JPS6147968B2 - - Google Patents

Info

Publication number
JPS6147968B2
JPS6147968B2 JP53139981A JP13998178A JPS6147968B2 JP S6147968 B2 JPS6147968 B2 JP S6147968B2 JP 53139981 A JP53139981 A JP 53139981A JP 13998178 A JP13998178 A JP 13998178A JP S6147968 B2 JPS6147968 B2 JP S6147968B2
Authority
JP
Japan
Prior art keywords
port
supercharging
rotor
air
main intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53139981A
Other languages
Japanese (ja)
Other versions
JPS5566615A (en
Inventor
Asao Tadokoro
Haruo Okimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP13998178A priority Critical patent/JPS5566615A/en
Priority to US06/092,289 priority patent/US4315488A/en
Priority to DE2945592A priority patent/DE2945592C2/en
Publication of JPS5566615A publication Critical patent/JPS5566615A/en
Publication of JPS6147968B2 publication Critical patent/JPS6147968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 本発明は、ロータリピストンエンジンの吸気装
置、とくに混合気に加えて加圧空気を供給するこ
とにより充填効率を向上させるようにした過給装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a rotary piston engine, and particularly to an improvement in a supercharging system that improves charging efficiency by supplying pressurized air in addition to air-fuel mixture.

一般にエンジンの吸気行程における吸気のすべ
てを過給機によつて加圧して吸入させることによ
り充填効率を高め、エンジンの出力性能の向上を
図る技術思想は公知である。しかしながら、この
場合、エンジンに吸入される吸気が全て過給機を
通過するため、過給機自体が通気抵抗となり逆に
充填効率が低下して出力性能の低下を招来すると
いつた問題があり、また他方で、エンジンに吸入
される吸気の全てが過給機により断熱圧縮されて
高温化されているため吸気の密度が低くなり充填
効率が十分に向上しないといつた問題があり、こ
れらの問題を回避するためには過給機を大型化し
なければならないという問題がある。そこで、従
来、エンジンの吸気負圧により混合気を吸入する
主吸気ポートに加えて過給機により加圧した空気
あるいは混合気を供給する過給ポートを設け、負
圧による自然吸入と過給機による過給とで吸気を
行なうようにし、比較的小容量の過給機でエンジ
ンの全回転範囲にわたつて有効な充填効率の向上
を図るようにしたものが提案されている。しかし
ながら、従来提案されているものは、主吸気ポー
トおよび過給ポートのうち少なくとも一方がいわ
ゆるペリフエラルポートであり必ずしも有効な過
給効果が得られていない。即ち、従来のものにお
いては、ロータ頂辺部に装着したアペツクスシー
ルが該ポート上を通過する際先行作動室と後続作
動室とが連通し、先行作動室から後続作動室への
吹返しが生じ、それ故、所定の過給効果を得るた
めにはその分だけ過給機の容量を大きくする必要
があり、また、その開口位置をトレーリング側に
ずらせば排気ポートとのオーバラツプが増大し軽
負荷時の燃焼の安定性が損われると共に主吸気ポ
ートおよび過給ポートが早い時期に閉じることに
なり主吸気ポートによる吸入能力が阻害され、十
分なる過給効果が得られないという問題がある。
Generally, the technical concept of increasing the charging efficiency and improving the output performance of the engine by pressurizing and inhaling all of the intake air during the intake stroke of the engine using a supercharger is well known. However, in this case, all of the intake air drawn into the engine passes through the supercharger, which creates ventilation resistance in the supercharger itself, resulting in a decrease in charging efficiency and a decrease in output performance. On the other hand, all of the intake air taken into the engine is adiabatically compressed by the supercharger and heated to a high temperature, which lowers the density of the intake air and prevents sufficient improvement in charging efficiency. In order to avoid this problem, the supercharger must be made larger. Therefore, conventionally, in addition to the main intake port that sucks the air-fuel mixture using the engine's intake negative pressure, a supercharging port that supplies air or air-fuel mixture pressurized by the turbocharger has been installed, allowing natural intake due to the negative pressure and the turbocharger. A system has been proposed in which air is taken in by supercharging, and the charging efficiency is effectively improved over the entire rotation range of the engine using a relatively small-capacity supercharger. However, in the conventionally proposed devices, at least one of the main intake port and the supercharging port is a so-called peripheral port, and an effective supercharging effect is not necessarily obtained. That is, in the conventional type, when the apex seal attached to the top of the rotor passes over the port, the preceding working chamber and the succeeding working chamber communicate with each other, and blowback from the preceding working chamber to the succeeding working chamber is prevented. Therefore, in order to obtain the desired supercharging effect, it is necessary to increase the capacity of the supercharger accordingly, and if the opening position is shifted to the trailing side, the overlap with the exhaust port will increase. There is a problem in that the stability of combustion during light loads is impaired, and the main intake port and supercharging port close early, which impedes the suction capacity of the main intake port and prevents a sufficient supercharging effect from being obtained. .

