に示すように、
ピン同志を交互に食違い関係として対接状態で相
対回転される。従つて、一方のピン盤のピン列の
半径位置と他方のピン盤のピン列の半径位置とは
異つている必要がある。一般にはピンは第2図に
示すように2〜4列の同心円列状に配列され、一
方ピン盤のピン同心列間の中央に他方のピン盤の
ピン同心円列が位置決めされるようになつてい
る。かくして、対接状態下のピン盤1及び1′は
両者のピン群によつて狭い間隔の通路を形成す
る。この通路間隔は投入亜鉛粉末が非干渉状態で
通り抜けることのないようにするに充分小さいも
のとせねばならない。ピン盤の相対回転を許容し
うる限り、ピンは図示の同心円列分布模様以外の
適宜の配列模様をとりうる。 FIG. 1 shows an example of the device, in which a pair of pin disks 1 and 1' are placed in a housing 10 so that at least one of them is driven to rotate. Pin board 1,
1' is, for example, a disc 2 in which a large number of pins 3 made of a hard material, each having a diameter of 3 to 5 mm and a length of 1 to 3 cm, are planted. The pin discs 1 and 1' are as shown in Figure 1.
The pins are alternately rotated relative to each other in a staggered relationship while facing each other. Therefore, the radial position of the pin row on one pin board must be different from the radial position of the pin row on the other pin board. Generally, the pins are arranged in 2 to 4 concentric rows as shown in Figure 2, and the concentric rows of pins on the other pin board are positioned in the center between the concentric rows of pins on one pin board. There is. Thus, the pin disks 1 and 1' in the opposed state form narrowly spaced passages by their pin groups. The passage spacing must be small enough to prevent the input zinc powder from passing through in an uninterfered manner. As long as the relative rotation of the pin disk is allowed, the pins may have any suitable arrangement pattern other than the illustrated concentric circular row distribution pattern.
ピン盤1及び1′はその少くとも一方が適宜の
モータに連結される軸により駆動される。ピン盤
と軸とはフランジ6により連結されている。亜鉛
粉末は投入口5からフランジ6における開口7を
通して円盤中央部8に導入される。円盤中央部に
はピンが植立されていない。対接するピン盤によ
り形成される中央空間部に導入された投入亜鉛粉
末は、遠心力によつてまた流送ガスが使用される
場合にはガス流送作用によつて外周囲に推進さ
れ、高速回転下にあるピン群間の狭い通路を通つ
てピン盤外周部から出ていく。ピン群を通過中、
亜鉛粒子は、反覆的な衝撃、擦過、切除作用を受
け、細長い粒は両端を切取られ、突起は切られ、
また尖鋭な角部は丸みを帯びて球状化する。 The pin discs 1 and 1' are driven by a shaft, at least one of which is connected to a suitable motor. The pin disk and the shaft are connected by a flange 6. Zinc powder is introduced from the inlet 5 through the opening 7 in the flange 6 into the central part 8 of the disc. There is no pin planted in the center of the disc. The charged zinc powder introduced into the central space formed by the opposing pin discs is propelled around the outside by centrifugal force or by the gas flow action if a flow gas is used, and is propelled at high speed. It exits from the outer periphery of the pin plate through a narrow passage between rotating pin groups. While passing through a group of pins,
Zinc particles are subjected to repeated impact, abrasion and ablation actions, elongated grains are cut off at both ends, protrusions are cut off,
In addition, sharp corners become rounded and spherical.
円盤は、きわめて急速に回転されるが、所定の
球状化効果を発揮するのは、9000rpm以上であ
り、好ましくは12000rpm以上である。 The disk is rotated very rapidly, but the desired spheroidizing effect is achieved at 9000 rpm or more, preferably at 12000 rpm or more.
