JPS6148557A - Machine structural steel - Google Patents
Machine structural steelInfo
- Publication number
- JPS6148557A JPS6148557A JP17084884A JP17084884A JPS6148557A JP S6148557 A JPS6148557 A JP S6148557A JP 17084884 A JP17084884 A JP 17084884A JP 17084884 A JP17084884 A JP 17084884A JP S6148557 A JPS6148557 A JP S6148557A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- induction hardening
- fatigue strength
- machine structural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
11悲1吐 11 sadness 1 vomit
【産業上の利用分野1
本発明は、圧延または鍛造の加工方向(rLh向」とい
う)に対して直角な方向(「下方向」という)に繰返し
曲げ応力が加えられる各種の機械構造用鋼に関する。
とくに、歯車やスプライン軸の製造にとって有用である
。
【従来の技術】
表面に強い応力が加わるような用途に向ける機械構造用
部品の製造に当っては、表面硬化処理を行なうことが多
い。 表面硬化処理法としては、浸炭焼入れおよび高周
波焼入れが代表的である。
よく知られているように、浸炭焼入れは高度の表面硬化
ができるが、長時間の加熱を要し、多くのエネルギーを
消費することと、処理に伴う変形が大きいという難点が
ある。 一方、高周波焼入れは、短時間の処理で実施で
きて省エネルギーの観点から好ましい上に、変形が小さ
いため仕上げ加工が不要または簡単ですむといった利点
があるが、表面硬化の度合は浸炭焼入れに及ばず、また
下方向に対する曲げ疲れ強さも浸炭焼入れ材料に比べて
低い。 このようなわけで、負荷される応力が大きい構
造用部品においては、表面硬化の手段は浸炭処理がふつ
うで、高周波焼入れはあまり行なわれていない。
出願人は、上記のような高周波焼入の利点をいかし、そ
の効果高く得るため研究を重ね、従来の炭素鋼よりもS
iの含有量を高めた鋼で製作した部品を高周波焼入れす
ることにより、疲れ強さが強く表面硬度の高い機械構造
用部品が得られることを知り、すでに開示したく特開昭
58−171554号)。[Industrial Application Field 1] The present invention relates to various types of mechanical structural steels to which repeated bending stress is applied in a direction (referred to as "downward direction") perpendicular to the working direction of rolling or forging (referred to as "rLh direction"). .
It is particularly useful for manufacturing gears and spline shafts. BACKGROUND OF THE INVENTION When manufacturing mechanical structural parts for applications where strong stress is applied to the surface, surface hardening treatment is often performed. Typical surface hardening treatment methods include carburizing and hardening and induction hardening. As is well known, carburizing and quenching can achieve a high degree of surface hardening, but it requires long heating times, consumes a lot of energy, and has the disadvantages of large deformation due to the treatment. On the other hand, induction hardening has the advantage that it can be carried out in a short time and is preferable from the viewpoint of energy saving, and that finishing processing is unnecessary or easy due to small deformation, but the degree of surface hardening is not as high as that of carburizing hardening. Also, the bending fatigue strength in the downward direction is lower than that of carburized and quenched materials. For this reason, in structural parts that are subjected to large stresses, carburizing is the usual means of surface hardening, and induction hardening is not often used. The applicant has made extensive research to take advantage of the above-mentioned advantages of induction hardening and to obtain high effects, and has achieved a higher S than conventional carbon steel.
We learned that mechanical structural parts with strong fatigue strength and high surface hardness can be obtained by induction hardening parts made of steel with a high content of i, and we would like to disclose this in Japanese Patent Application Laid-Open No. 58-171554. ).
