JPS6148410B2 - - Google Patents

Info

Publication number
JPS6148410B2
JPS6148410B2 JP55109126A JP10912680A JPS6148410B2 JP S6148410 B2 JPS6148410 B2 JP S6148410B2 JP 55109126 A JP55109126 A JP 55109126A JP 10912680 A JP10912680 A JP 10912680A JP S6148410 B2 JPS6148410 B2 JP S6148410B2
Authority
JP
Japan
Prior art keywords
foam
aromatic polyester
extrusion
string
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109126A
Other languages
Japanese (ja)
Other versions
JPS5734931A (en
Inventor
Tooru Utsunomya
Michio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10912680A priority Critical patent/JPS5734931A/en
Publication of JPS5734931A publication Critical patent/JPS5734931A/en
Publication of JPS6148410B2 publication Critical patent/JPS6148410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • B29C47/92

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は玐状芳銙族ポリ゚ステル発泡䜓の補造
法に関し、その目的は成圢埌加工の容易な玐状
芳銙族ポリ゚ステル発泡䜓の補造法を提䟛しよう
ずするものである。 埓来から、プラスチツク䟋えばポリスチレン
ポリ゚チレン等から発泡䜓を補造する方法が数倚
く提案されおいる。特に玐状発泡䜓䟋えば玐状発
泡ポリスチレン玐状発泡ポリ゚チレン等に぀い
おは緩衝材を䞻たる甚途ずしお工業的に生産され
おいる。しかし、これら玐状発泡䜓は耐熱性匷
床の劂き機械的性質が十分でなく、その䜿甚分野
が限定されおいる。 䞀方、芳銙族ポリ゚ステルは、ポリスチレン
ポリ゚チレン等に比しお耐熱性や匷床の劂き機械
的性質にすぐれおいるこずから発泡䜓の開発が進
められ、たた提案されおいる。その぀の方法ず
しお、芳銙族ポリ゚ステルずゞ゚ポキシ化合物の
混合物を抌出発泡成圢機に䟛絊し、䞀方該抌出発
泡成圢機の䞭倮郚に蚭けられたノズルから䜎沞点
の発泡剀を泚入し、該発泡剀を含有する溶融状態
の暹脂組成物を抌出しお発泡䜓を補造する方法が
提案されおいる特開昭53−24364号公報特開
昭54−50568号公報特開昭54−70364号公報。
しかしながら、これらの公開公報には、玐状発泡
䜓を補造する方法に぀いおの具䜓的説明はなく、
むしろ玐状成圢䜓より倧きい圢状の発泡䜓を補造
するこずに重点がおかれおいお、その具䜓䟋のみ
が瀺されおいる。本発明者らの怜蚎結果によれ
ば、これらの具䜓䟋で埗られる発泡成圢䜓は結晶
化が進んでいお暹脂の密床が高く、埌加工性䟋え
ば延䌞性の極めお䜎いものであり、芳銙族ポリ゚
ステル本来の優れた機械的性質を十分に生かした
ものずは蚀い難い。たた、結晶化の進行を防ぐべ
く急激な冷华条件を遞べば埌加性のある成圢䜓が
埗られるが、該成圢䜓は冷华収瞮の倧きいもので
あり倖芳のすぐれた均䞀気泡を有する発泡䜓ずは
蚀い難い。 たた倚量の䜎沞点溶剀及び膚匵剀ずポリ゚ステ
ルずの液状混合物を、䜎圧䜎枩域に、該溶剀を断
熱状態で蒞発させお超埮现気孔性構造物を沈柱す
るに足る冷华が行われる条件䞋に抌出し、か぀そ
の時に圢成される個々の重合䜓よりなるフむルム
状気孔壁を䞀平面的に配向させるようにする方法
が提案されおいる特公昭43−3993号公報。し
かし、この方法によ぀お補造される超埮现気孔性
構造物は高発泡倍率であり、か぀個々のフむルム
状気孔壁が配向しおいるこずから構造物の匷床が
倧きい等の特長を有する反面、埌加工䟋えば延䌞
により匷床を曎に倧きくするこずができず、たた
0.05〜0.5皋床の䞭密床の構造物を埗るのが困難
である等の問題点を有しおいる。 本発明者らは、成圢埌加工性の容易な、か぀
より倧きい匷床を保有し埗る玐状芳銙族ポリ゚ス
テル発泡䜓の補造に぀いお怜蚎を重ねた結果、結
晶化速床が過床に速くなく、か぀発泡胜力を有す
る芳銙族ポリ゚ステル溶融物を、該ポリ゚ステル
の半結晶化時間ず発泡䜓断面積ずが特定の関係を
満足するように、ダむから抌出発泡せしめるず、
埌加工䟋えば延䌞熱加工等の凊理が容易にでき
る玐状芳銙族ポリ゚ステル発泡䜓が埗られるこず
を芋出し、本発明に到達した。 すなわち、本発明は、垞圧での沞点が90℃以䞋
の物質を〜50重量含有し、融点より15℃高い
枩床における溶融粘床が8000ポむズ以䞊の芳銙族
ポリ゚ステル溶融物を、䞋蚘匏 〓≧20D2 䜆し匏䞭〓は芳銙族ポリ゚ステルの最倧結晶
化速床を瀺す枩床における半結晶化時間秒で
あり、は発泡䜓の有効盎埄cmである を満足する条件䞋でダむから抌出し、発泡させる
こずを特城ずする〜200mm2の断面積を有する玐
状芳銙族ポリ゚ステル発泡䜓の補造法である。 本発明で甚いる芳銙族ポリ゚ステルは、芳銙族
ゞカルボン酞を䞻たるゞカルボン酞の85モル
以䞊を占めるゞカルボン酞成分ずするポリ゚ス
テルである。該芳銙族ゞカルボン酞の代衚的なも