9000rpmで行つた場合は、一回の処理では直線
部を有する亜鉛粉末が混在し好ましくはなく3回
繰返し通過させることにより効果が見られた。こ
の場合、1Kg当て1回/1分間前後の処理時間で
あり極めて短時間で処理がなされた。 When the process was carried out at 9000 rpm, zinc powder having linear parts was mixed in the process, which was not preferable, but the effect was seen by repeating the process three times. In this case, the treatment time was approximately 1 minute per application of 1 kg, and the treatment was completed in an extremely short time.
また、12000rpmの場合は、1回通過するだけ
であつてもその効果はかなり高く、80%以上のも
のが直線部を除かれていた。さらに、14000rpm
の場合は、1回で90%以上のものが直線部を除か
れていた。 In addition, in the case of 12000 rpm, the effect was quite high even if it was only passed once, and more than 80% of the straight sections were removed. Furthermore, 14000rpm
In this case, more than 90% of the straight parts were removed in one pass.
亜鉛粉末は、酸化を受け易く、本処理法により
処理する場合、摩擦により40〜50℃の熱を持つた
め、例えば窒素ガスのような冷却ガスを流すこと
が好ましい。 Zinc powder is susceptible to oxidation and when treated by this treatment method has a heat of 40 to 50° C. due to friction, so it is preferable to flow a cooling gas such as nitrogen gas.
球状化された亜鉛粉末はハウジングから回収さ
れ、破片、微粉等をバグフイルタにおいて分離さ
れる。 The spheroidized zinc powder is recovered from the housing and separated from debris, fines, etc. in a bag filter.
得られた亜鉛粉末を電池容器に入れ、計量精度
を測定したが、極めて、バラツキの少いことが明
らかになつた。 The obtained zinc powder was placed in a battery container and the measurement accuracy was measured, and it became clear that there was very little variation.
以上のごとく本発明を実施することにより、次
のような効果を生ずる。 By implementing the present invention as described above, the following effects are produced.
(1) 亜鉛粉末のごとく極めて細かい粉の球状化が
数十秒と言う短時間で連続的に行なうことがで
きる。(1) Extremely fine particles such as zinc powder can be spheroidized continuously in a short period of several tens of seconds.
(2) ボタン型アルカリ電池負極等にこの方法によ
り得られた亜鉛粉末を用いることにより、秤量
精度が極めて高い値となる。(2) By using zinc powder obtained by this method for button-type alkaline battery negative electrodes, etc., extremely high weighing accuracy can be achieved.
実施例
噴霧法により得られた亜鉛末を5Kg採取し、図
示したような向い合わせたピン盤を有する球状化
装置に少量ずつ投入した。EXAMPLE 5 kg of zinc powder obtained by the spraying method was collected and introduced little by little into a spheroidizing device having opposing pin discs as shown in the figure.
ピン盤は、14000rpmで回転され、亜鉛粉末
は、ピン盤中心部から投入され、N2ガスを吹き
込み、ピン内部の亜鉛粉末をピン外周部へ放出さ
せ、その後バグにより回収した。 The pin disk was rotated at 14,000 rpm, and zinc powder was introduced from the center of the pin disk, and N 2 gas was blown into the pin to release the zinc powder inside the pin to the outer periphery of the pin, which was then collected by a bag.
ピン盤には、ピンを同心状に間隔を置き3列に
配置した。100個のピン盤が、互い違いにかみ合
うように配置された。 The pins were arranged in three concentrically spaced rows on the pin board. 100 pin discs were arranged so that they interlocked with each other.
14000rpmにより、処理された亜鉛粉末は、直
線部を有さない亜鉛粉末が90%以上あり、秤量精
度の高いものであつた。処理時間は、5Kg当り5
分で処理が可能であつた。 The zinc powder treated at 14,000 rpm contained more than 90% of the zinc powder without straight parts, and had high weighing accuracy. Processing time is 5 kg/5 kg
The process could be done in minutes.
第1図は本発明の実施される球状化装置の一例
の部分断面側面図、そして第2図はピン盤の一方
の正面図である。
1,1′:ピン盤、2:円盤、3:ピン、5:
投入口、7:フランジ開口、8:中央部、10:
ハウジング。
FIG. 1 is a partially sectional side view of an example of a spheroidizing apparatus according to the present invention, and FIG. 2 is a front view of one of the pin disks. 1, 1': Pin disk, 2: Disc, 3: Pin, 5:
Inlet, 7: Flange opening, 8: Center, 10:
housing.