本発明の目的は、高周波焼入を利用した機械構造用鋼に
おいて、下方向すなわち鋼の圧延ま/、:は鍛造の加工
方向に対して直角な方向の曲げ疲れ強さが強く、従つ−
C曲げ疲れ強さの異方性が低い機械構造用鋼を提供する
ことにある。
11へ11An object of the present invention is to provide mechanical structural steel using induction hardening, which has a high bending fatigue strength in the downward direction, that is, in the direction perpendicular to the forging direction, and therefore -
C. An object of the present invention is to provide a steel for mechanical structures that has low anisotropy in bending fatigue strength. 11 to 11
本発明の機械構造用鋼は、基本的には、C:0゜30〜
0.80%、Si :0.01〜0.39%、Mn
:0.40〜2.0%およびS:0.01%以下を含有
し残部がFeおよび不可避の不純物からなる鋼に高周波
焼入れしてなり、高周波焼入後である低い異方性を示す
ことを特徴とする。
の曲げ疲れ強さの比σWT/σWLが0.8以上上記の
基本的な組成に、下記の合金成分を添加することもでき
る。
高周波焼入れ後の強度および靭性を向上させる目的で、
さらにNi:5%以下、Cr:2%以下、Mo=2%以
下、およびB:0.01%以下の1種または2種以上。
結晶粒を微細化し、靭性および強度を向上させる目的で
、A文二0.1%以下、N:0.03%以下、■+
:O0!596以下、V:0.5%以下およびNb :
Q、5%以下の1種または2種以上(Ti 、Vおよび
Nbは、面圧疲労性の向上にも役立つ)。
機械加工性を向上さぜるCa :0.01%以下、Te
:0.5%以下およびPb :0.5%の1種または2
種以上(なお、CaおよびTeは、鋼中のMnS介在物
を球状化させるはたらきがあり、下方向の曲げ疲労性を
改善し、靭性の向上にも役立つ。)
また、焼われ防止のため、Pro、0020%以下が好
ましく、圧延加工方向の疲れ強さを高く得るには、O:
0.0020%以下にすべぎである。
1作 用】
鋼のS含有量を0.01%以下と低くすることによって
、鋼中のMnS介在物の量が低減する。
本発明者らは、高周波焼入れ材の下方向の曲げ応力によ
る疲労破壊の起点は、AJL203介在物ではなく、M
nS介在物であることを見出した。
従来は、被削性をよくするためMnSの存在をむしろ歓
迎していたが、高周波焼入れ材の下方向の曲げ疲れ強さ
の向上のためには、Mn Smすなわち鋼中のS含有量
を低減すべきことが明らかになつ lこ 。
上記以外の合金成分の役割と組成の限定理由は、つぎの
とおりである。
C:0.30〜0,80%
下限は機械構造用鋼に要求される強度を得るために必要
な値であり、上限は焼きワレを避けるために設けた。
Si:0.01〜0.39%
脱酸のため0.01%以上必要であり、一方、多くなる
と塑性加工の容易さが失なわれて行くので、0.39%
までとした。
Mn :Q、40〜2.0%
脱酸と強度の確保を目的として加え、下限はこの目的に
必要なレベルである。 上限は、被剛性の観点から定め
た。
【実施態様1
任意添加元素の作用と組成の限定理由を、次に9
示す。
Ni:5%以下、Ctl:2%以下、Mo:2%以下お
よびB:0.01%以下の1種または2f!I以これら
は高周波焼入れ後の強度および靭性を向上させる上で有
効な元素である。 しかし、過剰に添加すると延性をそ
こなうため、上記の限界内とする。
A51:0.1%以下、N:0.03%以下、Ti :
0.5%以下、V:0.596以下#J[Nb :0.
5%以下の1種または2種以上
いずれも結晶粒を微細化する作用をもつ。
しかし、大量に加えても効果は飽和するので、それぞれ
について記した限度内で添加する。
なお、Ti、VおよびNbは、上記の組成範囲内の添加
で、面圧疲労性の向上にも役立つ。
Ca :0.01%以下、Te:0.5%以下およびP
b :Q、5%以下の1種または2種以上被削性を向上
させたい場合に添加する。 過剰な存在は熱間加工性お
よび延性を害するから、上記のように限界を設けた。
【実施例]
表に示す合金組成の鋼を電気炉で溶製した。
圧延して径100marの丸棒にし、焼入れおよび焼戻
しを行なってから、平行部の径が8n+mの平滑試験片
を、[方向および下方向に切り出した。
この試験片を高周波焼入れ(有効硬化層深さ約2mm)
L/た後、回転曲げ疲労試験を行なった。
その結果を、あわせて表に示す。 σ LはL方向の疲
れ限度を、σ は下方向の疲れ限度を示す。その比σ
L/の が1に近いほど異方性が低いことをあられ
ず。
−N笠 −Ω−」江 −■−−5= N出ン込凱旦1
0.55 0.25 150 0.
0052 0.45 0.IOO,750,0
02Mo:0.43 0.65 0,35
1,45 0.0084 0.54 0
,24 0,65 0.0075 0.5
6 0.26 1.65 0.0046
0.55 0,25 0,85 0
.0057 0.54 0,22 1.4
8 Q、OQ7 Ni:1.58 0
.56 0.24 145 0.005
Cr:L09 0.55 0,27
1.55 0.003 3:0.00310
0.57 0.22 153 0
.00811 0.53 0,25 1,
55 0.00512 0.5B O,
231,410,0%13 0.55 0.2
2 1.44 0.00514 0.5
4 0,25 1,56 0.00415
0.56 0,26 1,55
0.00216 0.55 0.22 1
,54 0.005 Mo+0.217
0.56 0.21 1.53 0.0
0618 0.57 0,25 1,55
0.008 Mo:0.2+9 0.
54 0,24 1.56 0.004
Mo:0.2!
