JPS6148514A - Quenching method of steel - Google Patents

Quenching method of steel

Info

Publication number
JPS6148514A
JPS6148514A JP17003984A JP17003984A JPS6148514A JP S6148514 A JPS6148514 A JP S6148514A JP 17003984 A JP17003984 A JP 17003984A JP 17003984 A JP17003984 A JP 17003984A JP S6148514 A JPS6148514 A JP S6148514A
Authority
JP
Japan
Prior art keywords
steel
cooling
temperature
hardness
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17003984A
Other languages
Japanese (ja)
Inventor
Takeshi Naito
武志 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP17003984A priority Critical patent/JPS6148514A/en
Publication of JPS6148514A publication Critical patent/JPS6148514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To quench a steel in a short time to quenched high surface hardness of arbitrary depth, by heating the steel having a specified C content to quenching temp., spray cooling said steel to harden the surface to a desired depth, then holding it at a suitable temp. for a prescribed time. CONSTITUTION:The steel consisting of 0.65-0.85% C preferably further, 0.23- 0.32% Si, 0.4-0.9% Mn, <=2.0% Ni, 0.5-1.5% Cr, 0.10-0.20% Mo and the balance Fe (contg. usual impurities) is heated to about 800-850 deg.C quenchable temp., and spray cooled to an extent in which desired surface hardening depth is obtd. Successively thereto, said steel is held isothermally at 150-<250 deg.C temp. for 10-50min, then quenched by arbitrary cooling. Said spray cooling is performed preferably by water spraying at 4-6kg/cm<2> water pressure and for 0.2-0.8sec. By the quenching, high quenched surface hardness can be obtd. with hardened depth controllable arbitrarily, and arbitrary matrix hardness is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鋼の焼入方法に関し、さらに詳しくは、任意
の硬化深さで高い焼入表面硬さが得られ、かつ任意の素
地硬さが得られる鋼の焼入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for quenching steel, and more specifically, to a method for quenching steel, which provides high quenched surface hardness at an arbitrary hardening depth, and provides a method for quenching steel at an arbitrary hardening depth. This invention relates to a method for quenching the obtained steel.

従来の技術 鋼を焼入れし強化する方法には、大別して、(1)焼入
対象物体全体を加熱し焼入れする方法と。
Conventional methods for hardening and strengthening steel can be roughly divided into (1) methods of heating and hardening the entire object to be hardened;

(2)焼入物体の表面を内部よシも硬化させた。すなわ
ち表面硬化焼入れする方法とがある。これらの方法のう
ち、(1)の方法は(2)の方法に比較して表面が硬化
せず1表面硬さが低いという短所を有する。一方、(乃
の表面硬化焼入れ法としては、浸炭焼入れ法、高周波焼
入れ法、窒化による方法などが一般的である。しかし、
浸炭焼入れは、硬化深さを得るために、他の方法よりも
処理時間が長いという欠点がある。その結果。
(2) The surface of the hardened object was hardened as well as the inside. That is, there is a method of surface hardening and quenching. Among these methods, the method (1) has the disadvantage that the surface is not hardened and the surface hardness is lower than the method (2). On the other hand, common surface hardening methods include carburizing and quenching, induction hardening, and nitriding.However,
Carburizing and quenching has the disadvantage of requiring longer processing times than other methods to obtain hardening depth. the result.

処理費用も都側である。また、高周波焼入れは、浸炭に
比較して短時間に処理できるが、炭素含有量の多い鋼に
は焼割れを発生させるために処理ができないという欠点
がある。また、窒化法は、他の方法に比較して硬化深さ
が浅い7tめに。
The processing costs are also borne by the city. In addition, although induction hardening can be performed in a shorter time than carburizing, it has the disadvantage that steel with a high carbon content cannot be treated because it causes quench cracking. In addition, the nitriding method has a shallow hardening depth of 7 tons compared to other methods.

高負荷状態の使用に耐えられないという欠点がある。The drawback is that it cannot withstand use under high load conditions.

