JPS6148542A - Fiber reinforced copper type composite material - Google Patents

Fiber reinforced copper type composite material

Info

Publication number
JPS6148542A
JPS6148542A JP16867484A JP16867484A JPS6148542A JP S6148542 A JPS6148542 A JP S6148542A JP 16867484 A JP16867484 A JP 16867484A JP 16867484 A JP16867484 A JP 16867484A JP S6148542 A JPS6148542 A JP S6148542A
Authority
JP
Japan
Prior art keywords
fiber
copper
composite material
based composite
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16867484A
Other languages
Japanese (ja)
Inventor
Hideo Otsu
大津 日出男
Jun Hasegawa
順 長谷川
Kenichi Akutagawa
芥川 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP16867484A priority Critical patent/JPS6148542A/en
Publication of JPS6148542A publication Critical patent/JPS6148542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide superior thermal and electrical characteristics by combining a copper-base matrix part with a fibrous part consisting essentially of whiskers or short fibers of TiB2 or TiN distributed in all directions and having specified electric conductivity and a specified coefft. of thermal expansion. CONSTITUTION:A fiber reinforced copper type composite material is composed of a fibrous part and a copper-base matrix part filling the gap among the fibers in the fibrous part. The fibrous part consists essensially of whiskers or short fibers of TiB2 or TiN distributed in all directions and having >=4X10<5>S/cm, especially >=10<3>S/cm electric conductivity, <=15X10<-6>/ deg.C, especially <=6X10<-6>/ deg.C coefft. of thermal expansion, and 20-1,000 aspect ratio.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は銅系マトリックス中に411If1を配した繊
維強化金属に関するものであり、半導体素子の支持電極
等の電極材料として使用可能な繊維強化銅系複合材料に
関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a fiber-reinforced metal in which 411If1 is arranged in a copper-based matrix, and the fiber-reinforced copper can be used as an electrode material such as a supporting electrode of a semiconductor element. This relates to composite materials.

[従来の技術] 近年Il雑索材と金属マトリックスとが複合された新し
い材料が開発され様々な分野で応用研究が行われている
。その一つに炭素繊維と銅を組み合せた銅−炭素繊維複
合材料がある。この材料は炭素の低熱膨張性と銅の高導
電性及び高熱伝導性とがうまく生かされ、半導体素子の
支持電極等の電極材料として使用されでいる。この場合
炭素matは・その低導電性の為に配置方法等が工夫さ
れ、例えば炭素繊維を網状、あるいは特開昭55−12
8554号に見られるような織布状としてうず巻状に配
列する方法がある。第2図にこのようにして作られた複
合材の斜視図を示す。この複合材は、中心#i13に対
して炭素繊維から形成された織布4がうず巻状に巻かれ
、炭素繊維間がマトリックス材の銅で満たされた構造で
ある。従って中心線3の方向では銅の効果が作用して高
導電性と高熱伝導性を維持し、中心線3と垂直な方向で
は炭素繊維の効果が作用して熱膨張を低く押え、半導体
素子の電極として好ましいものである。
[Prior Art] In recent years, a new material that is a composite of an Il miscellaneous material and a metal matrix has been developed, and applied research is being conducted in various fields. One of these is a copper-carbon fiber composite material that combines carbon fiber and copper. This material makes good use of the low thermal expansion of carbon and the high electrical conductivity and high thermal conductivity of copper, and is used as an electrode material for supporting electrodes of semiconductor devices. In this case, the carbon mat has a low conductivity, so the arrangement method etc. is devised, for example, carbon fiber is used in a net shape, or
There is a method of arranging them in a spiral shape as a woven fabric as seen in No. 8554. FIG. 2 shows a perspective view of the composite material made in this way. This composite material has a structure in which a woven fabric 4 made of carbon fibers is spirally wound around a center #i13, and the space between the carbon fibers is filled with copper as a matrix material. Therefore, in the direction of the center line 3, the effect of copper acts to maintain high electrical conductivity and high thermal conductivity, and in the direction perpendicular to the center line 3, the effect of carbon fiber acts to keep thermal expansion low, and the semiconductor element This is preferable as an electrode.

