JPS6147911B2 - - Google Patents

Info

Publication number
JPS6147911B2
JPS6147911B2 JP24784983A JP24784983A JPS6147911B2 JP S6147911 B2 JPS6147911 B2 JP S6147911B2 JP 24784983 A JP24784983 A JP 24784983A JP 24784983 A JP24784983 A JP 24784983A JP S6147911 B2 JPS6147911 B2 JP S6147911B2
Authority
JP
Japan
Prior art keywords
carbon particles
emd
electrolytic
current density
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24784983A
Other languages
Japanese (ja)
Other versions
JPS60138085A (en
Inventor
Yoshihiro Nakayama
Jitoku Pponda
Yasufumi Terui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP24784983A priority Critical patent/JPS60138085A/en
Publication of JPS60138085A publication Critical patent/JPS60138085A/en
Publication of JPS6147911B2 publication Critical patent/JPS6147911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電解二酸化マンガンの製造法の改良に
関するもので、その目的とする処は、電流密度を
上昇させ、生産性を改善すると共に、品質良好な
製品を得ることができる方法を提供することにあ
る。 従来一般に電解二酸化マンガンは、チタン、
鉛、黒鉛等を陽極、黒鉛を陰極とし、硫酸マンガ
ン溶液を電解液として製造しており、特に近年は
乾電池特性の良い電解二酸化マンガン(以下
EDMという)を得るため、チタン電極による製
造が増加している。 電解二酸化マンガンの生成機構は、下記式 MnSO4+2H2O+2e→MnO2 +H2SO4+H2↑ の反応によるものと考えられ、二酸化マンガンの
生成と同時に当モルの硫酸が陽極において生成
し、また陰極で水素ガスが発生する。 而して、チタン電極を用い、電流密度を大にす
ると、陽極近傍におけるMnの消費に対し、
MnSO4の供給が追いつかず、そのため硫酸のみ
が存在する状態となり、従つて電解があたかも硫
酸水溶液の電解の如くなり、従つてチタン電極の
不働態化を生ずるものと考えられる。 従つて、チタン電極を使用した場合、その電流
密度はせいぜい0.8〜1.0A/dm2程度が上限であ
り、電流密度をさらに大とすると、チタン電極板
表面に不電導性の不働態被膜が生成し、その結果
電解電圧の急上昇が起り操業困難になる。また、
かゝる条件で得られるEMDは電極板から剥離し
易く、結晶形もβ−型が含まれるため、乾電池性
能も極めて悪い。 他方、EDMを経済的に製造するためには、電
解槽の生産量、即ち電流密度を増加する必要があ
る。しかし、反面電流密度を増加することは
EMDの乾電池性能の劣化を惹起するという欠点
がある。 これがため本出願人はさきに、電解槽内の電解
液にマンガン酸化物を懸濁して電解する方法(以
下スラリー法という)を開発した(特公昭47−
42711号公報)。しかし、スラリー法はマンガン酸
化物を微粉砕する必要があり、またマンガン酸化
物を選択しなければならないという不便がある。 本発明者等は前記スラリー法をさらに改善する
ため研究の結果、特許請求の範囲に記載した構成
とすることによつて、簡単に電流密度を向上し、
しかも乾電池性能に優れたEMDを得ることがで
きた。 即ち、本発明は、電解二酸化マンガンを製造す
るに当り、アセチレンブラツク、カーボンブラツ
ク等の炭素粒子を電解液中0.001〜0.4g/の濃
度で懸濁させて電解することを特徴とする電解二
酸化マンガンの製造法である。 本発明に使用する炭素粒子は、電解液中に均一
に分散懸濁できることが必要である。そのために
は、可及的に粒度の細かいものが必要であり、従
つてアセチレンブラツク、カーボンブラツク等の
微細、かつ、高純度の炭素粒子が好適であるが、
必らずしもこれに限定されるものではない。 また、前記炭素粒子は一般に撥水性であるため
そのまゝ電解液中に懸濁させることが困難であ
る。従つて本発明では、予じめ炭素粒子に界面活
性剤又はアコール等を添加することによつて電解
液中に簡単に懸濁させた。 本発明で、電解液中に懸濁する炭素粒子の量は
電解液中の濃度0.001〜0.4g/とする。茲に炭
素粒子の電解液中の濃度は、EMDの放電性能の
見地から0.4g/以下とすることが必要である。 また、実際の工業的製造においても、0.4g/
以上の濃度では、電解槽内における炭素濃度が不
均一となり、そのため、電着するEMDの層の
上、下の厚みを生じ、従つて電着したEMDに反
りや切欠が生ずるほか、EMD中に炭素粒子の混
入量が増加し、EMDの電池性能が損われるおそ
れがある。 また、炭素粒子濃度が0.4g/以上になると、
供給液配合管の詰りが生じ易く、また電解槽底部
に堆積する等の障害があるので好ましくない。 他方、電解液中の炭素粒子濃度が0.001g/以
下ではチタン電極の不働態化の防止が不充分であ
る。 本発明の如く、電解槽の電解液中に炭素粒子を
懸濁させることによつて電解時の電流密度を1.0
A/dm2以上で電解することができ、しかも得られ
るEMDの乾電池性能も優れている。かかる理由
の詳細については、更に今後の研究に俟たなけれ
ばならないが、電解によつて生ずるMnイオンが
電解液に懸濁している炭素粒子に吸蔵され、しか
もこの炭素粒子がチタン電極板上に形成される硫
酸被膜層を破壊し、高密度となつたMnイオンを
速かにチタン電極板に供給することができるため