さらに、上記三つの表面硬化法に共通する欠点としては
、焼入物体の表面硬化部以外の部位(表面硬化深さの2
〜5倍の深い位置)の硬さ。
Furthermore, a common drawback of the above three surface hardening methods is that parts other than the surface hardened part of the quenched object (2 points of the surface hardening depth)
~5 times deeper position) hardness.

すなわち素地硬さを任意に関節することができないとい
う欠点がある。
That is, there is a drawback that the hardness of the base material cannot be adjusted arbitrarily.

発明が解決しようとする問題点 従って、本発明の目的は、比較的短い処理時間で、高い
焼入表面硬さが得られ、しかもその硬化深さをかなシの
範囲で任意に調節可能であ□      リ、かつ任意
の素地硬さが得られる鋼の焼入方法を提供することにあ
る。
Problems to be Solved by the Invention Accordingly, an object of the present invention is to obtain a high hardened surface hardness in a relatively short processing time, and also to be able to arbitrarily adjust the hardening depth within a certain range. □ It is an object of the present invention to provide a method of hardening steel that can obtain a desired base hardness.

問題点を解決するための手段 本発明に係る鋼の焼入方法は、上記目的を達成するため
、炭素含有量0.65〜0.85%を有する鋼を焼入れ
可能な温度に加熱し、所望の表面硬化深さを得るS=に
スプレー冷却し、続いて恒温保持150℃以上250℃
未満の温度に所定時間保持し、その後任意に冷却するこ
とをIJf!j9とするものである。この場合、加熱後
のスプレー冷却は水スプレー冷却により行なうことが好
ましい0 本発明の焼入方法に適用される鋼としては。
Means for Solving the Problems In order to achieve the above object, the steel quenching method according to the present invention heats steel having a carbon content of 0.65 to 0.85% to a temperature at which it can be quenched, and heats the steel to a desired temperature. Spray cooling to S= to obtain a surface hardening depth of
IJf! is maintained at a temperature below the specified time for a predetermined period of time, and then optionally cooled down. j9. In this case, the spray cooling after heating is preferably carried out by water spray cooling.The steel to be applied to the quenching method of the present invention is preferably water spray cooling.

C0165〜0.85%、 Si 0.23〜0.32
%、 Mn 0.4〜0.9%、N12Q%以下、Cr
y、 5〜1.5%、 Mo 0.10〜0.20%、
残部Pg(通常の不純物含む)よりなる鋼が好オしい。
C0165~0.85%, Si 0.23~0.32
%, Mn 0.4-0.9%, N12Q% or less, Cr
y, 5-1.5%, Mo 0.10-0.20%,
Steel with a balance of Pg (containing normal impurities) is preferred.

発明の作用 本発明の方法は、焼入硬さが最大値となる炭素含量を有
する鋼を用いて、この被焼入物を焼入れ可能な温度に加
熱し、水スプレー冷却にて必要とする表面硬化深さを得
るように調整された冷却を行なう。続いて、鋼のM5点
の温度近傍に被焼入物全体を保持する。(すると、この
際に、冷却された表面部は加熱を受けることになるが、
被焼入物の内部は冷却される。)すなわち1M、9点近
傍の温度に被焼入物を冷却することにより、被焼入物体
の内部の硬さを変化させることができる。
Effect of the Invention The method of the present invention uses steel having a carbon content that maximizes hardening hardness, heats the object to be hardened to a temperature at which it can be hardened, and cools the object by water spray to obtain the required surface. Cooling is regulated to obtain depth of cure. Subsequently, the entire object to be quenched is held at a temperature near the M5 point of the steel. (Then, at this time, the cooled surface will be heated,
The inside of the object to be hardened is cooled. ) That is, by cooling the object to be hardened to a temperature near 1M, 9 points, the internal hardness of the object to be hardened can be changed.