のずしお、テレフタル酞む゜フタル酞ナフタ
レンゞカルボン酞ゞプニルゞカルボン酞ゞ
プニル゚ヌテルゞカルボン酞ゞプニルスル
ホンゞカルボン酞ゞプノキシ゚タンゞカルボ
ン酞等が䟋瀺される。たた前蚘ポリ゚ステルの奜
たしく甚いられるゞオヌル成分ずしおは、゚チレ
ングリコヌルトリメチレングリコヌルテトラ
メチレングリコヌルネオペンチレングリコヌ
ルヘキサメチレングリコヌルシクロヘキサン
ゞメチロヌルトリシクロデカンゞメチロヌル
―ビス・β―ヒドロキシ゚トキシプ
ニルプロパン4′―ビスβ―ヒドロキシ
゚トキシゞプニルスルホンゞ゚チレングリ
コヌル等が䟋瀺される。前蚘ポリ゚ステルには、
―オキシ安息銙酞の劂きオキシ酞ゞカルボン
酞成分に察し15モル以䞋、コハク酞アゞピ
ン酞セバチン酞等の劂き脂肪族ゞカルボン酞等
を少割合ゞカルボン酞成分の15モル以䞋で
共重合させおもよく、たた僅少割合で、ペンタ゚
リスリトヌルトリメチロヌルプロパントリメ
リツト酞ピロメリツト酞等の劂き倚官胜性化合
物や安息銙酞の劂き単官胜性化合物を共重合させ
おもよい。 本発明においおは、抌出発泡成圢機䞭における
暹脂溶融物の粘床を、融点より15℃高い枩床にお
ける粘床ずしお8000ポむズ以䞊ずするこずが必芁
である。暹脂溶融物の粘床が8000ポむズより䜎い
ず、埮现気泡が均䞀に分散された発泡䜓が埗られ
難い。これは均䞀気泡の分散された発泡䜓を埗る
には、溶融物がダむから抌出されたずき発泡䜓䞭
の個々の気泡セルが発泡圧に察し適圓な抵抗を有
するこずが必芁であるためず掚枬される。 このような溶融粘床を埗るには、次の方法を甚
いるこずが奜たしい。 (1) 高重合床の芳銙族ポリ゚ステルを甚いる。こ
の芳銙族ポリ゚ステルは䟋えば固盞重合重合
段階で重合促進剀鎖䌞長剀等を添加するなど
の方法で埗られる。 (2) 分岐剀を共重合するこずにより溶融粘床を増
倧させた芳銙族ポリ゚ステルを甚いる。この分
岐剀ずしおは䟋えばペンタ゚リスリトヌルグ
リセリンなどの倚官胜性化合物をあげるこずが
できる。 (3) 抌出機䞭で芳銙族ポリ゚ステルの溶融粘床を
増倧させる。䟋えば芳銙族ポリ゚ステルずずも
にこの分子量を増倧させるか或いは架橋を生ぜ
しめるような化合物を䟛絊し、抌出機䞭で高重
合床たたは架橋芳銙族ポリ゚ステルを補造す
る。この䟋ずしおは特開昭53−24364号公報に
蚘茉されおいるようにゞ゚ポキシ化合物ず呚期
埋衚族金属たたはその化合物ずを組
合せお添加する方法特開昭54−50568号公報
に蚘茉されおいるようにゞ゚ポキシ化合物ずモ
ンタンワツクス塩たたはモンタンワツクス゚ス
テル塩ずを組合せお添加する方法特開昭54−
70364号公報に蚘茉されおいるようにポリアル
キレングリコヌルのゞ゚ポキシ化合物ず呚期埋
衚〜族金属たたはその化合物ずを組合
せお添加する方法がある。 これらのうち特に(3)の方法が比范的重合床の䜎
い芳銙族ポリ゚ステルを甚いお発泡䜓を補造する
こずのできる利点があり、奜たしい。 たた、抌出溶融物に発泡胜力を有せしめるに
は、芳銙族ポリ゚ステルに察し䞍掻性なガスたた
は䜎沞点の液状物質を、溶融暹脂䞭に含有せしめ
る方法が奜たしく甚いられる。その際垞圧で90℃
より高い沞点を有する物質を甚いるず、玐状発泡
䜓を垞枩に冷华したずき気泡の収瞮割合が倧きく
なり、奜たしくない。垞圧で90℃以䞋の沞点を有
する物質を甚いるこずが奜たしい。かかる物質の
うち奜たしいものの䟋ずしおは、炭酞ガス窒
玠ヘリりムキセノンネオン等の劂き䞍掻性
ガス垞圧における沞点が90℃以䞋の有機化合
物即ち、飜和脂肪族炭化氎玠飜和脂環族
炭化氎玠ハロゲン化飜和炭化氎玠゚ヌテ
ルケトン等があげられる。特に奜たしく甚い
られる有機化合物ずしおは、炭玠数以䞋の炭化
氎玠䟋えばメタン゚タンプロパンブタ
ンヘキサン等の劂き脂肪族飜和炭化氎玠シク
ロヘキサンメチルシクロペンタン等の劂き脂環
飜和炭化氎玠など、炭玠数以䞋の塩玠化飜和
炭化氎玠䟋えば塩化メチル塩化メチレンク
ロロホルム四塩化炭玠塩化゚チルゞクロル゚
タンゞクロル゚チレン等炭玠数以䞋の北
玠化飜和炭化氎玠䟋えば四北化炭玠北化゚チ
ル四北化゚タン等炭玠数以䞋の塩玠化北
玠化炭化氎玠䟋えばクロルゞフルオルメタン
ゞクロルフルオルメタンクロルトリフルオルメ
タンゞクロルゞフルオルメタントリクロルフ
ルオルメタンゞクロルテトラフルオル゚タン
トリクロルトリフルオル゚タンテトラクロルゞ
フルオル゚タン等゚チル゚ヌテルメチラヌ
ルアセトアルデヒドゞメチルアセタヌル等の゚
ヌテル類、及び䟋えばアセトンメチル゚チルケ
トン等のケトン類等が䟋瀺される。これらは皮
のみを甚いおも皮以䞊を䜵甚しおもよい。 発泡胜力を有せしめるために添加する䞍掻性な
ガスたたは垞枩で液䜓の物質以䞋、発泡剀ず称
するの添加割合は、前蚘芳銙族ポリ゚ステルに
察しお〜50重量である。発泡剀が重量よ
り少いず溶融抌出物が殆んど発泡を生じないので
実甚性のある発泡成圢品が埗られないし、たた50
重量よりも倚いず溶融暹脂䞭に発泡剀が均䞀に
入りきらず、ガスが吹き出しおした぀お所定の圢
状の発泡䜓を埗るこずが難くなるので、奜たしく
ない。発泡剀のより奜たしい添加範囲は〜40重
量である。 発泡剀を含有させる方法ずしおは、次のような
方法が奜たしく甚いられる。  抌出機のシリンダヌ䞭郚に蚭けられたベント
郚から圧入する。  ベント郚ずダむス郚の蚈ケ所から圧入す
る。  ダむス郚でケ所に分けお圧入する。  ベント郚ずダむス郚のケ所ずの蚈ケ所か
ら圧入する。 本発明により補造される玐状発泡䜓は、結晶化
しおいないか或いは結晶化の皋床の小さいもので
あり、延䌞熱加工等の凊理を容易にするこずの
できる特城を有する。 このような特城を埗るためには、芳銙族ポリ゚
ステルの最倧結晶化速床の枩床における半結晶化
時間〓秒ず玐状発泡䜓の有効盎埄cm
の関係が䞋蚘匏 〓≧20D2 

