JPS6148137B2 - - Google Patents

Info

Publication number
JPS6148137B2
JPS6148137B2 JP49122801A JP12280174A JPS6148137B2 JP S6148137 B2 JPS6148137 B2 JP S6148137B2 JP 49122801 A JP49122801 A JP 49122801A JP 12280174 A JP12280174 A JP 12280174A JP S6148137 B2 JPS6148137 B2 JP S6148137B2
Authority
JP
Japan
Prior art keywords
layer
transparent
light
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49122801A
Other languages
Japanese (ja)
Other versions
JPS5148995A (en
Inventor
Yoshiaki Shirato
Masaaki Matsushima
Toshitami Hara
Yoshiki Hazemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12280174A priority Critical patent/JPS5148995A/en
Publication of JPS5148995A publication Critical patent/JPS5148995A/en
Publication of JPS6148137B2 publication Critical patent/JPS6148137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は電気的手段により、干渉色を表示する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for displaying interference colors by electrical means.

従来より、電気的手段により表示を行なう方法
としては、EL、ELDを利用した表示管、ランプ
等のアクテイブな表示方法、或いはエレクトロク
ロミー、液晶等を利用したパツシブな表示方法が
ある。本発明はこれ等、従来のものには見られな
い新規なタイプの表示方法であり、色彩表示、観
察点による表示色の変化、更には表示の記憶性等
を特徴とするものである。
Conventionally, as methods for displaying by electrical means, there are active display methods such as display tubes and lamps using EL and ELD, and passive display methods using electrochromy, liquid crystal, etc. The present invention is a novel type of display method not found in conventional methods, and is characterized by color display, change in display color depending on the observation point, and display memorability.

詳しくは、1つが透光性で、且つ他方が光反射
性である1対の電極間に遷移金属化合物を含有す
る固体層を挾持してなる素子の前記電極間に通電
することによつて、前記透光性電極に金属の半透
膜層を生じせしめ、該金属の半透膜層での反射光
と前記光反射性電極での反射光との光路差によつ
て生じた干渉色を表示することを特徴とする表示
方法である。
Specifically, by applying current between the electrodes of an element formed by sandwiching a solid layer containing a transition metal compound between a pair of electrodes, one of which is transparent and the other is reflective, A metal semi-transparent film layer is formed on the light-transmitting electrode, and an interference color caused by an optical path difference between the light reflected by the metal semi-transparent film layer and the light reflected by the light-reflecting electrode is displayed. This is a display method characterized by:

以下、図面に添つて本発明表示方法を具体例を
挙げて説明する。
Hereinafter, the display method of the present invention will be explained by giving specific examples with reference to the drawings.

第1図に本発明に係る素子の一例が示される。 FIG. 1 shows an example of a device according to the present invention.

第1図中、1はガラス、アクリル樹脂、CaF2
等よりなる透光性基板であり内層の保護を兼ねて
いるが、本発明に於いて必らずしも必要ではな
い。2は透光性導電材料の層であり、電子伝導率
の高いものがよい。例えばSnO2、TiO2、In2O3
の蒸着膜である。
In Figure 1, 1 is glass, acrylic resin, CaF 2
It is a light-transmitting substrate made of a material such as the like, and also serves to protect the inner layer, but it is not necessarily necessary in the present invention. 2 is a layer of a transparent conductive material, preferably one having high electronic conductivity. For example, it is a vapor deposited film of SnO 2 , TiO 2 , In 2 O 3 or the like.

3は前記2の層に比して電子伝導率の低い材質
によつて構成され、蒸着、C.V.D、スパツター等
で透明性薄膜を形成し得るものがよい。例えば下
記遷移金属化合物の中から選択される。
Layer 3 is preferably made of a material having a lower electronic conductivity than layer 2, and can be formed into a transparent thin film by vapor deposition, CVD, sputtering, or the like. For example, it is selected from the following transition metal compounds.