すなわち1以上のような方法によって、焼入表面硬式は
最大となり、しかも水スプレー冷却の条件及び該冷却後
の恒温保持の条件等を適当に選択することによシ、任意
の硬化深さが得られ、かつ任意の素地硬さが得られるこ
とになり、従来の欠点を除いた全く新しい鋼の焼入方法
が提供される。
In other words, by using the method described above, the hardening surface hardness can be maximized, and by appropriately selecting the water spray cooling conditions and the constant temperature maintenance conditions after cooling, an arbitrary hardening depth can be obtained. In this way, a completely new method for quenching steel is provided, which eliminates the drawbacks of the conventional method.

ここで、本発明方法の特長を理解し易いように、前記し
た従来法との相違点をまとめて示すと、第1表のとおシ
である。
Here, in order to facilitate understanding of the features of the method of the present invention, the differences from the conventional method described above are summarized as shown in Table 1.

以下余白 発明の態様 以下、本発明方法の各種態様並びに各工程の選定条件等
について1図面及び試験結果等を示しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, various aspects of the method of the present invention, selection conditions for each step, etc. will be explained while showing one drawing, test results, etc.

α)使用した材料 以下に説明する各種試験及び後述する実施例で使用した
材料の化学組成を第2表に示す。なお、以下の説明にお
いては、使用した拐料の表示は第2表に示す鷹を引用し
て示す。
α) Materials used Table 2 shows the chemical compositions of the materials used in the various tests and Examples described below. In addition, in the following explanation, the display of the used phthalate is shown with reference to the hawk shown in Table 2.

第2表−使用した鋼の化学組成 り)表面硬化させるための冷却 第1図に本発明の方法における表面硬化処理に用いるス
プレー冷却装置の一例の概略構成図を示す。図中、1は
被焼入物であり、2はこの被焼入物1を支持する支持具
である03はそれぞれ一足の間隔で相対して配置された
冷却管であり、4は冷却水導入管、5は噴射口を示す。
Table 2 - Chemical composition of steel used) Cooling for surface hardening FIG. 1 shows a schematic diagram of an example of a spray cooling device used for surface hardening in the method of the present invention. In the figure, 1 is the object to be hardened, 2 is a support for supporting the object 1 to be hardened, 03 is a cooling pipe arranged opposite to each other at an interval of one foot, and 4 is a cooling water introduction. The tube, 5, indicates the injection port.

まず、焼入温度800〜850℃に加熱された被焼入物
1は、支持具2に支持されて、相対して配置された2つ
の冷却管30間に導入される。
First, the object 1 to be quenched heated to a quenching temperature of 800 to 850° C. is supported by the support 2 and introduced between two cooling pipes 30 disposed opposite to each other.

すると、ここで、冷却水導入管4から導入された水が冷
却管3に充満されて噴射口5より噴射され、被焼入物1
の表面が冷却される0このようにして、焼入れ可能な温
度に加熱された処理材(被焼入物)は、所望の表面硬化
深さを得る程度にスプレー冷却される。所望の表面硬化
深さは、冷却時間あるいは噴射圧力によって調節可能で
ある。以下、これらの関係について説明する。
Then, the water introduced from the cooling water introduction pipe 4 fills the cooling pipe 3 and is injected from the injection port 5, and the water introduced from the cooling water introduction pipe 4 is injected from the injection port 5.
The treated material (hardened material) heated to a hardenable temperature in this manner is spray cooled to the extent that a desired surface hardening depth is obtained. The desired surface hardening depth can be adjusted by cooling time or injection pressure. These relationships will be explained below.