(1) を満足するこずが必芁である。第衚に〓≧
20D2ずしたずきの有効盎埄cmず半結晶
化時間秒の関係を瀺す。
The present invention relates to a method for producing a string-like aromatic polyester foam, and its object is to provide a method for producing a string-like aromatic polyester foam that is easy to mold and post-process. Traditionally, plastics such as polystyrene,
Many methods have been proposed for producing foams from polyethylene and the like. In particular, string-like foams such as string-like foamed polystyrene, string-like foamed polyethylene, etc. are industrially produced primarily for use as cushioning materials. However, these string-like foams do not have sufficient mechanical properties such as heat resistance and strength, and their fields of use are limited. On the other hand, aromatic polyesters include polystyrene,
Foams have been developed and proposed because they have superior mechanical properties such as heat resistance and strength compared to polyethylene and the like. As one method, a mixture of an aromatic polyester and a diepoxy compound is fed to an extrusion foam molding machine, and a low boiling point blowing agent is injected from a nozzle provided in the center of the extrusion foam molding machine. A method has been proposed for producing a foam by extruding a molten resin composition containing ).
However, these publications do not provide specific explanations about the method for producing string-like foam;
Rather, the emphasis is on producing foams with larger shapes than cord-like moldings, and only specific examples thereof are shown. According to the study results of the present inventors, the foam molded products obtained in these specific examples have advanced crystallization, high resin density, and extremely low post-processability, such as stretchability, and are similar to aromatic polyesters. It cannot be said that the original excellent mechanical properties are fully utilized. In addition, if rapid cooling conditions are selected to prevent the progress of crystallization, a molded product with post-addition properties can be obtained, but the molded product has a large cooling shrinkage and is not a foam with uniform cells with an excellent appearance. It's hard to say. In addition, a liquid mixture of a large amount of a low-boiling solvent, an expanding agent, and polyester is extruded into a low-pressure, low-temperature region under conditions that provide sufficient cooling to adiabatically evaporate the solvent and precipitate an ultrafine porous structure. A method has been proposed in which the film-like pore walls made of the individual polymers formed at that time are oriented in one plane (Japanese Patent Publication No. 43-3993). However, the ultrafine porous structure produced by this method has a high expansion ratio and the individual film-like pore walls are oriented, so the structure has high strength. The strength cannot be further increased by post-processing, such as stretching, and
There are problems such as difficulty in obtaining a structure with a medium density of about 0.05 to 0.5. The present inventors have repeatedly investigated the production of string-like aromatic polyester foam that is easy to mold and process and has greater strength. When a melted aromatic polyester having the ability to foam is extruded through a die such that the semi-crystallization time of the polyester and the cross-sectional area of the foam satisfy a specific relationship,
The inventors have discovered that a string-like aromatic polyester foam can be obtained that can be easily subjected to post-processing such as stretching and heat processing, and have thus arrived at the present invention. That is, the present invention provides an aromatic polyester melt containing 1 to 50% by weight of a substance with a boiling point of 90°C or lower at normal pressure and having a melt viscosity of 8000 poise or higher at a temperature 15°C higher than the melting point, using the following formula t 〓≧20D 2 In the formula, t〓 is the half crystallization time (seconds) at the temperature showing the maximum crystallization rate of the aromatic polyester, and D is the effective diameter (cm) of the foam. This is a method for producing a string-like aromatic polyester foam having a cross-sectional area of 1 to 200 mm2 , which is characterized by extrusion from a die and foaming. The aromatic polyester used in the present invention mainly contains aromatic dicarboxylic acids (85 mol% of dicarboxylic acids).
Polyester containing a dicarboxylic acid component (accounting for the above). Representative examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, and diphenoxyethane dicarboxylic acid. . The diol components preferably used in the polyester include ethylene glycol, trimethylene glycol, tetramethylene glycol, neopentylene glycol, hexamethylene glycol, cyclohexane dimethylol, tricyclodecane dimethylol,
Examples include 2,2-bis(4·β-hydroxyethoxyphenyl)propane, 4,4'-bis(β-hydroxyethoxy)diphenylsulfone, and diethylene glycol. The polyester includes
A small proportion of oxyacids such as p-oxybenzoic acid (15 mol% or less based on the dicarboxylic acid component), aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, etc. (15 mol% or less based on the dicarboxylic acid component) Alternatively, in a small proportion, a polyfunctional compound such as pentaerythritol, trimethylolpropane, trimellitic acid, pyromellitic acid, etc. or a monofunctional compound such as benzoic acid may be copolymerized. In the present invention, it is necessary that the viscosity of the resin melt in the extrusion foam molding machine be 8000 poise or more at a temperature 15° C. higher than the melting point. If the viscosity of the resin melt is lower than 8000 poise, it is difficult to obtain a foam in which fine bubbles are uniformly dispersed. We speculate that this is because obtaining a foam with uniformly dispersed cells requires that each individual cell in the foam have adequate resistance to the foaming pressure when the melt is extruded from the die. be done. In order to obtain such a melt viscosity, it is preferable to use the following method. (1) Use aromatic polyester with a high degree of polymerization. This aromatic polyester can be obtained, for example, by solid phase polymerization or by adding a polymerization accelerator, chain extender, etc. during the polymerization step. (2) Use aromatic polyester whose melt viscosity has been increased by copolymerizing a branching agent. Examples of the branching agent include polyfunctional compounds such as pentaerythritol and glycerin. (3) Increase the melt viscosity of the aromatic polyester in the extruder. For example, a highly polymerized or crosslinked aromatic polyester is produced in an extruder by feeding together with the aromatic polyester a compound which increases its molecular weight or causes crosslinking. Examples of this include a method of adding a diepoxy compound in combination with a metal of group a or group a of the periodic table or a compound thereof, as described in JP-A No. 53-24364; A method of adding a diepoxy compound and a montan wax salt or a montan wax ester salt in combination as described in JP-A-54-
As described in Japanese Patent No. 70364, there is a method of adding a combination of a diepoxy compound of polyalkylene glycol and a metal of groups a to a of the periodic table or a compound thereof. Among these methods, method (3) is particularly preferred because it has the advantage that a foam can be produced using an aromatic polyester with a relatively low degree of polymerization. In order to impart foaming ability to the extruded melt, a method is preferably used in which a gas inert to aromatic polyester or a liquid substance with a low boiling point is contained in the melted resin. At that time, 90℃ at normal pressure
If a substance with a higher boiling point is used, the shrinkage rate of the cells will increase when the string-like foam is cooled to room temperature, which is not preferable. It is preferable to use a substance having a boiling point of 90°C or less at normal pressure. Preferred examples of such substances include carbon dioxide, inert gases such as nitrogen, helium, xenon, neon, etc., organic compounds with a boiling point of 90°C or less at normal pressure, such as saturated aliphatic hydrocarbons, saturated alicyclics, etc. Examples include group hydrocarbons, halogenated saturated hydrocarbons, ethers, ketones, etc. Particularly preferably used organic compounds include hydrocarbons having 7 or less carbon atoms (for example, aliphatic saturated hydrocarbons such as methane, ethane, propane, butane, hexane, etc., and alicyclic saturated hydrocarbons such as cyclohexane, methylcyclopentane, etc.). ), chlorinated saturated hydrocarbons with a carbon number of 2 or less (e.g. methyl chloride, methylene chloride, chloroform carbon tetrachloride, ethyl chloride, dichloroethane, dichloroethylene, etc.), fluorinated saturated hydrocarbons with a carbon number of 2 or less (e.g. tetrafluorocarbons), chlorocarbon, ethyl fluoride, ethane tetrafluoride, etc.), chlorinated fluorinated hydrocarbons having 2 or less carbon atoms (e.g. chlorodifluoromethane,
Dichlorofluoromethane, chlortrifluoromethane, dichlordifluoromethane, trichlorofluoromethane, dichlortetrafluoroethane,
(trichlorotrifluoroethane, tetrachlorodifluoroethane, etc.), ethers such as ethyl ether, methylal, acetaldehyde dimethyl acetal, and ketones such as acetone and methyl ethyl ketone. These may be used alone or in combination of two or more. The proportion of an inert gas or a substance that is liquid at room temperature (hereinafter referred to as a blowing agent) added to provide foaming ability is 1 to 50% by weight based on the aromatic polyester. If the blowing agent is less than 1% by weight, the melt extrudate will hardly foam, making it impossible to obtain a practical foam molded product.
If the amount is more than 1% by weight, the blowing agent will not be uniformly contained in the molten resin, and the gas will blow out, making it difficult to obtain a foamed product with a predetermined shape, which is not preferable. A more preferable addition range of the blowing agent is 2 to 40% by weight. As a method for incorporating a blowing agent, the following method is preferably used. a Press fit through the vent provided in the middle of the cylinder of the extruder. b Press fit from two places: the vent part and the die part. c Press fit into two parts using the die part. d Press fit from 3 places: the vent part and the die part. The string-like foam produced according to the present invention is not crystallized or has only a small degree of crystallization, and has a characteristic that it can be easily subjected to treatments such as stretching and heat processing. In order to obtain such characteristics, the half-crystallization time t〓 (seconds) at the temperature of the maximum crystallization rate of the aromatic polyester and the effective diameter D (cm) of the string-like foam are required.
It is necessary that the relationship satisfies the following formula: t≧20D 2 (1). Table 1 shows t〓≧
The relationship between the effective diameter (D: cm) and half crystallization time (t: seconds) when 20D 2 is shown.