このため、本発明においては、主吸気ポートと
過給ポートとを互に近接させてサイドハウジング
に設け主吸気ポートの吸入能力を阻害することな
く排気ポートとのオーバラツプを無くする一方、
過給ポートは主吸気ポートとほゞ同時に開かれる
ようにその外周縁を設定する一方、主吸気ポート
の全閉後吸気作動室内の圧力と加圧空気の圧力と
がほぼ同圧となるロータの回転位置で該ロータに
より遅れて閉じられるようにその上縁を設定し、
吹返しを生じることなく過給ポートの面積を十分
に確保することにし、その結果、軽負荷時の燃焼
の安定性を損なうことなく小容量の過給機でもつ
て十分なる過給効果を得るようにしたことを基本
的な特徴としている。
Therefore, in the present invention, the main intake port and the supercharging port are placed close to each other in the side housing to eliminate overlap with the exhaust port without impeding the suction capacity of the main intake port.
The outer periphery of the supercharging port is set so that it opens almost simultaneously with the main intake port, while the pressure inside the intake working chamber and the pressure of the pressurized air are almost the same after the main intake port is fully closed. setting its upper edge to be delayed closed by the rotor in a rotational position;
We decided to secure a sufficient area for the supercharging port without causing blowback, and as a result, we were able to obtain sufficient supercharging effect even with a small-capacity supercharger without compromising combustion stability at light loads. The basic feature is that

以下、図示の実施例について本発明を具体的に
説明する。
The present invention will be specifically described below with reference to the illustrated embodiments.

第1図において、1はトロコイド状の内周面2
aを有するロータハウジング2とその両側に配置
されたサイドハウジング3とで形成されるケーシ
ング、4は頂部をトロコイド内周面2aに摺接し
つつケーシング1内を遊星回転運動する三角形形
状のロータ、5はケーシング1の内面とロータ4
のフランク面とで画成される可変容積の作動室、
6はサイドハウジング3の内面に開口し、吸気行
程において吸気作動室5aに対し、所定のタイミ
ングでロータ4により開閉される主吸気ポート、
7はエアクリーナ、8は気化器、9は気化器8に
より生成された混合気を主吸気ポート6に供給す
る吸気通路、10は圧縮上死点付近において圧縮
作動室5b内の混合気に着火する点火プラグ、1
1は排気作動室5cの排気ガスを排気マニホール
ド12に排出する排気ポートで、これらは、ロー
タ4の回転に応じて連続的に吸気、圧縮、爆発、
膨張、排気の各行程を繰返すロータリピストンエ
ンジンを構成している。
In Fig. 1, 1 is a trochoidal inner peripheral surface 2.
A casing formed of a rotor housing 2 having a diameter of 1 and side housings 3 disposed on both sides of the rotor housing 2; 4 a triangular rotor that rotates planetarily within the casing 1 while sliding its top portion on the trochoid inner circumferential surface 2a; 5; are the inner surface of casing 1 and rotor 4
a variable volume working chamber defined by a flank surface of the
6 is a main intake port that opens on the inner surface of the side housing 3 and is opened and closed by the rotor 4 at a predetermined timing with respect to the intake working chamber 5a during the intake stroke;
7 is an air cleaner, 8 is a carburetor, 9 is an intake passage that supplies the air-fuel mixture generated by the carburetor 8 to the main intake port 6, and 10 is an air-fuel mixture in the compression working chamber 5b near the compression top dead center. Spark plug, 1
Reference numeral 1 denotes an exhaust port that discharges exhaust gas from the exhaust working chamber 5c to the exhaust manifold 12, which continuously performs intake, compression, explosion, and
It constitutes a rotary piston engine that repeats the expansion and exhaust strokes.