ます、冷却時間と硬化深さとの関係は第2図に示すとお
Vである0第2図は、第2表の/I61及びA7の銅を
試料として用いた場合の、水の圧力を5 K9/ cJ
一定とした場合における冷却時間と硬化深さの関係を示
す。第2図から明らかなように、最高の焼入深さを得る
には少なくとも08秒の冷却時間が必要である。しかし
、冷却時間を1.0秒にのはしても焼入深さは殆んど増
加しない。従って、冷却時間の最大値は0.8秒が限界
であり、これ以下に止めることが好ましい。また、0.
2秒未満の冷却時間では0.5−以下の硬化深さしか得
られず実用的意味を持たない。従って、冷却時間の最小
値は0.2秒であシ、これ以上の冷却時間を選定するこ
とが好ましい。このように水の圧力を一定にし、冷却時
間を変えることによシ所望の硬化深さを得ることができ
る。
The relationship between cooling time and hardening depth is shown in Figure 2. Figure 2 shows the water pressure when using /I61 and A7 copper in Table 2 as samples. /cJ
The relationship between cooling time and hardening depth is shown when the cooling time is constant. As is clear from FIG. 2, a cooling time of at least 0.8 seconds is required to obtain the maximum hardening depth. However, even if the cooling time is set to 1.0 seconds, the quenching depth hardly increases. Therefore, the maximum value of the cooling time is limited to 0.8 seconds, and it is preferable to keep the cooling time below this. Also, 0.
If the cooling time is less than 2 seconds, a hardening depth of only 0.5- or less can be obtained and has no practical meaning. Therefore, the minimum value of the cooling time is 0.2 seconds, and it is preferable to select a cooling time longer than this. In this way, by keeping the water pressure constant and varying the cooling time, a desired hardening depth can be obtained.

一方、圧力を変数として硬化深さを調査すると裁3図に
示すような関係が得られる。第3図は、腐7の試料につ
いて、冷却時間を0.8秒一定とした場合の水の圧力の
硬化深さに及ばす効果を示す。第3図から明らかなよう
に、4Ky/ad以上では硬化深さに変化を与えないこ
とから。
On the other hand, when the hardening depth is investigated using pressure as a variable, a relationship as shown in Figure 3 is obtained. FIG. 3 shows the effect of water pressure on the hardening depth when the cooling time was constant at 0.8 seconds for the rot 7 sample. As is clear from FIG. 3, there is no change in the hardening depth at 4 Ky/ad or more.

4〜6 Ky / dの水圧が適当である。A water pressure of 4 to 6 Ky/d is suitable.

なお、/16gの鋼は、第2図及び第3図に示すような
試験で涜7の鋼と同様の硬化深さを得ることはできるが
、冷却により焼割れを生じるので本発明の処理には不適
当である。従って、処理する鋼の炭素含有量は0.85
%以下の範囲に設定することが好ましい。
In addition, /16g steel can obtain the same hardening depth as No. 7 steel in the tests shown in Figures 2 and 3, but it is not suitable for the treatment of the present invention because it causes quench cracking when cooled. is inappropriate. Therefore, the carbon content of the steel to be treated is 0.85
% or less.

C)恒温冷却槽での冷却 前記のように4〜6 Ky / adの水圧の下で、必
要とする硬化深さを得るに和尚する冷却時間スプレー冷
却した後、続いて例えは第4図に示すような恒温冷却槽
に被焼入物を投入して所定時間保持する。第4図は後述
する実施例で用いた恒温冷却槽の概略構成を示し、6は
恒温槽本体で断熱栴造で作られており、該恒温槽本体6
の内側壁にはヒーター7が配設されている。gは恒温槽
本体6内に配置された鋼製の容器であシ。
C) Cooling in a constant temperature cooling bath Under a water pressure of 4-6 Ky/ad as described above, after spray cooling for a cooling time to obtain the required hardening depth, the following example is shown in Figure 4. The material to be quenched is placed in a constant temperature cooling tank as shown and held for a predetermined period of time. FIG. 4 shows a schematic configuration of a constant temperature cooling tank used in the examples described later, and 6 is the constant temperature chamber body, which is made of heat-insulating material.
A heater 7 is disposed on the inner wall of. g is a steel container placed inside the thermostatic chamber body 6;

該容器s内には油又は硝酸カリ系の塩類等の冷却剤9が
満たされている。被焼入物1はカコ薯O内に収容されて
上記容器8中の冷却剤9内に浸漬される。11は熱電対
であシ、ヒーター7と連動して冷却剤9の温度が調節で
きるようになっている。
The container s is filled with a coolant 9 such as oil or potassium nitrate salts. The material to be quenched 1 is housed in a container O and immersed in a coolant 9 in the container 8. Reference numeral 11 is a thermocouple, which works in conjunction with the heater 7 to adjust the temperature of the coolant 9.