また別の方法として特開昭57−185942号に見ら
れるように炭素繊維に銅メッキを施し、マトリックスよ
り融点の高い金属粉末を含有させた後焼成する方法もあ
る。この方法により低熱膨張性で、熱伝導性、導電性等
の物理的性質及び強度、硬さ等の機械的性質が等方性の
銅−炭素繊維複合材料が得られ、好ましい方法である。
Another method, as disclosed in Japanese Patent Application Laid-Open No. 57-185942, is to plate carbon fibers with copper, add metal powder having a higher melting point than the matrix, and then sinter the fibers. This method is a preferred method because it yields a copper-carbon fiber composite material that has low thermal expansion and isotropic physical properties such as thermal conductivity and electrical conductivity, and mechanical properties such as strength and hardness.

[発明が解決しようとする問題点] 半導体素子は近年高密度化が進み、発生する熱の問題が
各方面で横開されている。特に電極材料!      
 においては高導電性及び高熱伝導性で熱膨張率の小さ
い材料が望まれている。ところが従来の銅−炭素繊維複
合材料では熱膨張率を下げる為に炭素繊維の含有mを増
すと導電性及び熱伝導性が低下するという欠点があり、
さらに炭素繊維が織布とされ、それがうず巻き状の構造
をしている場合は411ftが積層された状態であるた
め、繰り返し熱応力、あるいは切断等の加工の際に積層
界面で剥離する場合があった。またこのうず巻き状の構
造の場合は諸性能が異方的であり、使用時の複合材料の
配置方向に制約があった。
[Problems to be Solved by the Invention] In recent years, the density of semiconductor devices has increased, and the problem of generated heat has become widespread in various fields. Especially the electrode material!
A material with high electrical conductivity, high thermal conductivity, and a low coefficient of thermal expansion is desired. However, conventional copper-carbon fiber composite materials have the disadvantage that when the carbon fiber content m is increased to lower the coefficient of thermal expansion, the electrical conductivity and thermal conductivity decrease.
Furthermore, when the carbon fiber is made into a woven fabric and has a spiral structure, 411 ft of carbon fiber are laminated, so there is a risk of peeling at the laminated interface due to repeated thermal stress or processing such as cutting. there were. Moreover, in the case of this spiral-shaped structure, various performances are anisotropic, and there are restrictions on the direction in which the composite material is placed during use.

本発明者は上記問題点に鑑み鋭意研究の結果、繊維部の
材料及び配置を工夫することにより上記問題点を解決す
ることに思い至り、本発明を完成したものである。すな
わち本発明は高導電性及び高熱伝導性で熱膨張率が小さ
く、かつ諸性能が等方向な繊維強化銅系複合材料を提供
することを目的とする。
As a result of intensive research in view of the above problems, the present inventor came up with the idea of solving the above problems by devising the material and arrangement of the fiber portion, and completed the present invention. That is, an object of the present invention is to provide a fiber-reinforced copper-based composite material that has high electrical conductivity, high thermal conductivity, a low coefficient of thermal expansion, and isotropic properties.

[問題を解決しようとする為の手段] 本発明は、繊維部と、該繊維部の繊維間を満たず銅系マ
トリックス部とから構成される繊維強化銅系複合材料に
おいて、繊維部は主としてTi32あるいはTiNのウ
ィスカあるいは短繊維から成り、該繊維部が全体に無配
向に分布して構成されて、導電率が4X10SS/cm
以上及び熱膨張率が15X10−6/’C以下であるこ
とを特徴とする。
[Means for solving the problem] The present invention provides a fiber-reinforced copper-based composite material composed of a fiber portion and a copper-based matrix portion that fills the space between the fibers of the fiber portion, in which the fiber portion is mainly made of Ti32. Alternatively, it is composed of TiN whiskers or short fibers, and the fiber portions are distributed non-oriented throughout, and the electrical conductivity is 4X10SS/cm.
and a thermal expansion coefficient of 15X10-6/'C or less.