ZrO Bi2O3 Nb2O5 ReO7 PbO CeO Ta2O5
RaO4 MgO ZnO Sb2O3 CsO4 Ni2O3 V2O3
Cr2O3 Co2C3 CdO GaO MoO3 Sb2S3 Ag2O
Ga2O5 TeO2 IrS HgO Pb2O5 MnO2 GaS CoS
NH4VO3 CuCl H3〔PMo18O40〕30H2O HgS Pb
(NO32 ZnCl2 SnS Fe(NO33 H2SbO5 H3
〔PW12O40〕・30H2O WS2 Ni(NO32 H2SeO4
K2MoO4 PtS Cr(NO3) H2MoO4 Na2MoO4
PdS Zn(NO22 H2WO4 Na2Mo3O25・17H2O
MnS Sr(NO32 H3SbO4 (NH42MoO4 MoS
Pb(NO32 H4TiO4 Na4〔Mo3O25〕・12H2O RhS
(NH43〔P(Mo3O104〕 (NH45
〔Mo7O27〕・4H2O BeCl2 H4〔Si(Mo3O104
(NH46〔Ca2Mo12O45〕・2H2O AgCl AgNO3
H4MoO6 BiCl3 P.Z.T. H4Sb2O7 H2SeO3 InCl3
MgCl2 H5SbO5 H2TeO3 SbCl4 NiCl2 H5TeO6
H2TiO5 CeCl3 NbCl5 H10SnO15 Mn(NO32
CuCl3 H4〔SiMo18O40〕30H2O 更に、以下に列挙する三元化合物は、本発明に
おいて、その組成比を特定するものではなく、広
範な組成のものが使用できる。
ZrO Bi 2 O 3 Nb 2 O 5 ReO 7 PbO CeO Ta 2 O 5
RaO 4 MgO ZnO Sb 2 O 3 CsO 4 Ni 2 O 3 V 2 O 3
Cr 2 O 3 Co 2 C 3 CdO GaO MoO 3 Sb 2 S 3 Ag 2 O
Ga 2 O 5 TeO 2 IrS HgO Pb 2 O 5 MnO 2 GaS CoS
NH 4 VO 3 CuCl H 3 [PMo 18 O 40 ] 30H 2 O HgS Pb
(NO 3 ) 2 ZnCl 2 SnS Fe (NO 3 ) 3 H 2 SbO 5 H 3
[PW 12 O 40 ]・30H 2 O WS 2 Ni(NO 3 ) 2 H 2 SeO 4
K 2 MoO 4 PtS Cr(NO 3 ) H 2 MoO 4 Na 2 MoO 4
PdS Zn(NO 2 ) 2 H 2 WO 4 Na 2 Mo 3 O 25・17H 2 O
MnS Sr(NO 3 ) 2 H 3 SbO 4 (NH 4 ) 2 MoO 4 MoS
Pb (NO 3 ) 2 H 4 TiO 4 Na 4 [Mo 3 O 25 ]・12H 2 O RhS
(NH 4 ) 3 [P(Mo 3 O 10 ) 4 ] (NH 4 ) 5
[Mo 7 O 27 ]・4H 2 O BeCl 2 H 4 [Si(Mo 3 O 10 ) 4 ]
(NH 4 ) 6 [Ca 2 Mo 12 O 45 ]・2H 2 O AgCl AgNO 3
H 4 MoO 6 BiCl 3 PZT H 4 Sb 2 O 7 H 2 SeO 3 InCl 3
MgCl 2 H 5 SbO 5 H 2 TeO 3 SbCl 4 NiCl 2 H 5 TeO 6
H 2 TiO 5 CeCl 3 NbCl 5 H 10 SnO 15 Mn(NO 3 ) 2
CuCl 3 H 4 [SiMo 18 O 40 ] 30H 2 O Furthermore, in the present invention, the composition ratio of the ternary compounds listed below is not specified, and a wide range of compositions can be used.