次に作用について説明すると、まずヒーター7に通゛亀
して発熱させると、その熱によシ容器8は加熱され、該
容器8内に収容されている冷却剤9も同様に加熱される
Next, the operation will be explained. First, when the heater 7 is passed through to generate heat, the container 8 is heated by the heat, and the coolant 9 contained in the container 8 is also heated.

今、熱電対11で温度を設定すると、容器8及び冷却剤
9は加熱されて設定温度に遅する。設定温度に達した後
に、カゴ10内に収容されている被焼入物1を冷却剤9
中に投入し、設定温度に所定時間保持した後、恒温冷却
槽から取シ出し、任意に冷却する。
Now, when the temperature is set using the thermocouple 11, the container 8 and the coolant 9 are heated and slowed down to the set temperature. After reaching the set temperature, the material to be hardened 1 housed in the cage 10 is heated with a coolant 9.
After keeping the temperature at the set temperature for a predetermined period of time, it is taken out from the constant temperature cooling tank and cooled down as desired.

各種試料について、一定の設定温度(200℃)におけ
る恒温冷却槽保持時間と被焼入物の素地硬さくビッカー
ス硬さ)との関係を第5図に。
Figure 5 shows the relationship between the holding time in a constant temperature cooling bath and the Vickers hardness of the material to be quenched at a constant set temperature (200°C) for various samples.

また一定の保持時間(10分保持)における恒温冷却槽
の保持温度と素地硬さくビッカース硬さ)との関係を第
6図に示す。
Further, FIG. 6 shows the relationship between the holding temperature of the constant temperature cooling bath and the substrate hardness (Vickers hardness) for a fixed holding time (held for 10 minutes).

第5図から明らかなように、保持温度を一定(200℃
)にした場合、保持時間を変えることにより素地硬さを
変えることができる。捷だ。
As is clear from Figure 5, the holding temperature is kept constant (200℃).
), the substrate hardness can be changed by changing the holding time. It's Kade.

身(6図かられ・かるように、保持時間を一定(10分
)として、保持温度を変えることによっても素地硬さを
変えることができる。従って、保持時間(第5図)と保
持温度(第6図)との組合せによって、任意に素地硬さ
を調節することができる。
As shown in Fig. 6, the hardness of the substrate can also be changed by changing the holding temperature while keeping the holding time constant (10 minutes). Therefore, the holding time (Fig. 5) and holding temperature ( In combination with Fig. 6), the hardness of the substrate can be adjusted as desired.

しかし、実用上ビッカース硬さ250以下となる条件は
意味がないので、腐2の材料は本発明の処理には適しな
い。また、第5図より50分以上の保持時間も適切では
ない。同様に第6図より250℃以上の保持温度は適切
ではない0以上まとめると、素地硬さについては、■鋼
の極類としては屑3以上の炭素を含むこと、すなわち処
理する銅としては炭素含有量0.65 %以上のものが
好ましいこと、■保持時間は10分以上50分未満の範
囲に設定することが好ましいこと、■保持温度は150
℃以上250℃未満の範囲に設定することが好ましいこ
とがわかる。
However, since the condition of having a Vickers hardness of 250 or less is meaningless in practical terms, materials of No. 2 are not suitable for the treatment of the present invention. Further, as shown in FIG. 5, a holding time of 50 minutes or more is also not appropriate. Similarly, from Figure 6, a holding temperature of 250°C or higher is inappropriate. It is preferable that the content is 0.65% or more, ■ It is preferable that the holding time is set in a range of 10 minutes or more and less than 50 minutes, ■ The holding temperature is 150
It can be seen that it is preferable to set the temperature in a range of .degree. C. or more and less than 250.degree.