本発明のI!維強化銅系複合材料に使用される繊維材料
としては、高導電率、高熱伝導率、低熱膨張率を有する
材料であり、具体的には導電率が1038/am以上、
熱伝導率が0.3w/cm−℃以上、熱膨張率が6X1
0−”/℃以下の特性を有することが必要である。この
ような材料としテハ、Ti1t、TiN、Tie、Si
C,ZrC1炭素等があるが、この中でも特にvI導電
率高いTiBzあるいはTINを使用することが望まし
い。第1表にTiB2ウィスカ、TtNウィスカ及び炭
素繊維の特性値を示す。この表からTiB2ウィスカと
TANウィスカは熱伝導率及び熱膨張率は炭素IIII
llとほとんど変わらないが導電率が著しく大きいこと
がわかる。この理由により本発明の繊維強化銅系複合材
料には少なくともTlB2又はTtNからなるtaiI
llを用いることが望ま第   1   表 しい。TiB2又はTiNを単独で使用した場合に最も
良好な性能が得られるが、そこまでの性能が要求されな
い場合には、他の材料、例えばliC,S i C,Z
rC,炭素等を混合して用いることもできる。
I of the present invention! The fiber material used in the fiber-reinforced copper-based composite material is a material with high electrical conductivity, high thermal conductivity, and low coefficient of thermal expansion, and specifically, a material with electrical conductivity of 1038/am or more,
Thermal conductivity is 0.3w/cm-℃ or higher, thermal expansion coefficient is 6X1
It is necessary to have a property of 0-"/℃ or less. Examples of such materials include Ti, Ti, TiN, Tie, and Si.
Among them, it is desirable to use TiBz or TIN, which has a particularly high vI conductivity. Table 1 shows the characteristic values of TiB2 whiskers, TtN whiskers, and carbon fibers. From this table, the thermal conductivity and thermal expansion coefficient of TiB2 whisker and TAN whisker are carbon III.
It can be seen that although the conductivity is almost the same as that of ll, the conductivity is significantly higher. For this reason, the fiber-reinforced copper-based composite material of the present invention has taiI consisting of at least TlB2 or TtN.
It is preferable to use ll for the first expression. The best performance is obtained when TiB2 or TiN is used alone, but if such performance is not required, other materials such as liC, SiC, Z
A mixture of rC, carbon, etc. can also be used.

本発明の特色は繊維部を構成する繊維として、上記高導
電材料からなるウィスカあるいは短繊維を使用するとこ
ろにある。ここでこのウィスカあるいは短繊維は直径が
0.1μ〜1μ、さらにそのアスペクト比が20〜10
00の範囲のものが望ましい。アスペクト比が1000
より大きい場合、すなわちII雑の直径に対して長さが
極端に良い場合にはm紐の分布が不均一になりゃすく、
得られたm維強化銅系複合材料の特性が異方的となり好
ましくない。一方、アスペクト比が20より小さい場合
、すなわち4g雑の直径に対して長さが極端に短い場合
には、繊維は均一には分布しゃずいが、得られた繊維強
化銅系複合材料の熱膨張率が期待するほど下がらないと
いう問題があり好ましくない。上記範囲のアスペクト比
を有するウィスカあるいは短繊維を使用することにより
分布が均一になって無配向となり、諸性能が等方的な、
すなりも諸性能がいずれの方向からみても等しい繊維強
化銅系複合材料が得られる。なお、上記高導電材料のウ
ィスカは一般的なウィスカの製造法である同相法、液相
法、気相法のどの方法で製造されたものでも使用できる
A feature of the present invention is that whiskers or short fibers made of the above-mentioned highly conductive material are used as the fibers constituting the fiber portion. The whiskers or short fibers have a diameter of 0.1μ to 1μ and an aspect ratio of 20 to 10.
A value in the range of 00 is desirable. Aspect ratio is 1000
If it is larger, that is, if the length is extremely good compared to the diameter of II miscellaneous, the distribution of m strings is likely to be uneven.
The properties of the obtained m-fiber reinforced copper-based composite material become anisotropic, which is undesirable. On the other hand, when the aspect ratio is smaller than 20, that is, when the length is extremely short compared to the diameter of 4 g, the fibers are not uniformly distributed, but the thermal expansion of the resulting fiber-reinforced copper-based composite material is This is not desirable as there is a problem that the rate does not decrease as much as expected. By using whiskers or short fibers having an aspect ratio within the above range, the distribution becomes uniform and non-oriented, resulting in isotropic performance.
A fiber-reinforced copper-based composite material having the same bending properties and properties when viewed from any direction can be obtained. The whiskers made of the highly conductive material may be manufactured by any of the common whisker manufacturing methods, such as an in-phase method, a liquid phase method, and a gas phase method.