一方、13は主吸気ポート6と同様にサイドハ
ウジング3の内面に開口し、主吸気ポート6に対
しロータ4の回転方向に関してリーデイング側に
開設した過給ポートで、加圧空気を作動室5の
ほゞ軸方向に向けて供給するよう構成している。
14はエンジンにより駆動される過給機としての
ベーンタイプの空気ポンプ、15は空気ポンプ1
4の吐出側と過給ポート13とを連通し、空気ポ
ンプ14により吐出される加圧空気を過給ポート
13に送給する加圧空気通路、16は加圧空気通
路15に介設され、エンジンの軽負荷運転時加圧
空気通路15を全閉して加圧空気の供給をカツト
する常開の開閉バルブ、17は空気ポンプ14の
吐出側圧力が設定値以上に達したときに高圧を大
気に放出する圧力バルブで、これらは、主吸気ポ
ート6から吸入される混合気に加えて、加圧空気
を吸気行程作動室5aに供給する過給装置を構成
する。
On the other hand, 13 is a supercharging port that opens on the inner surface of the side housing 3 similarly to the main intake port 6, and is opened on the leading side of the main intake port 6 with respect to the rotational direction of the rotor 4, and supplies pressurized air to the working chamber 5. It is configured to be supplied almost in the axial direction.
14 is a vane type air pump as a supercharger driven by the engine; 15 is air pump 1;
A pressurized air passage 16 is interposed in the pressurized air passage 15 and communicates the discharge side of 4 with the supercharging port 13 and supplies pressurized air discharged by the air pump 14 to the supercharging port 13. A normally open opening/closing valve completely closes the pressurized air passage 15 to cut off the supply of pressurized air during light load operation of the engine, and a normally open opening/closing valve 17 controls high pressure when the discharge side pressure of the air pump 14 reaches a set value or higher. These pressure valves discharge to the atmosphere, and constitute a supercharging device that supplies pressurized air to the intake stroke working chamber 5a in addition to the air-fuel mixture taken in from the main intake port 6.

次に、過給ポート13の設定について説明する
と、まず、その外周縁13aは、ロータハウジン
グ2に設けられた排気ポート11が閉じられるロ
ータ回転位置にて、過給ポート13が主吸気ポー
ト6とほゞ同時に吸気行程作動室5aに開口され
るように、図に一点鎖線で示す吸入行程開始直前
のロータ姿勢イのフランク縁に沿つて主吸気ポー
ト6の外周縁6aを延長した曲線上に設定する。
つまり、主吸気ポート6の外周縁6aと過給ポー
ト13の外周縁とは共に排気ポート11とのオー
バラツプによつて決定されるものであるから過給
ポート13の開き始めの時期はオーバラツプする
ことなく必要面積を確保するために主吸気ポート
6の開き始めの時期に設定する必要がある。
Next, the setting of the supercharging port 13 will be explained. First, the outer peripheral edge 13a of the supercharging port 13 is connected to the main intake port 6 at the rotor rotational position where the exhaust port 11 provided in the rotor housing 2 is closed. In order to open into the intake stroke working chamber 5a at almost the same time, the outer peripheral edge 6a of the main intake port 6 is set on a curve extending along the flank edge of the rotor posture A just before the start of the intake stroke shown by the dashed line in the figure. do.
In other words, since the outer circumferential edge 6a of the main intake port 6 and the outer circumferential edge of the supercharging port 13 are both determined by the overlap with the exhaust port 11, the timing at which the supercharging port 13 begins to open overlaps. It is necessary to set the time when the main intake port 6 starts to open in order to secure the necessary area without any problem.