【衚】 芳銙族ポリ゚ステルの最倧結晶化速床を瀺す枩
床における半結晶化時間は酞成分グリコヌル成
分共重合成分重合床觊媒各皮添加剀等に
よ぀お定぀おくるが、繊維フむルム等に最も広
範に䜿甚されるポリ゚チレンテレフタレヌトに぀
いおは、觊媒系増粘手段の遞択によ぀おは、半
結晶化時間を最倧結晶化速床を瀺す枩床で40秒以
䞊ずするこずが可胜であり、mm2〜200mm2の断面
積にわた぀お匏(1)の関係を充すこずができる。 ここで泚意すべきこずは、発泡栞剀の遞択であ
る。すなわち、気泡埄を小さくし、均䞀な発泡䜓
を埗るためには、通垞芳銙族ポリ゚ステルに察し
溶解性がなく、か぀䞍掻性の発泡栞剀を加える
が、そのうちのあるものは結晶栞剀ずしおも䜜甚
し、半結晶化時間を短瞮する傟向がある。代衚的
な結晶栞剀に぀いお、半結晶化時間が短い順序に
䞊べるず次のようになる。 タルクグラフアむトカオリン炭酞マグネ
シりム≒酞化亜鉛酞化マンガン≒硫化モリ
ブデン酞化アルミニりム䞉酞化アンチモン
四䞉酞化鉄炭酞カルシりム≒硫酞カルシりム≒
シリカ硫酞バリりム。 ポリ゚チレンテレフタレヌトの玐状発泡䜓を補
造する際には、発泡剀を含たない状態で、差動熱
量蚈脱偏光匷床法などの劂き簡単な予備実隓に
より半結晶化時間を枬定し、有効盎埄に応じお半
結晶化時間をきめるように発泡栞剀を遞ぶこずが
奜たしい。たた、結晶化の速い芳銙族ポリ゚ステ
ルの代衚的なものずしおは、ポリブチレンテレフ
タレヌトをあげるこずができるが、この堎合には
通垞の手段をも぀おしおは最倧結晶化速床を瀺す
枩床で秒以䞊の半結晶化時間にするずいうこず
はできないので、適甚有効盎埄は小さくなり、匏
(1)より≊0.5cmずなる。この堎合は、ポリ゚ス
テルの酞成分たたはグリコヌル成分の䞀郚を他の
ゞカルボン酞成分たたはゞオヌル成分でおきかえ
るこずにより半結晶化時間を増倧させお、盎埄
を倧きくするこずが可胜である。 芳銙族ポリ゚ステルの玐状発泡䜓ずしおは、
mm2ないし200mm2の断面積を有するものが適圓であ
る。即ちmm2未満では、発泡のないスキン局が倧
郚分にな぀おいお有効な発泡䜓が埗られない。䞀
方200mm2より倧きい玐状発泡䜓は、曲げ易さが倱
われ、織線等の加工が困難になり本来の機胜が
発揮できない。断面積のさらに奜たしい範囲は
〜150mm2である。 ここにおいお断面の圢状は、円圢楕円圢た
たはそれを぀ぶした長方圢が最も䞀般的である。
星圢その他凹凞のあるダむを補䜜するこずは可
胜であるが、発泡力によ぀お䞊蚘の圢状に近づい
おしたう。䞊蚘発泡䜓の断面圢状は、発泡䜓がフ
むルムシヌト状のものは陀倖しおいるので、通
垞長埄短埄たたは巟厚さが10以䞋のものであ
り、曎にこの有効盎埄は
[Table] The half-crystallization time at the temperature showing the maximum crystallization rate of aromatic polyester is determined by the acid component, glycol component, copolymerization component, degree of polymerization, catalyst, various additives, etc. For polyethylene terephthalate, which is most widely used in polyethylene terephthalate, it is possible to increase the half-crystalization time to 40 seconds or more at the temperature that exhibits the maximum crystallization rate, depending on the selection of the catalyst system and thickening means. The relationship of formula (1) can be satisfied over a cross-sectional area of 1 mm 2 to 200 mm 2 . What should be noted here is the selection of the foaming nucleating agent. That is, in order to reduce the cell diameter and obtain a uniform foam, a foam nucleating agent that is insoluble and inert to aromatic polyester is usually added, but some of these agents can also be used as crystal nucleating agents. and tends to shorten the half-crystallization time. Typical crystal nucleating agents are arranged in descending order of half-crystallization time as follows. Talc < graphite < kaolin < magnesium carbonate ≒ zinc oxide < manganese dioxide ≒ molybdenum disulfide < aluminum oxide < antimony trioxide <
Triiron tetroxide<calcium carbonate≒calcium sulfate≒
Silica < barium sulfate. When producing polyethylene terephthalate string-like foam, the half-crystallization time is measured by simple preliminary experiments such as differential calorimetry and depolarized intensity method in the absence of a blowing agent, and the effective diameter is determined. It is preferable to select a foam nucleating agent so as to determine the half-crystallization time accordingly. In addition, polybutylene terephthalate is a typical aromatic polyester that crystallizes quickly, but in this case, it is impossible to use conventional methods for 5 seconds at a temperature that exhibits the maximum crystallization rate. Since it is not possible to obtain a half-crystallization time longer than
From (1), D≩0.5cm. In this case, by replacing part of the acid component or glycol component of the polyester with another dicarboxylic acid component or diol component, the half-crystallization time can be increased and the diameter D
It is possible to increase the As a string-like foam of aromatic polyester, 1
Those having a cross-sectional area of mm 2 to 200 mm 2 are suitable. That is, if the thickness is less than 1 mm 2 , the majority of the skin layer is unfoamed, and an effective foam cannot be obtained. On the other hand, string-like foams larger than 200 mm 2 lose their bendability, making it difficult to process such as weaving and knitting, and unable to perform their original functions. A more preferable range of cross-sectional area is 3
~ 150mm2 . The most common cross-sectional shape here is a circle, an ellipse, or a rectangular shape.
Although it is possible to manufacture a die with a star shape or other irregularities, the shape approaches the above shape due to the foaming force. The cross-sectional shape of the above-mentioned foam excludes foams in the form of films or sheets, so it usually has a major axis/minor axis or width/thickness of 10 or less, and furthermore, this effective diameter is