本発明の繊維強化銅系複合材料のマトリックス譬 としでは銅あるいは銅合金が使用できる。このマトリッ
クスと上記w4帷部が複合化されるのであるが、その配
合比率は要求性能に応じて変えることができる。すなわ
ちM&維組部多くなると熱膨張率は小さくなって好まし
くなるが、反面導電率及び熱伝導率が低下し、マトリッ
クス部が多くなるとその逆の現象が生じる。
Copper or a copper alloy can be used as a matrix for the fiber-reinforced copper-based composite material of the present invention. This matrix and the above-mentioned W4 sleeve are combined, and the blending ratio can be changed depending on the required performance. That is, as the number of M&fiber parts increases, the coefficient of thermal expansion decreases, which is preferable, but on the other hand, the electrical conductivity and thermal conductivity decrease, and as the number of matrix parts increases, the opposite phenomenon occurs.

次に本発明のm維強化銅系複合材料の製造方法を説明す
る。
Next, a method for producing the m-fiber reinforced copper-based composite material of the present invention will be explained.

本発明の繊維強化銅系複合材料の製造方法としては粉末
冶金法及び溶湯鍛造法を用いる事ができる。粉末冶金法
としては例えば適当な粒度の銅粉とTiB2等のウィス
カを湿式混合し、乾燥後金型内に入れ、400〜550
℃で約1時間加圧焼結する方法がある。また溶湯鍛造法
を用いる場合はまずTiBz等のウィスカを金型に入れ
、加圧することにより予備成形体を得る。その後適度な
温度に加熱された予備成形体を別の金型に入れ、120
0℃〜1300℃程度の銅溶湯を注入し、プランジャあ
るいはガス圧等で成形体内に500ko/cm2以上の
圧力で含浸させる。この時500kg/Cm2より圧力
が小さいと複合材料中に収縮巣等の欠陥が残存し、特性
に悪い影響を与えるので注意が必要である。
A powder metallurgy method and a molten metal forging method can be used as a method for manufacturing the fiber-reinforced copper-based composite material of the present invention. As a powder metallurgy method, for example, copper powder with an appropriate particle size and whiskers such as TiB2 are wet mixed, dried, and then placed in a mold.
There is a method of pressure sintering at ℃ for about 1 hour. Further, when using the molten metal forging method, whiskers such as TiBz are first placed in a mold and pressurized to obtain a preformed body. After that, the preformed body heated to an appropriate temperature was placed in another mold, and the
Molten copper at about 0° C. to 1300° C. is injected and impregnated into the molded body using a plunger or gas pressure at a pressure of 500 ko/cm 2 or more. At this time, care must be taken because if the pressure is lower than 500 kg/Cm2, defects such as shrinkage cavities will remain in the composite material, which will adversely affect the properties.

本発明の繊維強化銅系複合材料を得るには上記2つの製
造方法のなかでも溶湯鍛造法を使用するのが望ましい。
Among the above two manufacturing methods, it is preferable to use the molten metal forging method to obtain the fiber-reinforced copper-based composite material of the present invention.

この理由は粉末冶金法では複合材料中に空孔が残って特
性に悪影響を及ばず場合があるからである。
The reason for this is that powder metallurgy may leave pores in the composite material without adversely affecting the properties.

[作用] 本発明の繊維強化銅系複合材料は繊維部を構成するウィ
スカあるいは短繊維が全体に均一に、かつ方向がランダ
ムに分布しているためその特性が等方的である。すなわ
らどの方向がら各特性を測定しても同じ結果を与える。
[Function] The fiber-reinforced copper-based composite material of the present invention has isotropic properties because the whiskers or short fibers constituting the fiber portion are uniformly distributed throughout and in random directions. In other words, the same results are given no matter which direction each characteristic is measured.