と考えられる。 また、本発明は従来のスラリー法の如くマンゼ
ン酸化物の粉砕、選択等の不便もなく、炭素粒子
を懸濁すればよい。特に本発明はスラリー法にお
けるマンガン酸化物に比較して使用量も少なくて
よく、原単位も少ないものとすることができる。 以上の如く本発明は電解二酸化マンガンの製造
に当り、電解液中に炭素粒子を懸濁して電解する
ことにより、スラリー法と同等の電流密度で電解
できるから生産性を高くすることができると共
に、得られるEMDの乾電池性能に優れたものを
廉価に提供することができる。 実施例 長さ5.5m、巾1.3m、深さ1.4mの直方体の電解
槽に、巾50cm、長さ100cm、厚さ4mmのチタン陽
極板100枚と、同サイズ、同数の黒鉛陰極板を電
解槽中に上部より長さ方向に直角、かつ、垂直に
懸吊し、硫酸マンガン1モル/の水溶液を電解
液とし、電流密度1.7A/dm2で6日間電解を行な
つた。この場合、炭素粒子を電解槽中の濃度
0.001〜0.4g/の間で変化させ、次の表の如き
結果を得た。尚、比較のため従来法(電解液のみ
の場合)の結果を併記した。
The present invention relates to an improvement in the manufacturing method of electrolytic manganese dioxide, and its purpose is to provide a method that can increase current density, improve productivity, and obtain products of good quality. be. Conventionally, electrolytic manganese dioxide generally consists of titanium,
We manufacture lead, graphite, etc. as an anode, graphite as a cathode, and manganese sulfate solution as an electrolyte.
(EDM), manufacturing with titanium electrodes is increasing. The formation mechanism of electrolytic manganese dioxide is thought to be due to the reaction of the following formula MnSO 4 + 2H 2 O + 2e → MnO 2 +H 2 SO 4 +H 2 ↑, and at the same time as manganese dioxide is produced, the same mole of sulfuric acid is produced at the anode, and Hydrogen gas is generated at the cathode. Therefore, if a titanium electrode is used and the current density is increased, the consumption of Mn near the anode will be reduced.
It is thought that the supply of MnSO 4 could not keep up, and as a result, only sulfuric acid existed, and therefore the electrolysis became like electrolysis of an aqueous sulfuric acid solution, resulting in the passivation of the titanium electrode. Therefore, when using a titanium electrode, the upper limit of the current density is about 0.8 to 1.0 A/dm2, and if the current density is increased further , a non-conductive passive film will be formed on the surface of the titanium electrode plate. However, as a result, the electrolysis voltage suddenly increases, making operation difficult. Also,
EMD obtained under such conditions is easily peeled off from the electrode plate and contains β-type crystals, resulting in extremely poor dry battery performance. On the other hand, in order to economically produce EDM, it is necessary to increase the output of the electrolytic cell, ie, the current density. However, increasing the current density
The drawback is that it causes deterioration in the performance of EMD dry cell batteries. For this reason, the present applicant previously developed a method of electrolyzing by suspending manganese oxide in an electrolytic solution in an electrolytic cell (hereinafter referred to as the slurry method).