また、過給ポート13のトレーリング側の下縁
13bは、主吸気ポート6のリーデイング側上縁
6bのリーデイング側に該上縁6bに僅かな距離
をおいてほゞ平行に設定し、ロータ4が主吸気ポ
ート6を全閉した直後のロータ姿勢ロ(図の二点
鎖線位置)から直ちに閉じ始めるようにする。
Further, the trailing side lower edge 13b of the supercharging port 13 is set substantially parallel to the leading side upper edge 6b of the main intake port 6 at a small distance from the leading side upper edge 6b. The main intake port 6 is started to close immediately from the rotor posture RO (position indicated by the chain double-dashed line in the figure) immediately after the main intake port 6 is fully closed.

さらに、過給ポート13のリーデイング側の上
縁13cは、上記下縁13bにほゞ平行に所要の
間隔をおいて対峙し、ロータ4が上記ロータ姿勢
ロからさらに回転し、主吸気ポート6の全閉から
所定の角度例えば偏心軸角度で30゜〜50゜回転し
た後に全閉するように設定する。
Further, the upper edge 13c of the leading side of the supercharging port 13 faces the lower edge 13b at a required distance in parallel with the lower edge 13b, and as the rotor 4 further rotates from the rotor posture B, the main intake port 6 It is set so that it is fully closed after rotating through a predetermined angle, for example, 30° to 50° at an eccentric shaft angle.

この場合の過給ポート13の全閉のタイミング
は、過給ポート13への吹返しが生じない範囲で
可能な限り遅くなるように設定しており、すなわ
ち、高負荷運転時空気ポンプ14によつて過給ポ
ート13の与えられる空気圧力が、主吸気ポート
6の全閉後圧縮行程への移行に伴なつて上昇する
圧縮作動室5bの内圧に等しくなる直前に、過給
ポート13が全閉されるように設定している。
In this case, the timing of fully closing the supercharging port 13 is set to be as late as possible within a range that does not cause blowback to the supercharging port 13. Therefore, immediately before the air pressure applied to the supercharging port 13 becomes equal to the internal pressure of the compression working chamber 5b, which increases as the main intake port 6 moves to the compression stroke after the main intake port 6 is fully closed, the supercharging port 13 closes completely. It is set so that

なお、過給ポート13の内縁13dは、主吸気
ポート6の内周縁6cと同様、オイルシールの摺
動軌跡の外側に位置するように設定する。
Note that, like the inner peripheral edge 6c of the main intake port 6, the inner edge 13d of the supercharging port 13 is set to be located outside the sliding locus of the oil seal.

したがつて、ロータ4がロータ姿勢イから更に
僅かに回転すると、主吸気ポート6及び過給ポー
ト13はロータ4により吸気作動室5aに対して
開かれ、主吸気ポート6からは気化器8によつて
供給される混合気が作動室5aの負圧によつて作
動室5a内に吸入される一方、過給ポート13か
らは空気ポンプ14によつて加圧された加圧空気
が作動室5a内に供給される。この状態から、ロ
ータ4がさらに回転すると、吸気作動室5a内の
圧力が上昇し、主吸気ポート6からの混合気の吸
入量は徐々に減少し、ロータ姿勢ロに到ると主吸
気ポート6からの混合気吸入能力はゼロとなるの
で、このロータ姿勢ロにおいて主吸気ポート6は
閉じられる。
Therefore, when the rotor 4 further rotates slightly from the rotor posture A, the main intake port 6 and the supercharging port 13 are opened by the rotor 4 to the intake working chamber 5a, and the main intake port 6 is connected to the carburetor 8. The air-fuel mixture thus supplied is sucked into the working chamber 5a by the negative pressure in the working chamber 5a, while pressurized air pressurized by the air pump 14 is sent from the supercharging port 13 to the working chamber 5a. supplied within. When the rotor 4 further rotates from this state, the pressure in the intake working chamber 5a increases, the amount of air-fuel mixture sucked from the main intake port 6 gradually decreases, and when the rotor position B is reached, the main intake port 6 Since the air-fuel mixture suction capacity from the rotor position B becomes zero, the main intake port 6 is closed in this rotor attitude B.