さらにウィスカあるいは短繊維は高導電性物質で構成さ
れているので、その配合量を増して熱膨張率の低下を図
っても導電率は高水準を保っている。
Furthermore, since the whiskers or short fibers are composed of a highly conductive substance, the conductivity remains at a high level even if the content of the whiskers or short fibers is increased to lower the coefficient of thermal expansion.

[実施例] 以下実施例にて説明する。[Example] This will be explained below using examples.

(実施例1) 繊維部として気相法にて得られた直径0.1〜1μ、長
さ20〜100μのTiBzウィスカを、マトリックス
として銅を使用し、繊維部とマトリックス部の比率を繊
維の含有率が10vo1%〜4Qvo 1%まで5vo
 1%きざみとなるように変化さけて溶湯鍛造法により
7種類の繊維強化銅系複合材料を製造し実施例1とした
(Example 1) TiBz whiskers with a diameter of 0.1 to 1μ and a length of 20 to 100μ obtained by a vapor phase method were used as the fiber part, copper was used as the matrix, and the ratio of the fiber part to the matrix part was adjusted to that of the fiber. Content rate is 5vo up to 10vo1% to 4Qvo 1%
Seven types of fiber-reinforced copper-based composite materials were manufactured by the molten metal forging method in increments of 1% to form Example 1.

まずT+B2ウィスカを必要m金型に入れ、−軸プレス
で加圧して予備成形体を得た。その後800〜1100
℃に加熱された予備成形体を別の金型に入れ、1200
〜1300’C程度の銅溶湯を注入し、プランジャ法に
て500 k Q / c m 2の圧力で繊維間に銅
を含浸させ、冷却して30mrnx15mmx5mmの
直方体形状繊維強化銅系複合材料を得た。得られたw4
N強化銅系複合材料の斜視図を第1図に示す。
First, T+B2 whiskers were placed in a mold with m required and pressed with a -axis press to obtain a preform. After that 800-1100
The preform heated to ℃ was placed in another mold and heated to 1200℃.
Molten copper at ~1300'C was injected, copper was impregnated between the fibers at a pressure of 500 kQ/cm2 using a plunger method, and the material was cooled to obtain a rectangular parallelepiped-shaped fiber-reinforced copper-based composite material of 30 mrn x 15 mm x 5 mm. . Obtained w4
A perspective view of the N-reinforced copper-based composite material is shown in Figure 1.

上記7種類の繊維強化銅系複合材料について導電率、熱
伝導率及び熱膨張率を測定し、結果を第3図及び第4図
に示す。なおこれらの測定は繊維強化銅系複合材料の各
方向について測定したが、どの方向においてもほとんど
同結果が得られた。
The electrical conductivity, thermal conductivity, and coefficient of thermal expansion of the above seven types of fiber-reinforced copper-based composite materials were measured, and the results are shown in FIGS. 3 and 4. These measurements were performed in each direction of the fiber-reinforced copper-based composite material, and almost the same results were obtained in all directions.

これはすなわち性能が等方的であり、Ti321JH維
がほとんど無配向であると確認できる。
This means that the performance is isotropic, and it can be confirmed that the Ti321JH fibers are almost non-oriented.

(実施例2) 気相法にて得られた直径0.1〜1μ、長さ20〜10
0μのTiNウィスカを使用すること以外は実施例1ど
全く同様にして実施例1と同形状の7種類の41維強化
銅系複合材料を製造し実施例2とした。これらの41維
強化銅系複合材料は実施例1と同様に導電率、熱伝導率
及び熱膨張率が測定され結果を第5図及び第6図に示す
。なおこれらの繊維強化銅系複合材料も実施例1と同様
に各性能が等方的であり、T i N繊維がほとんど無
配向であると確認された。
(Example 2) Diameter 0.1-1μ and length 20-10 obtained by gas phase method
Example 2 was prepared by manufacturing seven types of 41-fiber-reinforced copper-based composite materials having the same shape as in Example 1 in exactly the same manner as in Example 1 except that TiN whiskers of 0 μm were used. The electrical conductivity, thermal conductivity, and coefficient of thermal expansion of these 41 fiber-reinforced copper-based composite materials were measured in the same manner as in Example 1, and the results are shown in FIGS. 5 and 6. It was confirmed that these fiber-reinforced copper-based composite materials had isotropic properties as in Example 1, and that the TiN fibers were almost non-oriented.