Li−Ti−O化合物 Na−Ti−O化合物 K −Ti−O 〃 Ca−Ti−O 〃 Sr−Ti−O 〃 Ba−Ti−O 〃 Li−W −O 〃 Na−W −O 〃 K −W −O 〃 Ca−W −O 〃 Sr−W −O 〃 Ba−W −O 〃 Li−V −O 〃 Na−V −O 〃 K −V −O 〃 Ca−V −O 〃 Sr−V −O 〃 Ba−V −O 〃 Li−Mo−O 〃 Na−Mo−O 〃 K −Mo−O 〃 Ca−Mo−O 〃 Sr−Mo−O化合物 Ba−Mo−O化合物 Li−Nb−O 〃 Na−Nb−O 〃 K −Nb−O 〃 Ca−Nb−O 〃 Sr−Nb−O 〃 Ba−Nb−O 〃 Li−Ta−O 〃 K −Ta−O 〃 Na−Ta−O 〃 Ca−Ta−O 〃 Sr−Ta−O 〃 Ba−Ta−O 〃 Li−Zn−O 〃 Na−Zn−O 〃 K −Zn−O 〃 Ca−Zn−O 〃 Sr−Zn−O 〃 Ba−Zn−O 〃 Li−Sn−O 〃 Na−Sn−O 〃 K −Sn−O 〃 Ca−Sn−O 〃 Sr−Sn−O 〃 Ba−Sn−O 〃 Li−Cr−O 〃 Na−Cr−O 〃 K −Cr−O 〃 Ca−Cr−O 〃 Sr−Cr−O 〃 Ba−Cr−O 〃 Li−Mn−O 〃 Na−Mn−O 〃 K −Mn−O 〃 Ca−Mn−O 〃 Sn−Mn−O 〃 Ba−Mn−O 〃 Li−Fe−O 〃 Na−Fe−O 〃 K −Fe−O化合物 Ca−Fe−O化合物 Sr−Fe−O 〃 Ba−Fe−O 〃 Li−Co−O 〃 Na−Co−O 〃 K −Co−O 〃 Ca−Co−O 〃 Sr−Co−O 〃 Ba−Co−O 〃 Li−Ni−O 〃 Na−Ni−O 〃 K −Ni−O 〃 Ca−Ni−O 〃 Sn−Ni−O 〃 Ba−Ni−O 〃 Li−In−O 〃 Na−In−O 〃 K −In−O 〃 Ca−In−O 〃 Sr−In−O 〃 Ba−In−O 〃 4は光反射性の電極であり、各種金属が採用さ
れるが、以下の条件を満たすものが、好ましい。
Li-Ti-O compound Na-Ti-O compound K -Ti-O 〃 Ca-Ti-O 〃 Sr-Ti-O 〃 Ba-Ti-O 〃 Li-W -O 〃 Na-W -O 〃 K - W -O 〃 Ca-W -O 〃 Sr-W -O 〃 Ba-W -O 〃 Li-V -O 〃 Na-V -O 〃 K -V -O 〃 Ca-V -O 〃 Sr-V - O 〃 Ba-V -O 〃 Li-Mo-O 〃 Na-Mo-O 〃 K -Mo-O 〃 Ca-Mo-O 〃 Sr-Mo-O compound Ba-Mo-O compound Li-Nb-O 〃 Na−Nb−O 〃 K −Nb−O 〃 Ca−Nb−O 〃 Sr−Nb−O 〃 Ba−Nb−O 〃 Li−Ta−O 〃 K −Ta−O 〃 Na−Ta−O 〃 Ca− Ta−O 〃 Sr−Ta−O 〃 Ba−Ta−O 〃 Li−Zn−O 〃 Na−Zn−O 〃 K −Zn−O 〃 Ca−Zn−O 〃 Sr−Zn−O 〃 Ba−Zn− O 〃 Li−Sn−O 〃 Na−Sn−O 〃 K −Sn−O 〃 Ca−Sn−O 〃 Sr−Sn−O 〃 Ba−Sn−O 〃 Li−Cr−O 〃 Na−Cr−O 〃 K -Cr-O 〃 Ca-Cr-O 〃 Sr-Cr-O 〃 Ba-Cr-O 〃 Li-Mn-O 〃 Na-Mn-O 〃 K -Mn-O 〃 Ca-Mn-O 〃 Sn- Mn-O 〃 Ba-Mn-O 〃 Li-Fe-O 〃 Na-Fe-O 〃 K -Fe-O compound Ca-Fe-O compound Sr-Fe-O 〃 Ba-Fe-O 〃 Li-Co- O 〃 Na−Co−O 〃 K −Co−O 〃 Ca−Co−O 〃 Sr−Co−O 〃 Ba−Co−O 〃 Li−Ni−O 〃 Na−Ni−O 〃 K −Ni−O 〃 Ca−Ni−O 〃 Sn−Ni−O 〃 Ba−Ni−O 〃 Li−In−O 〃 Na−In−O 〃 K −In−O 〃 Ca−In−O 〃 Sr−In−O 〃 Ba− In-O 4 is a light-reflective electrode, and various metals can be used, but those that satisfy the following conditions are preferable.