この場合、主吸気ポート6を、吸入能力を越え
た後まで開くように設定すると、過給ポート13
からの過給空気が主吸気ポート6および吸気通路
9内に逆流することになるので好ましくない。
In this case, if the main intake port 6 is set to open until after the suction capacity is exceeded, the supercharging port 13
This is not preferable because the supercharged air from the main intake port 6 and the intake passage 9 will flow back into the main intake port 6 and the intake passage 9.

上記のロータ姿勢から過給ポート13が閉じる
までの間、作動室5aには空気ポンプ14によつ
て加圧された加圧空気が、必要十分な開口面積の
過給ポート13から供給される。
From the rotor attitude described above until the supercharging port 13 closes, pressurized air pressurized by the air pump 14 is supplied to the working chamber 5a from the supercharging port 13 having a necessary and sufficient opening area.

したがつて、主吸気ポート6による混合気の十
分な吸入と過給ポート13による十分な過給によ
り、エンジンの充填効率は向上し出力性能の向上
を確実に図ることができる。
Therefore, by sufficient intake of the air-fuel mixture through the main intake port 6 and sufficient supercharging through the supercharging port 13, the filling efficiency of the engine can be improved and the output performance can be reliably improved.

また、過給ポート13は、主吸気ポート6の全
閉後圧縮行程に移行する吸気作動室5aのトレー
リング側において作動室5aの軸方向に向つて開
口して加圧空気を供給するため、過給ポート13
から供給される加圧空気は作動室5aのリーデイ
ング側の混合気を希釈することなく吸気作動室5
aのレーリング側に確実に充填され、既に供給さ
れた混合気をリーデイング側におしやるように作
用し、それだけエンジンの燃焼性をも向上させる
ことができる。
Further, since the supercharging port 13 opens toward the axial direction of the working chamber 5a on the trailing side of the intake working chamber 5a that moves to the compression stroke after the main intake port 6 is fully closed, and supplies pressurized air, Supercharging port 13
The pressurized air supplied from the intake working chamber 5a does not dilute the air-fuel mixture on the leading side of the working chamber 5a.
The fuel mixture is reliably filled into the railing side of the fuel tank a, and acts to push the already supplied air-fuel mixture to the leading side, thereby improving the combustibility of the engine.

なお、上記実施例では、空気ポンプ14の吐出
側と過給ポート13とを加圧空気通路15によつ
て直接に連通したが、その途中にサージングタン
クを介設すれば、ベーンタイプのポンプの欠点で
ある脈動を有効に緩和することができ、脈動によ
る圧力損失を防止することができる。
In the above embodiment, the discharge side of the air pump 14 and the supercharging port 13 are directly communicated through the pressurized air passage 15, but if a surging tank is interposed in the middle, the vane type pump can be easily connected. Pulsation, which is a drawback, can be effectively alleviated, and pressure loss due to pulsation can be prevented.