20 0.54 0,24 1.FO
0,0021ylo:0.3比較例 0.54
0,26 1,50 0.022八りか郡工り
G小y 烏1匡ヱ坦 −P−−Ω−一 交蹟−旦W工
σWT/σW180 75 0.9f
181 76 G、94V:0.
2
83 77 0.93Ca
+ 0.002 80
74 0.930.012
81 76 0.940.0
008 85 80 0.941
12 75 0.9183 7
6 0.9282 76
0.93ΔQ : 0.03
82 73
0.89N:ll、02
83 78
0.941i : Q、1
82 75
0.92Nb:0.2
83 74
0.89Te:0.1
78 69 0.88Pb :
0.1 0.012 79
73 0.93V:O,+
84
77 0.92V : O,i
Ca : O,OQ3
85 79 0.93v: O
,i (J : 0.002
84 76
0.90v: 010.O12837F3 0
.91V : 0.1
0.(101286760,888052
0,65
及J」ll先
本発明の高周波焼入れ機械m造用鋼は、曲れ強さの異方
性が低く、σWτ/σWLの値械構造用鋼が等方性であ
るといえる0、8のルを超え、通常0.9以上ある。
高周波焼による、多くの利益が享受できるから、本発明
は、自動車の動〕〕伝達用部品のように、高力が加えら
れるにもかかわらず低コストで提ることを要求される部
品の製造に好適である特許出願人 大同特殊鋼株式
%式%The machine structural steel of the present invention basically has a C: 0°30~
0.80%, Si: 0.01-0.39%, Mn
: 0.40 to 2.0% and S: 0.01% or less, with the balance consisting of Fe and unavoidable impurities, which is induction hardened and exhibits a certain low anisotropy after induction hardening. It is characterized by Bending fatigue strength ratio σWT/σWL of 0.8 or more It is also possible to add the following alloy components to the above basic composition. In order to improve the strength and toughness after induction hardening,
Further, one or more of Ni: 5% or less, Cr: 2% or less, Mo = 2% or less, and B: 0.01% or less. For the purpose of refining crystal grains and improving toughness and strength, A-bun2: 0.1% or less, N: 0.03% or less, ■+
:O0!596 or less, V: 0.5% or less and Nb:
Q, 5% or less of one or more types (Ti, V and Nb are also useful for improving surface pressure fatigue properties). Ca improves machinability: 0.01% or less, Te
: 0.5% or less and Pb : 0.5% type 1 or 2
(Note that Ca and Te have the function of spheroidizing MnS inclusions in the steel, improve downward bending fatigue resistance, and are also useful for improving toughness.) In addition, to prevent burning, Pro, preferably 0.020% or less, and in order to obtain high fatigue strength in the rolling direction, O:
It should be 0.0020% or less. 1 Effect] By lowering the S content of steel to 0.01% or less, the amount of MnS inclusions in steel is reduced. The present inventors found that the origin of fatigue failure due to downward bending stress in induction hardened materials was not the AJL203 inclusions, but M
It was found that these were nS inclusions. In the past, the presence of MnS was rather welcomed in order to improve machinability, but in order to improve the downward bending fatigue strength of induction hardened materials, it is necessary to reduce MnSm, that is, the S content in steel. It becomes clear what needs to be done. The roles of alloy components other than those mentioned above and the reasons for limiting the composition are as follows. C: 0.30 to 0.80% The lower limit is a value necessary to obtain the strength required for mechanical structural steel, and the upper limit is set to avoid burn cracks. Si: 0.01-0.39% 0.01% or more is required for deoxidation, and on the other hand, if the amount increases, the ease of plastic working will be lost, so 0.39%
Up to. Mn: Q, 40-2.0% It is added for the purpose of deoxidizing and ensuring strength, and the lower limit is the level necessary for this purpose. The upper limit was determined from the viewpoint of rigidity. [Embodiment 1] The effects of optionally added elements and the reasons for limiting the composition are explained in 9 below.
show. One or 2f of Ni: 5% or less, Ctl: 2% or less, Mo: 2% or less, and B: 0.01% or less! These are elements effective in improving the strength and toughness after induction hardening. However, since excessive addition impairs ductility, it should be within the above limits. A51: 0.1% or less, N: 0.03% or less, Ti:
0.5% or less, V: 0.596 or less #J[Nb: 0.