【匏】䜆し  有効盎埄断面積π円呚率 で定矩される。 mm2ないし200mm2の断面積を有する発泡連続䜓
を補造するためのダむは、組成物のバランス効
果発泡倍率適正ドラフト等を考慮しお予備実
隓を行なうこずにより、蚭蚈するこずができる。
ダむから抌出された発泡連続䜓は、倪さにより適
切な冷华方法がずられる。即ち、ダむから抌出さ
れた発泡䜓の膚脹が完了した盎埌から氎冷たた
は、空冷する等の手段で冷华される。䜿甚する発
泡剀の皮類にもよるが、あたりに急激に冷华をす
るず抌出発泡䜓の収瞮も倧きくなるので前蚘匏(1)
を考慮しお冷华方法を遞択するこずが望たしい。
有効盎埄(D)が小さければ小さい皋より穏かな冷华
方法を甚いるのが奜たしい。 このようにしお埗られた玐状芳銙族ポリ゚ステ
ル発泡連続䜓は結晶床が小さく、延䌞熱加工等
の凊理が容易であるずいう特性を有する。 本発明により埗られた玐状発泡成圢品には、本
発明の目的を損わない範囲で安定剀顔料発泡
栞剀難燃剀垯電防止剀その他の添加剀を、
含有せしめるこずができる。 以䞋実斜䟋によりさらに具䜓的に本発明を説明
する。なお実斜䟋䞭の郚は重量郚を衚わす。 実斜䟋 〜 極限粘床0.65のポリ゚チレンテレフタレヌトの
ペレツト100郚を130℃で時間熱颚也燥したの
ち、―ゞグリシゞルヘキサヒドロフタレヌ
ト0.6郚及び発泡栞剀ずしおのシリカ0.5郚を型
ブレンダヌを甚いお混合し、該ペレツトに
―ゞグリシゞルヘキサヒドロフタレヌトず発泡栞
剀ずしおのシリカずを均䞀に付着させた。 䞊蚘で埗られたペレツトをシリンダヌ盎埄40
mmD32の孔埄1.5mmのノズル本を有す
るダむを備えた抌出発泡成圢機を甚いお抌出し発
泡成圢した。 抌出発泡成圢においお、成圢機シリンダヌ䞭倮
郚より、ゞクロルゞフルオルメタン15郚ポリマ
ヌ100郚圓りの割合でプランゞダヌポンプを甚
いお圧入し、たたシリンダヌ枩床を䟛絊ゟヌン
280℃可塑化ゟヌン280℃メタリングゟヌン
270℃ダむ郚270℃に定し、か぀スクリナヌ回転
数30rpm力90Kgcm2ずした。 第衚に瀺すようにドラフト率を倉えお匕取る
こずにより、玐状発泡䜓の平均盎埄を倉えた。た
た、冷华方法は氎冷方法ず空冷方法を甚いた。第
衚に、ドラフト率冷华方法等の発泡抌出し条
件ず、発泡䜓の到達結晶化床比重等の物性を瀺
す。なお、抌出組成物融点253℃の273℃にお
ける溶融粘床は28000ポむズであ぀た。たた䞊蚘
の抌出においお発泡剀を加えないで実斜したもの
の半結晶化時間は、180℃で50秒であ぀た。
[Formula] However, D: effective diameter, S: cross-sectional area, π: defined as pi. A die for producing a foamed continuous body having a cross-sectional area of 1 mm 2 to 200 mm 2 can be designed by conducting preliminary experiments in consideration of the balance effect of the composition, expansion ratio, appropriate draft, etc.
The foamed continuous body extruded from the die is cooled appropriately depending on its thickness. That is, immediately after the expansion of the foam extruded from the die is completed, it is cooled by means such as water cooling or air cooling. Although it depends on the type of blowing agent used, if the extruded foam is cooled too rapidly, the shrinkage of the extruded foam will increase, so the equation (1)
It is desirable to select a cooling method with this in mind.
The smaller the effective diameter (D), the more gentle the cooling method is preferably used. The string-like aromatic polyester foam continuum thus obtained has a low crystallinity and is easily subjected to treatments such as stretching and heat processing. Stabilizers, pigments, foam nucleating agents, flame retardants, antistatic agents, and other additives may be added to the string-shaped foamed molded product obtained by the present invention to the extent that the purpose of the present invention is not impaired.
It can be made to contain. The present invention will be explained in more detail with reference to Examples below. Note that parts in the examples represent parts by weight. Examples 1 to 5 After drying 100 parts of polyethylene terephthalate pellets with an intrinsic viscosity of 0.65 with hot air at 130°C for 8 hours, 0.6 parts of 1,2-diglycidylhexahydrophthalate and 0.5 parts of silica as a foaming nucleating agent were added to a V-type blender. 1,2 to the pellets.
- Diglycidyl hexahydrophthalate and silica as a foaming nucleating agent were uniformly deposited. The pellets obtained above are made into a cylinder with a diameter of 40 mm.
Extrusion foam molding was carried out using an extrusion foam molding machine equipped with a die having 8 nozzles with a diameter of 1.5 mm and a diameter of 1.5 mm. In extrusion foam molding, 15 parts of dichlorodifluoromethane (per 100 parts of polymer) is injected into the center of the cylinder of the molding machine using a plunger pump, and the temperature of the cylinder is adjusted to the supply zone.
280℃, plasticization zone 280℃, metaling zone
The temperature was set at 270°C, the die part was set at 270°C, the screw rotation speed was 30 rpm, and the force was 90 Kg/cm 2 . As shown in Table 2, the average diameter of the string-like foam was varied by changing the draft rate. In addition, water cooling method and air cooling method were used as the cooling method. Table 2 shows foaming extrusion conditions such as draft rate and cooling method, and physical properties such as the achieved crystallinity and specific gravity of the foam. The melt viscosity of the extrusion composition (melting point: 253°C) at 273°C was 28,000 poise. Furthermore, when the above extrusion was carried out without adding a blowing agent, the half-crystallization time was 50 seconds at 180°C.