実施例 実施例1及び2 前記第2表の47の鋼(50φX 300 ta )を
850℃X30分間全体加熱後、第1図に示す装置にて
水圧5 Ky / ctdで0.8秒唄射冷却し、続い
て第4図に示すような恒温冷却槽を用いて200℃の油
に10分間(実施例1)及び40分INコ(実施例2)
保持し、その後空冷した。処理された鋼の断面の硬さ分
布を第7図に示す。
Examples Examples 1 and 2 Steel No. 47 (50 φ x 300 ta) in Table 2 above was heated as a whole at 850°C for 30 minutes, and then spray cooled for 0.8 seconds at a water pressure of 5 Ky/ctd using the apparatus shown in Figure 1. Then, using a constant temperature cooling bath as shown in Fig. 4, the oil was heated to 200°C for 10 minutes (Example 1) and for 40 minutes (Example 2).
It was held and then air cooled. The hardness distribution of the treated steel cross section is shown in FIG.

また1曲げ疲労試験結果を第8図に示す。通常の浸戻処
理狗及び通常の高周波焼入れ拐についての結果も併せて
示す。
Furthermore, the results of the 1-bending fatigue test are shown in FIG. The results for conventional back-soaking treated dogs and conventional induction hardening are also shown.

実施例3及び4 前記第2表の/I63の鋼(50φX 300 tan
 )を850℃X30分加熱後、実施例Iと同様に水圧
5に27−で016秒噴射冷却し、続いて150℃の恒
温冷却槽に10分間(実施例3)及び20分間(実施例
4)保持し、その後空冷した。得られた鋼の断面の硬さ
分布は第9図に示すとおシである。
Examples 3 and 4 /I63 steel (50φX 300 tan
) was heated at 850°C for 30 minutes, then cooled by injection at a water pressure of 5 for 27 seconds as in Example I, and then placed in a constant temperature cooling bath at 150°C for 10 minutes (Example 3) and 20 minutes (Example 4). ) and then air cooled. The cross-sectional hardness distribution of the obtained steel is shown in FIG.

発明の効果 以上のように、本発明の鋼の焼入方法によれは、焼入れ
硬さが大きくなる炭素含有量、すなわち0.65〜0.
85%の炭素含有量を肩する鋼を用いて、これを焼入れ
可能な温度に加熱し、その表面をスプレー冷却、好まし
くは水スプレー冷却により急冷することによシ1表面を
硬化させるので、極めて高い焼入表面硬さが得られる。
Effects of the Invention As described above, the steel quenching method of the present invention has a carbon content that increases the quenching hardness, that is, 0.65 to 0.
Using steel with a carbon content of 85%, the surface is hardened by heating it to a hardenable temperature and rapidly cooling the surface by spray cooling, preferably water spray cooling. High quenched surface hardness can be obtained.

しかも、この際に、スプレー冷却の条件を適当に選定す
ることにより、任意の硬化深さが得られる。続い−C,
恒温冷却檜に被焼入物を投入し、150℃以上250℃
未満の恒温に所定時間保持した後任意に冷却することに
より、高い素地硬さが得られ、しかも恒温保持の条件を
適当に選定することによシ任意の素地硬さに調節するこ
とができる。
Furthermore, at this time, by appropriately selecting spray cooling conditions, any hardening depth can be obtained. Continued-C,
The material to be hardened is put into a constant temperature cooling hinoki, and the temperature is 150℃ or higher and 250℃.
A high base hardness can be obtained by holding the base at a constant temperature of less than or equal to 100% for a predetermined time and then optionally cooling it, and furthermore, by appropriately selecting the constant temperature maintenance conditions, the base hardness can be adjusted to any desired base hardness.