(a) 前記3の層の材料と化学反応を起こし難いも
の。
(a) A material that does not easily cause a chemical reaction with the material of layer 3 above.

(b) 光反射率が高く、分光感度が各波長で均一な
もの。
(b) High light reflectance and uniform spectral sensitivity at each wavelength.

(c) 前記3の層との間で電子の授受が良好なも
の。
(c) Good exchange of electrons with the layer 3 above.

5は電源、6は極性切換スイツチを示す。 5 is a power supply, and 6 is a polarity changeover switch.

第1図示例に於いて、光源7を出た光はA,
C,D各点を経て観察眼8に至る。(この場合、
1,2,3の層が全て透光性、4の層が光反射性
である。)なお、1の層の表面に反射防止膜を施
こして、A点に於ける表面反射を防止することも
できるし、又各層の材質を選択してC点での界面
反射を防止することもできる。
In the first illustrated example, the light emitted from the light source 7 is A,
It reaches the observation eye 8 via points C and D. (in this case,
Layers 1, 2, and 3 are all translucent, and layer 4 is reflective. ) Note that it is also possible to apply an anti-reflection film to the surface of the first layer to prevent surface reflection at point A, or to prevent interface reflection at point C by selecting the material of each layer. You can also do it.

以上の選択条件を満足した場合には、光源7か
らの光の大半はD点での反射により観察眼に至る
ことになる。次に極性電源5からスイツチ6を通
じて2,4層間に通電を行なうと瞬間的に呈色状
態となる。
If the above selection conditions are satisfied, most of the light from the light source 7 will reach the viewing eye through reflection at point D. Next, when electricity is applied between the 2nd and 4th layers from the polar power source 5 through the switch 6, a colored state is instantaneously brought about.

この原因としては、2層と3層の間の酸化還元
反応によつて境界面に金属の半透膜層が形成さ
れ、C点における反射率が高くなつたためと考察
される。従つて瞬時の通電によりD点での反射光
とC点での反射光が観察眼に到達し、それに基づ
く干渉色が観察される。この干渉色は素子への通
電を絶つた後も保存され、所謂記憶性を有してい
る。本発明に於ける干渉は、電気的に起る膜厚変
化でもなく屈折率の変化によるものでもないこと
は、記憶した状態で、前記素子の4層及び3層を
化学的処理で取り除いた後、X線分析によつて2
層に金属薄膜が形成されていることが認められる
ことから確認される。
The reason for this is considered to be that a metal semi-permeable film layer is formed at the interface due to an oxidation-reduction reaction between the second layer and the third layer, and the reflectance at point C becomes high. Therefore, by instantaneous energization, the reflected light at point D and the reflected light at point C reach the observing eye, and interference colors based on them are observed. This interference color is preserved even after the power to the element is cut off, and has a so-called memory property. Keeping in mind that the interference in the present invention is neither due to electrically induced film thickness changes nor to changes in refractive index, after removing the fourth and third layers of the device by chemical treatment, , by X-ray analysis 2
This is confirmed by the fact that a metal thin film is observed to be formed on the layer.

又、C〜D以外の面での干渉も考えられるが、
1,2及び3の層の膜厚を変化させたもの(実際
には、蒸着時に膜厚をマスクの移動により、少し
つづ変化させる)について、あらゆる膜厚変化の
組合せを考えて素子を作成して調べた結果、C〜
D間での干渉であることが判明した。先の通電に
伴なつて発色状態となつた素子に逆極性の通電を
行なうと、3層に於ける分極状態が先とは逆にな
り、C点での反射率は低下し、元の状態に復帰す
る。従つて、観察眼8は消色の状態を観察する。
又、本発明に於いては、第2図示例の如く発色し
ている状態で観察位置を変化させた場合、F,
F′あるいはG,G′点からの反射光との光路差に
より干渉色を生じ、しかもその光路差が観察位置
により異るため、観察眼8′,8″点での干渉色彩
が異なるという効果がある。又3層の膜厚を制御
する事により自由に色彩を変化させる事が出来る
ことも、本発明の特徴である。
Also, interference on surfaces other than C to D is also considered,
For those in which the film thicknesses of layers 1, 2, and 3 are changed (actually, the film thickness is gradually changed by moving the mask during vapor deposition), devices are created by considering all combinations of film thickness changes. As a result of research, C~
It turned out to be interference between D. When the element, which has become colored due to the previous energization, is energized with the opposite polarity, the polarization state in the three layers becomes opposite to the previous one, and the reflectance at point C decreases, returning to the original state. to return to. Therefore, the viewing eye 8 observes the decolored state.
In addition, in the present invention, when the observation position is changed while the color is developing as in the second illustrated example, F,
Interference colors are generated due to the optical path difference with the reflected light from points F', G, and G', and since the optical path difference differs depending on the observation position, the interference colors at points 8' and 8'' of the observing eye are different. Another feature of the present invention is that the color can be freely changed by controlling the thickness of the three layers.