以上の説明から明らかなように、本発明は、主
吸気ポートと過給ポートとを互に近接させてサイ
ドハウジングに設け、該過給ポートの開きのタイ
ミングを主吸気ポートとほゞ同時とする一方、閉
じのタイミングを吸気作動室内の圧力と加圧空気
の圧力とがほぼ同圧となるロータの回転位置で該
ロータにより閉じるように設定し、過給ポートか
ら作動室に供給する加圧空気を吸入行程から圧縮
行程の移行期に過給ポートへの吹返しが生じない
範囲で供給するようにしたロータリピストンエン
ジンの吸気装置を提供するものである。
As is clear from the above description, the present invention provides a main intake port and a supercharging port in close proximity to each other in a side housing, and opens the supercharging port almost at the same time as the main intake port. On the other hand, the closing timing is set so that the rotor closes at a rotational position of the rotor where the pressure in the intake working chamber and the pressure of the pressurized air are almost the same pressure, and the pressurized air is supplied from the supercharging port to the working chamber. To provide an intake device for a rotary piston engine, which supplies air to a supercharging port in a transition period from an intake stroke to a compression stroke within a range that does not cause blowback.

したがつて、本発明にかゝるロータリピストン
エンジンの吸気装置においては、主吸気ポートの
吸入能力を阻害することなく排気ポートとのオー
バラツプを無くすることができる一方、吹返しを
生じることなく過給ポートの面積を十分に確保で
き、その結果、軽負荷時の燃焼の安定性を損なう
ことなく小容量の過給機でもつて過給効率を向上
させることができエンジンの充填効率の向上を図
ることができ、出力性能の向上を図ることができ
る。
Therefore, in the intake system for a rotary piston engine according to the present invention, it is possible to eliminate overlap with the exhaust port without impeding the suction capacity of the main intake port, and at the same time, it is possible to eliminate overlapping with the exhaust port without impeding the suction capacity of the main intake port. Enough area for the charging port can be secured, and as a result, the supercharging efficiency can be improved even with a small-capacity supercharger without compromising the stability of combustion under light loads, thereby improving engine charging efficiency. This makes it possible to improve output performance.

また、本発明のロータリピストンエンジンの吸
気装置においては、主吸気ポートと過給ポートと
を同一サイドハウジングに近接させて設けている
ため、その吸気通路と加圧空気通路とが必然的に
近接し、加圧空気通路を流通する高温の加圧空気
と吸気通路を流通する混合気とが熱交換されて、
混合気中の燃料の霧化が促進され、燃焼性を向上
できる上に、吸気作動室内の吸気の温度分布も均
一化して、ノツキングの発生を防止することがで
きる。
Furthermore, in the intake system of the rotary piston engine of the present invention, since the main intake port and the supercharging port are provided close to each other in the same side housing, the intake passage and the pressurized air passage are necessarily close to each other. , the high temperature pressurized air flowing through the pressurized air passage and the air-fuel mixture flowing through the intake passage exchange heat,
Atomization of the fuel in the air-fuel mixture is promoted, improving combustibility, and the temperature distribution of the intake air in the intake working chamber is also made uniform, making it possible to prevent knocking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るロータリピス
トンエンジンの吸気装置を示す垂直断面説明図、
第2図は上記実施例における主吸気ポートと過給
ポートの開閉タイミングを示すダイヤフラムであ
る。 1……ケーシング(2……ロータハウジング、
3……サイドハウジング)、4……ロータ、6…
…主吸気ポート、9……吸気通路、13……過給
ポート、14……空気供給ポンプ、15……加圧
空気通路。
FIG. 1 is a vertical cross-sectional explanatory diagram showing an intake device of a rotary piston engine according to an embodiment of the present invention;
FIG. 2 is a diaphragm showing the opening/closing timing of the main intake port and supercharging port in the above embodiment. 1... Casing (2... Rotor housing,
3... side housing), 4... rotor, 6...
... Main intake port, 9 ... Intake passage, 13 ... Supercharging port, 14 ... Air supply pump, 15 ... Pressurized air passage.