【衚】 各実斜䟋では前述の≧20D2の条件はすべお
充されおおり、この堎合には空冷のような埐冷条
件が遞ばれたずきでも結晶化が起぀おない。 実斜䟋及び比范䟋 発泡栞剀ずしおシリカを甚いる代りにタルクを
甚いる他は実斜䟋ず同様の方法で発泡成圢を行
぀た。尚、抌出組成物融点253℃の273℃にお
ける溶融粘床は26000ポむズであ぀た。たたこの
抌出においお発泡剀を加えないで実斜したものの
半結晶化時間は140℃で12秒であ぀た。抌出発泡
条件ず埗られたものの物性を第衚に瀺す。
[Table] In each of the examples, all the conditions of t≧20D 2 described above are satisfied, and in this case, no crystallization occurs even when slow cooling conditions such as air cooling are selected. Examples 6 and 7 and Comparative Examples 1 and 2 Foam molding was carried out in the same manner as in Example 1, except that talc was used instead of silica as a foam nucleating agent. The melt viscosity of the extrusion composition (melting point: 253°C) at 273°C was 26,000 poise. Furthermore, when this extrusion was carried out without adding a blowing agent, the half-crystallization time was 12 seconds at 140°C. Table 3 shows the extrusion foaming conditions and the physical properties of the product obtained.