以下、実施例により、本発明を更に詳述する。 Hereinafter, the present invention will be explained in further detail with reference to Examples.

実施例 1 洗浄後、乾燥したガラス基板にIn2O3を蒸着し
熱処理を行い透明電極とした。次いで蒸着膜上に
ZrO2の電子ビーム蒸着を行い、膜厚を5900Å、
3700Å、3500Å、2800Åとした4種類を作成し
た。対向電極としてPtをパターン化して更に蒸着
した。In2O3とPt間に、In2O3を陰極として15Vの
電圧で0.1秒間通電した所、干渉色発色が認めら
れた。観察眼を基板に対する法線から測定して30
゜以内のある角度に固定しておいた所上記膜厚に
対して各々赤色、草色、紫色、無色、等の状態で
観察された。先とは逆極性の通電を行なつた所、
0.1秒以内で消色した。この際発消色に用いられ
た電流はそれぞれ10mA以下であつた。
Example 1 After cleaning, In 2 O 3 was evaporated onto a dried glass substrate and heat treated to obtain a transparent electrode. Then on the deposited film
Performed electron beam evaporation of ZrO 2 to a film thickness of 5900 Å.
Four types were created: 3700Å, 3500Å, and 2800Å. Pt was patterned and further deposited as a counter electrode. When electricity was applied between In 2 O 3 and Pt at a voltage of 15 V for 0.1 seconds using In 2 O 3 as a cathode, interference color development was observed. 30 by measuring the viewing eye from the normal to the substrate.
When the film was fixed at a certain angle within 100°, the film thickness was observed as red, grass green, purple, colorless, etc. Where electricity was applied with the opposite polarity to the previous one,
The color disappeared within 0.1 seconds. At this time, the current used for color development and decolorization was 10 mA or less.

実施例 2 実施例1と同様に処理したガラス基板にSnO2
のネサ電極をつけ、その上にCaTiO3を5200Å、
4800Å、3900Å、3700Åの膜厚にして電子ビーム
による蒸着を行い、更にAl電極をパターン化し
て蒸着した。
Example 2 SnO 2 was applied to a glass substrate treated in the same manner as in Example 1.
Attach a Nesa electrode of 5200Å on top of the
Electron beam deposition was performed to film thicknesses of 4800 Å, 3900 Å, and 3700 Å, and an Al electrode was further patterned and deposited.

実施例1と同様の通電、及び観測によりそれぞ
れ赤色、赤紫色、草色、赤色の干渉色発色が観察
された。逆極性消色、発色、消色の繰り返し、着
色の記憶性も満足するものであつた。
Through the same energization and observation as in Example 1, interference colors of red, magenta, grass green, and red were observed, respectively. The repetition of reverse polarity decoloring, coloring, and decoloring, and coloring memory were also satisfactory.

実施例 3 実施例1と同様のネサ電極基板にBaTiO3
ZrO2、SrTiO3を電子ビーム蒸着を行ない、
NiCrSn等の対向電極を用いて種々の組み合せに
おいて実験を行つた所、それぞれ干渉色表示が認
められ、観察眼の位置(角度)変化により種々の
色彩変化が認められた。
Example 3 BaTiO 3 was applied to the same Nesa electrode substrate as in Example 1.
Perform electron beam evaporation of ZrO 2 and SrTiO 3 ,
When experiments were conducted using various combinations of counter electrodes such as NiCrSn, interference color display was observed in each case, and various color changes were observed as the position (angle) of the observing eye changed.