Either one type or two or more types having an amount of 5% or less has the effect of refining crystal grains. However, even if added in large amounts, the effect will be saturated, so each should be added within the limits listed. Note that when Ti, V, and Nb are added within the above composition range, they are also useful for improving surface pressure fatigue properties. Ca: 0.01% or less, Te: 0.5% or less, and P
b: Q, 5% or less of one or more types added when it is desired to improve machinability. Since excessive presence impairs hot workability and ductility, a limit was set as described above. [Example] Steel having the alloy composition shown in the table was melted in an electric furnace. After rolling into a round bar with a diameter of 100 mar, quenching and tempering, a smooth specimen with a parallel portion diameter of 8n+m was cut in the [direction and downward direction]. This test piece was induction hardened (effective hardened layer depth approximately 2 mm).
After the test was completed, a rotating bending fatigue test was conducted. The results are also shown in the table. σ L indicates the fatigue limit in the L direction, and σ indicates the fatigue limit in the downward direction. The ratio σ
It is interesting to note that the closer L/ is to 1, the lower the anisotropy. -Nkasa -Ω-" え -■--5= N Denkome Kaidan 1
0.55 0.25 150 0.
0052 0.45 0. IOO,750,0
02Mo: 0.43 0.65 0.35
1,45 0.0084 0.54 0
,24 0,65 0.0075 0.5
6 0.26 1.65 0.0046
0.55 0.25 0.85 0
.. 0057 0.54 0.22 1.4
8 Q, OQ7 Ni: 1.58 0
.. 56 0.24 145 0.005
Cr:L09 0.55 0.27
1.55 0.003 3:0.00310
0.57 0.22 153 0
.. 00811 0.53 0,25 1,
55 0.00512 0.5B O,
231,410,0%13 0.55 0.2
2 1.44 0.00514 0.5
4 0,25 1,56 0.00415
0.56 0,26 1,55
0.00216 0.55 0.22 1
,54 0.005 Mo+0.217
0.56 0.21 1.53 0.0
0618 0.57 0,25 1,55
0.008 Mo:0.2+9 0.
54 0.24 1.56 0.004
Mo: 0.2!
20 0.54 0.24 1. F.O.
0,0021ylo: 0.3 Comparative example 0.54
0,26 1,50 0.022 8 rika Gunri G small y Karasu 1 匡ヱdan -P--Ω-1 Intersection-Dan W
σWT/σW180 75 0.9f
181 76 G, 94V: 0.
2
83 77 0.93Ca
+ 0.002 80
74 0.930.012
81 76 0.940.0
008 85 80 0.941
12 75 0.9183 7
6 0.9282 76
0.93ΔQ: 0.03
82 73
0.89N:ll, 02
83 78
0.941i: Q, 1
82 75
0.92Nb: 0.2
83 74
0.89Te: 0.1
78 69 0.88Pb:
0.1 0.012 79
73 0.93V:O,+
84
77 0.92V: O,i
Ca: O, OQ3
85 79 0.93v: O
,i (J: 0.002
84 76
0.90v: 010. O12837F3 0
.. 91V: 0.1
0. (101286760,888052
0,65 and J'll The steel for induction hardening of the present invention has low anisotropy in bending strength, and the value of σWτ/σWL indicates that the structural steel for machine construction is isotropic. It exceeds 8, and is usually 0.9 or more.
Since many benefits can be enjoyed by induction firing, the present invention is suitable for manufacturing parts that are required to be produced at low cost even though high forces are applied, such as automotive transmission parts. Patent applicant suitable for Daido Steel Co., Ltd.
Claims (6)
.39%、Mn:0.40〜2.0%およびS:0.0
1%以下を含有し、残部がFeおよび不可避の不純物か
らなる鋼に高周波焼入れしてなり、高周波焼入後の曲げ
疲れ強さの比σWT/σWLが0.8以上である低い異
方性を示すことを特徴とする機械構造用鋼。(1) C: 0.30-0.80%, Si: 0.01-0
.. 39%, Mn: 0.40-2.0% and S: 0.0
1% or less, with the balance consisting of Fe and unavoidable impurities, and is made by induction hardening, and has a low anisotropy with a bending fatigue strength ratio σWT/σWL of 0.8 or more after induction hardening. A mechanical structural steel characterized by the following:
Mo:2%以下およびB:0.01%以下のいずれか1
種または2種以上を含有する特許請求の範囲第1項に記
載の機械構造用鋼。(2) The steel further includes Ni: 5% or less, Cr: 2% or less,
Any one of Mo: 2% or less and B: 0.01% or less
The machine structural steel according to claim 1, which contains one or more species.