(従来例) 直径7〜8μの炭素繊維を織布状とし、うず巻き状に簀
子巻きにして金型に入れ、1200〜1300℃の銅溶
湯を注入し、プランジャ加圧法にて500kg/cm2
の圧力で繊維内に銅を含浸j       させ、冷却
して直径20 rTl ff+、高さ10mrnの円柱
形状の繊維強化銅系複合材料を得た。なおこの従来例の
繊維強化銅系複合材料は実施例1と同様に繊維の含有率
が1Qvo1%〜40vo 1%迄5vo1%きざみと
なるように変化させて7種類の繊維強化銅系複合材料が
製造された。
(Conventional Example) Carbon fibers with a diameter of 7 to 8 μm are made into a woven fabric, wound into a spiral shape, placed in a mold, and molten copper at 1200 to 1300°C is injected, using a plunger pressurization method to produce 500 kg/cm2.
Copper was impregnated into the fibers at a pressure of j and cooled to obtain a cylindrical fiber-reinforced copper-based composite material with a diameter of 20 rTl ff+ and a height of 10 mrn. In this conventional fiber-reinforced copper-based composite material, seven types of fiber-reinforced copper-based composite materials were prepared by changing the fiber content from 1Qvo1% to 40vo1% in 5vo1% increments, as in Example 1. manufactured.

上記7種類の従来例の繊維強化銅系複合材料について導
電率、熱伝導率及び熱膨張率を測定し、結果を第3図〜
第6図に示す。なお、導電率と熱伝導率は円柱の高さ方
向で測定し、熱膨張率は円柱の直径方向で測定した。
The electrical conductivity, thermal conductivity, and coefficient of thermal expansion of the above seven types of conventional fiber-reinforced copper composite materials were measured, and the results are shown in Figures 3 to 3.
It is shown in FIG. Note that the electrical conductivity and thermal conductivity were measured in the height direction of the cylinder, and the thermal expansion coefficient was measured in the diameter direction of the cylinder.

第4図及び第6図より、熱膨張率においては実施例1及
び実施例2は従来例よりやや高い程度であり、実用上は
差異が無くほとんど同等の特性を有していると言える。
From FIG. 4 and FIG. 6, it can be said that the thermal expansion coefficients of Example 1 and Example 2 are slightly higher than that of the conventional example, and that there is no difference in practical use and that they have almost the same characteristics.

そして第3図及び第5図より、導電率及び熱伝導率にお
いては実施例1及び実施例2の方が従来例より明らかに
高導電性かつ高熱伝導性であり優れていることがわかる
。ところで第1表にも示したように、TiBz又は1−
iNのウィスカは炭素繊維より単体の熱伝導率が小さい
にもかかわらず、繊維強化銅系複合材料の熱伝導率は実
施例1及び2とも従来例より人きくな第   2   
表 第   3   表 (熱膨張率9.bx 10−’/”G)っている。これ
はTiB2又はTiNのウィスカとマトリックスである
銅との接合が良く、銅が繊維間を空隙無く密に充填して
いるためと考えられる。
From FIG. 3 and FIG. 5, it can be seen that in terms of electrical conductivity and thermal conductivity, Examples 1 and 2 are clearly superior in electrical conductivity and thermal conductivity to the conventional example. By the way, as shown in Table 1, TiBz or 1-
Although the iN whisker has a smaller thermal conductivity than carbon fiber, the thermal conductivity of the fiber-reinforced copper-based composite material is lower than that of the conventional example in both Examples 1 and 2.
Table 3 (Thermal expansion coefficient: 9.bx 10-'/"G) This is thought to be due to the fact that

次に第4図、第6図から熱膨張率が8.0X10−6/
℃及び9.5X10−6/℃の時の実施例及び従来例の
M&緒の含有率を求め、それに従って第3図、第5図か
ら各々の導電率及び熱伝導率を求めた結果を第2表と第
3表に示J゛。
Next, from Figures 4 and 6, the coefficient of thermal expansion is 8.0X10-6/
℃ and 9.5X10-6/℃, the content of M&O in the example and the conventional example was determined, and the results of determining the electrical conductivity and thermal conductivity of each from FIG. 3 and FIG. Shown in Tables 2 and 3.