【衚】 第衚ず第衚ずの比范により、発泡栞剀を結
晶栞剀ずしおも有効なタルクに代えるこずによ
り、有効盎埄の倧きいものは最も有効な冷华方法
をず぀おも、非晶状態に保おなくなり、延䌞が困
難ずなるこずがわかる。 実斜䟋〜10及び比范䟋 極限粘床0.65のポリ゚チレンテレフタレヌトペ
レツト100郚を130℃で時間熱颚也燥した埌、該
ペレツトに―ビス―ヒドロキシプニ
ルプロパンのゞグリゞル゚ヌテル0.8郚モン
タン酞ナトリりム0.3郚及びタルク0.5郚を型ブ
レンダヌによ぀お均䞀にたぶし、シリンダヌ盎埄
40mmず50mmからなるタンデム型抌出機を甚いお、
孔埄1.5mmのノズル本を有するダむより抌出
し、発泡成圢した。 発泡成圢においお第抌出機䞭倮郚より炭酞ガ
スをポリ゚チレンテレフタレヌト100郚圓り郚
の割合で45Kgcm2の圧方䞋圧入した。抌出条件
は、第抌出機のシリンダヌ枩床を280℃に蚭定
し、第抌出機のシリンダヌ枩床を265℃ダむ
枩床を270℃に蚭定した。スクリナヌ回転数は、
第抌出機で30rpm第抌出機で23rpmずし、
抌出圧力は120Kgcm2ずした。 䞊蚘モンタン酞ナトリりムは増粘反応促進剀ず
しお、たたタルクは発泡栞剀ずしお添加されたも
のであるが、双方ずもポリ゚チレンテレフタレヌ
トの結晶栞剀ずしお埓来より知られた物質であ
る。抌出発泡条件ず埗られたものの物性を第衚
に瀺す。尚、抌出組成物融点253℃の273℃に
おける溶融粘床は25000ポむズであ぀た。たたこ
の抌出においお発泡剀を加えないで実斜したもの
の半結晶化時間は、140℃で秒であ぀た。
[Table] A comparison between Table 3 and Table 2 reveals that by replacing the foaming nucleating agent with talc, which is also effective as a crystal nucleating agent, those with a large effective diameter can be amorphous even with the most effective cooling method. It can be seen that the condition cannot be maintained and stretching becomes difficult. Examples 8 to 10 and Comparative Examples 3 and 4 100 parts of polyethylene terephthalate pellets with an intrinsic viscosity of 0.65 were dried with hot air at 130°C for 8 hours, and then 2,2-bis(4-hydroxyphenyl)propane was added to the pellets. Sprinkle 0.8 parts of zyl ether, 0.3 parts of sodium montanate, and 0.5 parts of talc uniformly using a V-type blender,
Using a tandem extruder consisting of 40mm and 50mm,
It was extruded through a die having eight nozzles with a hole diameter of 1.5 mm, and foam molded. During foam molding, carbon dioxide gas was injected from the center of the first extruder at a rate of 7 parts per 100 parts of polyethylene terephthalate under a pressure of 45 kg/cm 2 . As for the extrusion conditions, the cylinder temperature of the first extruder was set at 280°C, the cylinder temperature of the second extruder was set at 265°C, and the die temperature was set at 270°C. The screw rotation speed is
The first extruder is set at 30 rpm, the second extruder is set at 23 rpm,
The extrusion pressure was 120Kg/cm 2 . The above-mentioned sodium montanate was added as a thickening reaction accelerator, and talc was added as a foaming nucleating agent, both of which are substances conventionally known as crystal nucleating agents for polyethylene terephthalate. Table 4 shows the extrusion foaming conditions and the physical properties of the product obtained. The melt viscosity of the extrusion composition (melting point: 253°C) at 273°C was 25,000 poise. Further, when this extrusion was carried out without adding a blowing agent, the half crystallization time was 7 seconds at 140°C.

【衚】 䞊衚から、実斜䟋に比べお非晶の連続発泡䜓
の埗られる範囲が狭くな぀おおり、増粘反応促進
剀ならびに発泡栞剀が泚意深く遞定されなければ
ならないこずがわかる。 実斜䟋11及び比范䟋〜 固盞重合によ぀お埗られた極限粘床1.45のポリ
ブチレンテレフタレヌトのペレツト100郚を130℃
で時間熱颚也燥したのち、シリカ0.5郚を発泡
栞剀ずしお型ブレンダヌで均䞀にたぶし、シリ
ンダヌ盎埄40mmD32の孔埄1.5mmのノズ
ル本を有するダむを備えた抌出発泡成圢機を甚
いお抌出発泡成圢した。 抌出発泡成圢におい
お、塩化メチレントリクロロトリフルオロ゚タ
ン商品名フロン113混合割合の混
合発泡剀を15郚ポリマヌ100郚圓りの割合で
プランゞダヌポンプを甚いお圧入した。たた、シ
リンダヌ枩床は䟛絊ゟヌン220℃可塑化ゟヌン
240℃メタリングゟヌン240℃ダむ郚230℃に
蚭定し、か぀スクリナヌ回転数は35rpm吐出圧
力80Kgcm2ずした。 抌出発泡条件ず埗られたものの物性を第衚に
瀺す。 尚、抌出組成物融点225℃の245℃における
溶融粘床は18000ポむズであ぀た。たた発泡剀を
加えない堎合の䞊蚘組成物の抌出埌の半結晶化時
間は、80℃で秒60℃で秒であ぀た。
[Table] From the above table, it can be seen that the range in which an amorphous open foam can be obtained is narrower than in Example 1, and that the thickening reaction accelerator and foam nucleating agent must be carefully selected. Example 11 and Comparative Examples 5 to 8 100 parts of polybutylene terephthalate pellets with an intrinsic viscosity of 1.45 obtained by solid phase polymerization were heated at 130°C.
After drying with hot air for 8 hours, sprinkle 0.5 part of silica evenly with a V-type blender as a foaming nucleating agent, and then use an extrusion foam molding machine equipped with a die with a cylinder diameter of 40 mm, L/D 32, and 8 nozzles with a hole diameter of 1.5 mm. Extrusion foam molding was performed using. In extrusion foam molding, a mixed blowing agent of methylene chloride: trichlorotrifluoroethane (trade name: Freon 113) (mixing ratio 1:3) was injected at a ratio of 15 parts (per 100 parts of polymer) using a plunger pump. . In addition, the cylinder temperature is 220℃ in the supply zone and 220℃ in the plasticization zone.
The temperature was set at 240°C, the metering zone at 240°C, and the die section at 230°C, the screw rotation speed was 35 rpm, and the discharge pressure was 80 Kg/cm 2 . Table 5 shows the extrusion foaming conditions and the physical properties of the product obtained. The melt viscosity of the extrusion composition (melting point: 225°C) at 245°C was 18,000 poise. Further, the half-crystallization time after extrusion of the above composition without adding a blowing agent was 7 seconds at 80°C and 4 seconds at 60°C.