以上、本発明について説明したが、これらの表
示への反応は多方面に渡り、電極のパターン化に
よる種々の表示、マトリツクス電極化による表
示、又他の性質例えば光半導体との組合せによる
光像の表示等、種々があげられるが、本発明は電
気化学的に干渉色を起こさせる表示方法に及ぶも
のであり、図示例、及び実施例のみに限定するも
のではない。
The present invention has been explained above, but the reactions to these displays are diverse, including various displays by patterning electrodes, displays by matrix electrodes, and optical images by combining with other properties, such as optical semiconductors. There are various ways of displaying, but the present invention extends to a display method that electrochemically causes interference colors, and is not limited to only the illustrated examples and examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明表示方法を説明する
略式図である。 1……透光性基板、2……透光性電極層、3…
…遷移金属化合物を含有する層、4……光反射性
電極層、5……電源、6……スイツチ、7……光
源、8,8′,8″……観察眼。
1 and 2 are schematic diagrams illustrating the display method of the present invention. 1... Transparent substrate, 2... Transparent electrode layer, 3...
... layer containing a transition metal compound, 4 ... light-reflecting electrode layer, 5 ... power supply, 6 ... switch, 7 ... light source, 8, 8', 8'' ... observation eye.

Claims (1)

【特許請求の範囲】[Claims] 1 1つが透光性で、且つ他方が光反射性である
1対の電極間に遷移金属化合物を含有する固体層
を挾持してなる素子の前記電極間に通電すること
によつて、前記透光性電極に金属の半透膜層を生
じせしめ、該金属の半透膜層での反射光と前記光
反射性電極での反射光との光路差によつて生じた
干渉色を表示することを特徴とする表示方法。
1. By applying current between the electrodes of an element comprising a pair of electrodes, one of which is transparent and the other is reflective, and in which a solid layer containing a transition metal compound is sandwiched between the pair of electrodes, the transparent A metal semi-transparent film layer is formed on a photosensitive electrode, and an interference color generated due to an optical path difference between light reflected from the metal semi-transparent film layer and light reflected from the light-reflective electrode is displayed. A display method characterized by:
JP12280174A 1974-10-24 1974-10-24 HYOJIHOHO Granted JPS5148995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12280174A JPS5148995A (en) 1974-10-24 1974-10-24 HYOJIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12280174A JPS5148995A (en) 1974-10-24 1974-10-24 HYOJIHOHO

Publications (2)

Publication Number Publication Date
JPS5148995A JPS5148995A (en) 1976-04-27
JPS6148137B2 true JPS6148137B2 (en) 1986-10-22

Family

ID=14844962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12280174A Granted JPS5148995A (en) 1974-10-24 1974-10-24 HYOJIHOHO

Country Status (1)

Country Link
JP (1) JPS5148995A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211544A (en) * 1986-03-13 1987-09-17 Niigata Eng Co Ltd Inspecting method for egg
JPH0643093A (en) * 1992-07-28 1994-02-18 Otax Kk Apparatus for detecting blood in hen's egg
JP2003232741A (en) 2002-02-08 2003-08-22 Kyowa Machinery Co Ltd Mechanism and method for inspecting bloody egg as well as egg sorting and packaging system equipped with them

Also Published As

Publication number Publication date
JPS5148995A (en) 1976-04-27

Similar Documents

Publication Publication Date Title
JPS6031355B2 (en) All-solid-state electrochromic device
US4294520A (en) Electrochromic display device
JP2016510136A (en) Reflective color filters and color display devices
EP0509276A2 (en) Electrochromic system
JPS58139128A (en) Entirely solid-state electrochromic element
US4225216A (en) Tungsten niobate electrochromic device
US4194812A (en) Electrochromic device
JPS6148137B2 (en)
JPS5979225A (en) Whole solid-state type electrochromic element
KR980010578A (en) Switchable device with optical resonator
US4632516A (en) Electrochromic element
JPS5961820A (en) Fully solid-state type electrochromic element
KR102453325B1 (en) Electrochromic device and display device having the same
JPH0358496B2 (en)
JPS5955414A (en) All solid-state type electrochromic element
JPS5955416A (en) All solid-state type electrochromic element
JPS5961821A (en) Fully solid-state type electrochromic element
JPH02217827A (en) Optical modulating element
JPS58129424A (en) Optical lens
JPS6355686B2 (en)
JPS61277927A (en) Structural body of electrochromic element
JPS60181732A (en) Electrochromic display device
JPH10197905A (en) Electrochromic layer and electrochromic element using same
JPS6328288B2 (en)
JPS6015482A (en) Preparation of optical color developing element