Claims (1)

【特許請求の範囲】 1 トロコイド状の内面を有するロータハウジン
グとその両側に位置するサイドハウジングとで構
成するケーシング中を多角形状のロータが遊星回
転運動するようにしたロータリピストンエンジン
において、 上記サイドハウジングに主吸気ポートと過給ポ
ートとを近接させて設け、排気ポートが閉じられ
るロータ回転位置で該過給ポートを主吸気ポート
とほゞ同時に開き、かつ、高負荷運転時、主吸気
ポートが閉じた後の吸気作動室内の圧力と過給気
の圧力とがほゞ同圧となるロータの回転位置で該
ロータにより閉じるように形成し、主吸気ポート
から混合気を吸入する一方、過給ポートから加圧
空気を供給するようにしたことを特徴とするロー
タリピストンエンジンの吸気装置。
[Scope of Claims] 1. A rotary piston engine in which a polygonal rotor rotates planetarily in a casing composed of a rotor housing having a trochoidal inner surface and side housings located on both sides of the rotor housing. The main intake port and the supercharging port are provided close to each other, and the supercharging port is opened almost simultaneously with the main intake port at the rotor rotational position where the exhaust port is closed, and the main intake port is closed during high load operation. The rotor is configured to close at a rotational position of the rotor where the pressure inside the intake working chamber and the pressure of the supercharging air are almost the same pressure. An intake device for a rotary piston engine, characterized in that pressurized air is supplied from a rotary piston engine.
JP13998178A 1978-11-13 1978-11-13 Intake system for rotary piston engine Granted JPS5566615A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13998178A JPS5566615A (en) 1978-11-13 1978-11-13 Intake system for rotary piston engine
US06/092,289 US4315488A (en) 1978-11-13 1979-11-08 Rotary piston engine having supercharging means
DE2945592A DE2945592C2 (en) 1978-11-13 1979-11-12 Rotary piston internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13998178A JPS5566615A (en) 1978-11-13 1978-11-13 Intake system for rotary piston engine

Publications (2)

Publication Number Publication Date
JPS5566615A JPS5566615A (en) 1980-05-20
JPS6147968B2 true JPS6147968B2 (en) 1986-10-22

Family

ID=15258158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13998178A Granted JPS5566615A (en) 1978-11-13 1978-11-13 Intake system for rotary piston engine

Country Status (1)

Country Link
JP (1) JPS5566615A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198336A (en) * 1984-03-21 1985-10-07 Mazda Motor Corp Supercharger for rotary piston engine
CN100393982C (en) * 2002-12-15 2008-06-11 张强 Olive-shaped piston rotary supercharging explosive motor

Also Published As

Publication number Publication date
JPS5566615A (en) 1980-05-20

Similar Documents

Publication Publication Date Title
JP3236654B2 (en) Engine with mechanical supercharger
US4315488A (en) Rotary piston engine having supercharging means
US4182288A (en) Mixture-compressing, spark-ignited internal combustion engine having a combined throttle and compression control
CN106168147A (en) Explosive motor and engine system
JPS6060013B2 (en) double rotary engine
US4315489A (en) Rotary piston engine having supercharging means
JPS6147968B2 (en)
JPS5928091Y2 (en) Rotary piston engine supercharging device
JPS6018594Y2 (en) Rotary piston engine with supercharger
GB1123503A (en) Improvements relating to rotary-piston internal combustion engines
JP2542021B2 (en) Rotary piston engine
JPS5851221A (en) Supercharging system for engine
JPS6229617B2 (en)
JPH045698Y2 (en)
JPS6313393Y2 (en)
JPS593111A (en) Internal combustion engine
JPH07158463A (en) Variable displacement air-motor compressor
JPS591334B2 (en) Rotary piston engine supercharging device
JPS6146178Y2 (en)
JPS6014891Y2 (en) supercharged engine
JPS6069235A (en) Diesel engine with supercharger
JPS6229616B2 (en)
JPS601222Y2 (en) Separate supercharged engine
JPS61294133A (en) Internal-combustion engine with supercharger
JPS58126431A (en) Supercharge device of rotary piston engine