Claims (1)
した一対のピン盤であつて、一方のピン盤のピン
半径位置が他方のピン盤のピン半径位置と交互し
そしてピン同志を食違い関係として対接される一
対のピン盤をハウジング内でその少くとも一方を
回転し、ハウジング内にピン盤対間の前記中央部
において亜鉛粉末を投入し、そしてピン盤対の外
周部から放出される球状化した亜鉛粒をハウジン
グから回収することを特徴とする球状化亜鉛粒の
製造方法。1 A pair of pin discs with a large number of pins planted at narrow intervals except in the center, where the pin radial position of one pin disc alternates with the pin radial position of the other pin disc, and the pins are staggered. At least one of the pair of pin disks facing each other is rotated in a housing, and zinc powder is introduced into the housing at the central portion between the pair of pin disks, and the zinc powder is discharged from the outer periphery of the pair of pin disks. 1. A method for producing spheroidized zinc particles, which comprises recovering spheroidized zinc particles from a housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57223914A JPS59116301A (en) | 1982-12-22 | 1982-12-22 | Manufacture of zinc particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57223914A JPS59116301A (en) | 1982-12-22 | 1982-12-22 | Manufacture of zinc particle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116301A JPS59116301A (en) | 1984-07-05 |
JPS6148562B2 true JPS6148562B2 (en) | 1986-10-24 |
Family
ID=16805685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57223914A Granted JPS59116301A (en) | 1982-12-22 | 1982-12-22 | Manufacture of zinc particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116301A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0311912A (en) * | 1989-06-06 | 1991-01-21 | Naka Tech Lab | Cover plate for floor panel opening |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62221434A (en) * | 1986-03-22 | 1987-09-29 | Nara Kikai Seisakusho:Kk | Treatment of making micro-solid particle globular and device therefor |
JPH0657310B2 (en) * | 1987-03-24 | 1994-08-03 | ホソカワミクロン株式会社 | Method of sizing inorganic crystalline particles |
-
1982
- 1982-12-22 JP JP57223914A patent/JPS59116301A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0311912A (en) * | 1989-06-06 | 1991-01-21 | Naka Tech Lab | Cover plate for floor panel opening |
Also Published As
Publication number | Publication date |
---|---|
JPS59116301A (en) | 1984-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089182A (en) | Process of manufacturing cast tungsten carbide spheres | |
US2707314A (en) | Method of reclaiming granular material | |
JPS62502478A (en) | Metal powder manufacturing method | |
JPS6148562B2 (en) | ||
JPH02503066A (en) | Method and apparatus for forming droplets | |
US1051844A (en) | Apparatus for producing cement. | |
EP1135228B1 (en) | Method and means for drying cemented carbide and similar | |
PL82743B1 (en) | ||
JP3143643B2 (en) | Powder processing equipment | |
JPS632212B2 (en) | ||
SU841681A1 (en) | Disintegrator | |
JPH0674444B2 (en) | Metal powder manufacturing equipment | |
SU1502092A1 (en) | Method and apparatus for dry desintegrating of material | |
JPH0618580Y2 (en) | Rotating disk used for surface modification device of solid particles | |
JPS57209633A (en) | Granulating method and apparatus therefor | |
JP3511032B2 (en) | Fluid granulation coating method and granulation coating apparatus | |
JPS5921651B2 (en) | Granulation method and equipment | |
SU1645000A1 (en) | Mill | |
RU2045339C1 (en) | Centrifugal counterflow crusher | |
SU1338887A1 (en) | Disintegrator | |
JPH1017909A (en) | Production of metal powder | |
JPS61230730A (en) | Apparatus for treating particulate material | |
JPH0224582B2 (en) | ||
SU963549A1 (en) | Centrifugal mill | |
JPS632650B2 (en) |