このように、本発明の方法によれば、スプレー冷却によ
る表面冷却と恒温冷却との組合せにより、任意の硬化深
さでしかも高い表面硬さが得られると共に、極めて高い
硬さまで任意の素地硬さが得られるという、従来の方法
では得られなかった特有の効果が得られる。しかも、そ
の処理時間は比較的短時間であり、また曲は疲労強度も
従来の方法に比べて極めて高く、高負荷状態の使用にも
充分なる耐性を有する。
As described above, according to the method of the present invention, by combining surface cooling by spray cooling and constant temperature cooling, high surface hardness can be obtained at any hardening depth, and the hardness of any substrate up to extremely high hardness can be obtained. A unique effect that cannot be obtained with conventional methods is obtained. Moreover, the processing time is relatively short, and the bending has extremely high fatigue strength compared to conventional methods, and has sufficient resistance to use under high load conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いるスプレー冷却装置の一例を
示す概略構成図、第2図はスプレー冷却による冷却時間
と硬化深さとの関係を示すグラフ、第3図はスプレー冷
却における水の圧力と硬化深さとの関係を示すグラフ、
第4図は本発明方法に用いる恒温冷却槽の一例を示す概
略構成図、第5図は恒温冷却槽での保持時間と素地硬さ
との関係を示すグラフ、第6図は保持温度と素地硬さと
の関係を示すグラフ、第7図は実施例I及び2に従って
処理された鋼の断面の硬さ分布を示すグラフ、第8図は
曲は疲労試験結果を示すグラフ、第9図は実施例3及び
4に従って処理された鋼の断面の硬さ分布を示すグラフ
である。 1・・・被焼入物、3・・・冷却管、5・・・噴射0.
6・・・恒温桶本体、7・・・ヒーター% 9・・・冷
却剤%10・・・カゴ、++・・・熱電対。
Figure 1 is a schematic configuration diagram showing an example of a spray cooling device used in the method of the present invention, Figure 2 is a graph showing the relationship between cooling time and hardening depth by spray cooling, and Figure 3 is a graph showing the relationship between water pressure and hardening depth in spray cooling. Graph showing the relationship with hardening depth,
Figure 4 is a schematic configuration diagram showing an example of a constant temperature cooling tank used in the method of the present invention, Figure 5 is a graph showing the relationship between holding time in the constant temperature cooling tank and substrate hardness, and Figure 6 is a graph showing the relationship between holding temperature and substrate hardness. 7 is a graph showing the hardness distribution of the cross section of steel treated according to Examples I and 2, FIG. 8 is a graph showing the fatigue test results, and FIG. 9 is a graph showing the results of the fatigue test. 3 is a graph showing the cross-sectional hardness distribution of steel treated according to No. 3 and No. 4. FIG. 1... Material to be quenched, 3... Cooling pipe, 5... Injection 0.
6... Constant temperature bucket body, 7... Heater % 9... Coolant % 10... Basket, ++... Thermocouple.

Claims (1)

【特許請求の範囲】 1、炭素含有量0.65〜0.85%を有する鋼を、焼
入れ可能な温度に加熱し、所望の表面硬化深さを得る程
度にスプレー冷却し、続いて恒温保持150℃以上25
0℃未満の温度に所定時間保持し、その後任意に冷却す
ることを特徴とする鋼の焼入方法。 2、C0.65〜0.85%、Si0.23〜0.32
%、Mn0.4〜0.9%、Ni2.0%以下、Cr0
.5〜1.5%、Mo0.10〜0.20%、残部Fe
(通常の不純物含む)よりなる鋼を用いる特許請求の範
囲第1項に記載の方法。 3、加熱後のスプレー冷却を、水圧4〜6Kg/cm^
2、噴霧時間0.2〜0.8秒で水スプレー冷却により
行なう特許請求の範囲第1項又は第2項に記載の方法。 4、恒温保持を150℃以上250℃未満の温度に10
分以上50分未満の間保持して行なう特許請求の範囲第
1項乃至第3項のいずれかに記載の方法。
[Claims] 1. Steel having a carbon content of 0.65 to 0.85% is heated to a temperature at which it can be hardened, spray cooled to the extent that the desired surface hardening depth is obtained, and then kept at a constant temperature. 150℃ or higher25
A method for quenching steel, characterized by holding the temperature at a temperature below 0° C. for a predetermined period of time, and then optionally cooling it. 2, C0.65-0.85%, Si0.23-0.32
%, Mn0.4-0.9%, Ni2.0% or less, Cr0
.. 5-1.5%, Mo0.10-0.20%, balance Fe
2. The method according to claim 1, using steel (containing normal impurities). 3. Spray cooling after heating using water pressure of 4 to 6 kg/cm^
2. The method according to claim 1 or 2, which is carried out by water spray cooling with a spraying time of 0.2 to 0.8 seconds. 4. Maintain constant temperature at a temperature of 150℃ or higher and lower than 250℃ for 10 minutes.
The method according to any one of claims 1 to 3, wherein the method is carried out by holding the method for at least 50 minutes.
JP17003984A 1984-08-16 1984-08-16 Quenching method of steel Pending JPS6148514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17003984A JPS6148514A (en) 1984-08-16 1984-08-16 Quenching method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17003984A JPS6148514A (en) 1984-08-16 1984-08-16 Quenching method of steel