上記表より明らかに、本発明の実施例の繊維強化銅系複
合材料は従来例の繊維強化銅系複合材料に比較し、同じ
熱膨張率にした場合に導電率及び熱伝導率がかなり高く
なっている。また熱膨張率を9.5X10−6/”Cか
68.0X10−6/℃へ下げた場合を惣定すると第2
表、第3表より導電率及び熱伝導率の低下は実施例が5
〜9%であるのに比べ従来例は12〜20%とかなり人
きくなっている。すなわち本発明は、従来に比較し高導
電性及び高熱伝導性で熱膨張率が小さいtM維強化銅系
複合材料を提供するものである。
It is clear from the table above that the fiber-reinforced copper-based composite material of the example of the present invention has considerably higher electrical conductivity and thermal conductivity than the conventional fiber-reinforced copper-based composite material when the coefficient of thermal expansion is the same. ing. In addition, if we determine the case where the thermal expansion coefficient is lowered to 9.5X10-6/"C or 68.0X10-6/"C, the second
From Table and Table 3, the decrease in electrical conductivity and thermal conductivity was in Example 5.
Compared to ~9% in the conventional example, it is considerably more popular at 12~20%. That is, the present invention provides a tM fiber-reinforced copper-based composite material that has higher electrical conductivity, higher thermal conductivity, and a lower coefficient of thermal expansion than conventional materials.

[発明の効果] 本発明の繊維強化銅系複合材料が半導体素子の電極等に
使用された場合、熱の放散が速やかで熱膨張も少なく、
かつ高導電性であるため熱的及び電気的性能に優れ、か
つ耐久性に優れている。さらにM&紺が均一に分布し、
かつ繊維の方向がランダムで無配向であるため、繰り返
し熱浴ツノ、あるいは切断等の加工の際においても、従
来のような積層面での剥離の問題は生じない。
[Effects of the Invention] When the fiber-reinforced copper-based composite material of the present invention is used for electrodes of semiconductor devices, etc., heat dissipates quickly and thermal expansion is small.
Since it is highly conductive, it has excellent thermal and electrical performance as well as excellent durability. Furthermore, M & navy blue are evenly distributed,
In addition, since the direction of the fibers is random and non-oriented, there is no problem of peeling on the laminated surface as in the conventional case even during processing such as repeated hot bathing or cutting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維強化銅系複合材料の概念的な斜視
図であり、第2図は従来の方法で製造された繊維強化銅
系複合材料の概念的な斜視図である。第3図、第4図、
第5図及び第6図は本発明の実施例及び従来例の繊維強
化銅系複合材料に係る特性を表わす線図であり、第3図
、第5図は導電率及び熱伝導率と繊維含有率との関係を
表わす絵図、第4図、第6図は熱膨張率−と8M含有率
の関係を表わす線図である。 1・・・TiBzウィスカ 2・・・銅    3・・・中心線 4・・・織布
FIG. 1 is a conceptual perspective view of a fiber-reinforced copper-based composite material of the present invention, and FIG. 2 is a conceptual perspective view of a fiber-reinforced copper-based composite material manufactured by a conventional method. Figure 3, Figure 4,
5 and 6 are diagrams showing the characteristics of fiber-reinforced copper-based composite materials according to the embodiment of the present invention and conventional examples. Figures 4 and 6 are diagrams showing the relationship between the coefficient of thermal expansion and the 8M content. 1... TiBz whisker 2... Copper 3... Center line 4... Woven fabric

Claims (3)