%以下、Ti:0.5%以下、V:0.5%以下および
Nb:0.5%以下のいずれか1種または2種以上を含
有する特許請求の範囲第1項または第2項に記載の機械
構造用鋼。(3) Steel further includes Al: 0.1% or less and N: 0.03
% or less, Ti: 0.5% or less, V: 0.5% or less, and Nb: 0.5% or less. Mechanical structural steel as described.
5%以下およびPb:0.5%以下のいずれか1種また
は2種以上を含有する特許請求の範囲第1項ないし第3
項のいずれかに記載の機械構造用鋼。(4) The steel further contains Ca: 0.01% or less and Te: 0.
Claims 1 to 3 contain any one or more of 5% or less and Pb: 0.5% or less.
Machine structural steel as described in any of the above.
囲第1項ないし第4項のいずれかに記載の方法機械構造
用鋼。(5) A steel for machine structural use according to any one of claims 1 to 4, which uses steel containing P: 0.020% or less.
範囲第1項ないし第5項のいずれかに記載の機械構造用
鋼。(6) The steel for machine structures according to any one of claims 1 to 5, which uses steel containing O: 0.0020% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17084884A JPS6148557A (en) | 1984-08-16 | 1984-08-16 | Machine structural steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17084884A JPS6148557A (en) | 1984-08-16 | 1984-08-16 | Machine structural steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6148557A true JPS6148557A (en) | 1986-03-10 |
Family
ID=15912444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17084884A Pending JPS6148557A (en) | 1984-08-16 | 1984-08-16 | Machine structural steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6148557A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63100157A (en) * | 1986-10-14 | 1988-05-02 | Daido Steel Co Ltd | Non-heattreated steel for induction hardening |
JPH01100244A (en) * | 1987-10-12 | 1989-04-18 | Sumitomo Metal Ind Ltd | High carbon steel plate having excellent toughness after heat treatment and its manufacture |
JPH01198447A (en) * | 1988-02-04 | 1989-08-10 | Sumitomo Metal Ind Ltd | High toughness and high carbon thin steel plate |
CN109477174A (en) * | 2016-07-04 | 2019-03-15 | 新日铁住金株式会社 | Steel for mechanical structure |
-
1984
- 1984-08-16 JP JP17084884A patent/JPS6148557A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63100157A (en) * | 1986-10-14 | 1988-05-02 | Daido Steel Co Ltd | Non-heattreated steel for induction hardening |
JPH01100244A (en) * | 1987-10-12 | 1989-04-18 | Sumitomo Metal Ind Ltd | High carbon steel plate having excellent toughness after heat treatment and its manufacture |
JPH01198447A (en) * | 1988-02-04 | 1989-08-10 | Sumitomo Metal Ind Ltd | High toughness and high carbon thin steel plate |
CN109477174A (en) * | 2016-07-04 | 2019-03-15 | 新日铁住金株式会社 | Steel for mechanical structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3524229B2 (en) | High toughness case hardened steel machine parts and their manufacturing method | |
JP4728883B2 (en) | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties | |
CN103146997A (en) | Low-alloy high-toughness wear resistant steel plate and manufacturing method thereof | |
US9890446B2 (en) | Steel for induction hardening roughly shaped material for induction hardening | |
JP5505263B2 (en) | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties | |
CN111155025B (en) | High-strength high-toughness high-speed impact-resistant bainite steel and preparation method thereof | |
WO2013077182A1 (en) | Rolled steel bar for hot forging | |
CN114752849A (en) | High-strength and high-toughness free-cutting non-quenched and tempered round steel and manufacturing method thereof | |
JP3094856B2 (en) | High strength, high toughness case hardening steel | |
JP4957325B2 (en) | Non-tempered steel | |
JP3809004B2 (en) | Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method | |
JP3932995B2 (en) | Induction tempering steel and method for producing the same | |
JP4728884B2 (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics | |
JPH0772323B2 (en) | Non-heat treated steel bar for hot forging | |
JPH11217649A (en) | Steel for induction hardening having both cold workability and high strength and its production | |
WO1998054372A1 (en) | Non-tempered steel for mechanical structure | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
JP4344126B2 (en) | Induction tempered steel with excellent torsional properties | |
JPS6148557A (en) | Machine structural steel | |
JPH11181542A (en) | Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production | |
JPH1017928A (en) | Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength | |
JP4450217B2 (en) | Non-tempered steel for soft nitriding | |
JP6825605B2 (en) | Carburizing member | |
JPH08260039A (en) | Production of carburized and case hardened steel | |
JP3467929B2 (en) | High toughness hot forged non-heat treated steel for induction hardening |