【衚】 䞊衚から、ポリブチレンテレフタレヌトの堎合
冷华を匷化しか぀、玐状の盎埄を小さくするこず
が、非晶の発泡連続䜓を埗るために必芁であるこ
ずがわかる。
[Table] From the above table, it can be seen that in the case of polybutylene terephthalate, it is necessary to strengthen the cooling and reduce the diameter of the strings in order to obtain an amorphous foam continuum.

Claims (1)

【特蚱請求の範囲】  垞圧での沞点が90℃以䞋の物質を〜50重量
含有し、融点より15℃高い枩床における溶融粘
床が8000ポむズ以䞊の芳銙族ポリ゚ステル溶融物
を、䞋蚘匏 〓≧20D2 䜆し匏䞭〓は芳銙族ポリ゚ステルの最倧結晶
化速床を瀺す枩床における半結晶化時間秒で
あり、は発泡䜓の有効盎埄cmである を満足する条件䞋でダむから抌出し、発泡させる
こずを特城ずする〜200mm2の断面積を有する玐
状芳銙族ポリ゚ステル発泡䜓の補造法。
[Scope of Claims] 1. An aromatic polyester melt containing 1 to 50% by weight of a substance with a boiling point of 90°C or less at normal pressure and having a melt viscosity of 8000 poise or more at a temperature 15°C higher than the melting point is prepared by the following formula: t〓≧20D 2 In the formula, t〓 is the half-crystallization time (seconds) at the temperature showing the maximum crystallization rate of the aromatic polyester, and D is the effective diameter (cm) of the foam. A method for producing a string-like aromatic polyester foam having a cross-sectional area of 1 to 200 mm2 , which comprises extruding it through a die and foaming it.
JP10912680A 1980-08-11 1980-08-11 Preparation of stringy aromatic polyester foaming body Granted JPS5734931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10912680A JPS5734931A (en) 1980-08-11 1980-08-11 Preparation of stringy aromatic polyester foaming body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10912680A JPS5734931A (en) 1980-08-11 1980-08-11 Preparation of stringy aromatic polyester foaming body

Publications (2)

Publication Number Publication Date
JPS5734931A JPS5734931A (en) 1982-02-25
JPS6148410B2 true JPS6148410B2 (en) 1986-10-24

Family

ID=14502221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10912680A Granted JPS5734931A (en) 1980-08-11 1980-08-11 Preparation of stringy aromatic polyester foaming body

Country Status (1)

Country Link
JP (1) JPS5734931A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621732A (en) * 1985-06-28 1987-01-07 Teijin Ltd Production of polyester foam

Also Published As

Publication number Publication date
JPS5734931A (en) 1982-02-25

Similar Documents

Publication Publication Date Title
JP3524006B2 (en) Method for producing polyamide resin foam
JPS6148410B2 (en)
JP3213871B2 (en) Thermoplastic polyester resin foam molded article, thermoplastic polyester resin pre-expanded particles, and method for producing thermoplastic polyester resin foam molded article from the pre-expanded particles
JPH04356541A (en) Production of polyamide resin foam
JPS6148411B2 (en)
JP4299490B2 (en) Lightweight structural material with good decomposability, heat insulating material, and manufacturing method thereof
JPS6148409B2 (en)
JPH0547575B2 (en)
JP3449902B2 (en) Polycarbonate resin foam
JP2801483B2 (en) Method for producing thermoplastic polyester resin foam
JP2528514B2 (en) Thermoplastic polyester resin foam sheet
JP3892745B2 (en) Method for producing polylactic acid resin foam
JP3369100B2 (en) Thermoplastic polyester resin foam and method for producing the same
JP3133225B2 (en) Method for producing thermoplastic polyester resin foam
JPH1180411A (en) Production of polycarbonate resin foam
AU652512B2 (en) Process for producing polyester resin foam
JP2908970B2 (en) Method for producing thermoplastic polyester resin foam
JPH0249039A (en) Production of polyester-based resin foam
JPH0733053B2 (en) Method for producing thermoplastic polyester resin foam
JPH0547571B2 (en)
JP3631940B2 (en) Aromatic polyester resin pre-expanded particles and foamed moldings using the same
JPH09169865A (en) Foamed polyester resin sheet
JPH0688301B2 (en) Method for producing heat-resistant thermoplastic polyester resin foam
JP2001329100A (en) Aromatic polyester resin prefoamed particle and foamed molded product using the same
JP3059355B2 (en) Method for producing thermoplastic polyester resin foam