【特許請求の範囲】[Claims] (1)繊維部と、該繊維部の繊維の繊維間を満たす銅系
マトリックス部とから構成される繊維強化銅系複合材料
において、 繊維部は主としてTiB_2あるいはTiNのウイスカ
あるいは短繊維から成り、該繊維部が全体に無配向に分
布して構成されて、導電率が4×10^5S/cm以上
及び熱膨張率が15×10^−^6/℃以下であること
を特徴とする繊維強化銅系複合材料。
(1) In a fiber-reinforced copper-based composite material composed of a fiber part and a copper-based matrix part that fills between the fibers of the fiber part, the fiber part mainly consists of whiskers or short fibers of TiB_2 or TiN, and Fiber reinforcement characterized in that the fiber portion is distributed non-oriented throughout, and has an electrical conductivity of 4 x 10^5 S/cm or more and a thermal expansion coefficient of 15 x 10^-^6/°C or less. Copper-based composite material.
(2)繊維部は、導電率が10^3S/cm以上、熱伝
導率が0.3w/cm・℃以上及び熱膨張率が6×10
^−^6/℃以下であることを特徴とする特許請求の範
囲第1項記載の繊維強化銅系複合材料。
(2) The fiber part has an electrical conductivity of 10^3S/cm or more, a thermal conductivity of 0.3w/cm・℃ or more, and a thermal expansion coefficient of 6×10
The fiber-reinforced copper-based composite material according to claim 1, characterized in that the temperature is ^-^6/°C or less.
(3)繊維部はそのアスペクト比が20〜1000の範
囲にある特許請求の範囲第2項記載の繊維強化銅系複合
材料。
(3) The fiber-reinforced copper-based composite material according to claim 2, wherein the fiber portion has an aspect ratio in the range of 20 to 1000.
JP16867484A 1984-08-10 1984-08-10 Fiber reinforced copper type composite material Pending JPS6148542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16867484A JPS6148542A (en) 1984-08-10 1984-08-10 Fiber reinforced copper type composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16867484A JPS6148542A (en) 1984-08-10 1984-08-10 Fiber reinforced copper type composite material

Publications (1)

Publication Number Publication Date
JPS6148542A true JPS6148542A (en) 1986-03-10

Family

ID=15872381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16867484A Pending JPS6148542A (en) 1984-08-10 1984-08-10 Fiber reinforced copper type composite material

Country Status (1)

Country Link
JP (1) JPS6148542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281022A (en) * 2020-11-04 2021-01-29 河南科技大学 Copper-based composite material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281022A (en) * 2020-11-04 2021-01-29 河南科技大学 Copper-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
AT408153B (en) METAL MATRIX COMPOSITE (MMC) COMPONENT
US4196442A (en) Semiconductor device
US5814408A (en) Aluminum matrix composite and method for making same
US3214249A (en) Superconducting composite articles
JPH0151844B2 (en)
KR100217032B1 (en) Fabrication method of w-skelton structure for the infiltration of cu melt and composites thereof
US3036017A (en) Heat resistant and oxidation proof materials
JP2001105124A (en) Heat radiation substrate for semi conductor device
JPS6148542A (en) Fiber reinforced copper type composite material
JP2004525261A (en) Highly porous sintered body and method for producing the same
US3352007A (en) Method for producing high critical field superconducting circuits
US4080726A (en) Method for manufacturing an electrical heating device
US3681063A (en) Method of making metal fibers
US6185810B1 (en) Method of making high temperature superconducting ceramic oxide composite with reticulated metal foam
EP0711496B1 (en) Ceramic heating element and process for producing such a heating element
US3961909A (en) Uniformly porous body
JP2004076043A (en) Ceramics-metal based composite material and method for producing the same
JPH05186276A (en) Heat-receiving plate material produced by using carbon fiber-reinforced carbon composite material and its production
JP3510710B2 (en) Method for manufacturing ceramic-based fiber composite member
JP4053729B2 (en) Composite material and manufacturing method thereof
JPH07249717A (en) Material head dissipation board
US5455225A (en) Method of producing a metal superconductive ceramic connection
JPH06183860A (en) Multifunctional material
JPS6136162A (en) Electroconductive ceramic composite body
JPS59121724A (en) Electric contact member for vacuum breaker and method of producing same