Publications (1)

Publication Number Publication Date
JPS6148514A true JPS6148514A (en) 1986-03-10

Family

ID=15897475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17003984A Pending JPS6148514A (en) 1984-08-16 1984-08-16 Quenching method of steel

Country Status (1)

Country Link
JP (1) JPS6148514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294821A (en) * 1988-05-23 1989-11-28 Kawasaki Heavy Ind Ltd Manufacture of grinding rod
KR100406396B1 (en) * 1998-12-22 2004-02-14 주식회사 포스코 Ultra Hard Steel Manufacturing Method
CN100355992C (en) * 2004-03-19 2007-12-19 洛阳市钢峰铸造有限公司 Integral casting alloy steel shovel edge plate for loader and its manufacturing process and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294821A (en) * 1988-05-23 1989-11-28 Kawasaki Heavy Ind Ltd Manufacture of grinding rod
KR100406396B1 (en) * 1998-12-22 2004-02-14 주식회사 포스코 Ultra Hard Steel Manufacturing Method
CN100355992C (en) * 2004-03-19 2007-12-19 洛阳市钢峰铸造有限公司 Integral casting alloy steel shovel edge plate for loader and its manufacturing process and device

Similar Documents

Publication Publication Date Title
US7468107B2 (en) Carburizing method
Rudnev Induction hardening of gears and critical components
JPS6148514A (en) Quenching method of steel
PL186662B1 (en) Method of and apparatus for simultaneously oxidising and thermally treating workpieces
Matlock Metallurgy of Induction Hardening of Steel
US2142139A (en) Hardening process for high speed steel tools and other articles
JP3193320B2 (en) Heat treatment method for machine parts
Jirkova et al. QP process on steels with various Carbon and Chromium contents
JPS6224499B2 (en)
RU2709381C1 (en) Method for low-temperature cementation (ltc) of steel
Wendel et al. Bearing steels for induction hardening–Part I
Dossett Carbonitriding of steels
Kučerová et al. Thermo-mechanical treatment of 42SICR and 42MNSI steels
Weiss et al. Induction tempering of steel
Asari A study on heat treatment of carburizing carbon steel
Herring et al. Heat treating ferrous P/M parts
RU2052536C1 (en) Method for thermochemical treatment of steel products
JPS61127812A (en) Heat treatment of steel
Rudnev Metallurgical insights for induction heat treaters
Pham et al. Microstructure and Hardness of Borided Layer on SKD61 Steel
Wadkar et al. Simulation of Low Pressure Carburizing and Low Pressure Oil Quenching Process using ABAQUS for Finding Distortions in Component
Caliari et al. Microstructural investigation of oxynitrocarburized components processed at different temperatures
CN116145074A (en) Method for heat treatment of steel product, steel product and bearing ring
JPH0116886B2 (en)
Schneider et al. Short cycle hardening and tempering behaviour of low alloy tool steel 60WCrV7