Publication No. 42711). However, the slurry method requires the manganese oxide to be finely pulverized and is inconvenient in that the manganese oxide must be selected. As a result of research to further improve the slurry method, the present inventors have found that by adopting the configuration described in the claims, the current density can be easily increased,
Furthermore, we were able to obtain an EMD with excellent dry battery performance. That is, in producing electrolytic manganese dioxide, the present invention is characterized in that carbon particles such as acetylene black or carbon black are suspended in an electrolytic solution at a concentration of 0.001 to 0.4 g/2 and electrolyzed. This is the manufacturing method. The carbon particles used in the present invention need to be able to be uniformly dispersed and suspended in the electrolytic solution. For this purpose, it is necessary to have particles as fine as possible, and therefore fine and high-purity carbon particles such as acetylene black and carbon black are suitable.
It is not necessarily limited to this. Furthermore, since the carbon particles are generally water repellent, it is difficult to suspend them as they are in the electrolyte. Therefore, in the present invention, a surfactant, alcohol, or the like is added to carbon particles in advance to easily suspend them in an electrolytic solution. In the present invention, the amount of carbon particles suspended in the electrolytic solution is set to a concentration of 0.001 to 0.4 g/in the electrolytic solution. Furthermore, the concentration of carbon particles in the electrolyte needs to be 0.4 g/or less from the viewpoint of EMD discharge performance. Also, in actual industrial manufacturing, 0.4g/
At higher concentrations, the carbon concentration within the electrolytic cell becomes non-uniform, resulting in thicker upper and lower layers of electrodeposited EMD, resulting in warping and notches in the electrodeposited EMD, as well as during EMD. This increases the amount of carbon particles mixed in, which may impair EMD battery performance. In addition, when the carbon particle concentration becomes 0.4 g/ or more,
This is not preferable because it tends to clog the feed liquid mixing pipe and causes problems such as accumulation at the bottom of the electrolytic cell. On the other hand, if the concentration of carbon particles in the electrolyte is less than 0.001 g/g, prevention of passivation of the titanium electrode is insufficient. As in the present invention, by suspending carbon particles in the electrolyte of the electrolytic cell, the current density during electrolysis is reduced to 1.0.
Electrolysis can be performed at A/dm 2 or higher, and the resulting EMD has excellent dry battery performance. The details of this reason will have to be investigated further in the future, but the Mn ions generated by electrolysis are occluded by carbon particles suspended in the electrolyte, and moreover, these carbon particles are attached to the titanium electrode plate. This is thought to be because the formed sulfuric acid film layer can be destroyed and highly dense Mn ions can be quickly supplied to the titanium electrode plate. Furthermore, the present invention does not require the inconvenience of pulverizing and selecting manzene oxide as in the conventional slurry method, and it is sufficient to suspend carbon particles. In particular, in the present invention, the amount used can be smaller than that of manganese oxide in the slurry method, and the unit consumption can also be reduced. As described above, the present invention can produce electrolytic manganese dioxide by suspending carbon particles in an electrolytic solution and performing electrolysis at a current density equivalent to that of the slurry method, thereby increasing productivity. The resulting EMD dry cell battery with excellent performance can be provided at a low price. Example: In a rectangular parallelepiped electrolytic cell with a length of 5.5 m, a width of 1.3 m, and a depth of 1.4 m, 100 titanium anode plates with a width of 50 cm, a length of 100 cm, and a thickness of 4 mm and the same number of graphite cathode plates of the same size were electrolyzed. The specimen was suspended perpendicularly and perpendicularly to the longitudinal direction from the top in a tank, and electrolysis was carried out for 6 days at a current density of 1.7 A/dm 2 using an aqueous solution of 1 mol of manganese sulfate as the electrolyte. In this case, the concentration of carbon particles in the electrolytic cell is
The amount was varied between 0.001 and 0.4 g/, and the results shown in the following table were obtained. For comparison, the results of the conventional method (with only electrolyte solution) are also shown.

【表】【table】

【表】 尚、EMDの性能は常法により、洗浄、粉砕、
中和、乾燥を行ない、アルカリ放電性能は、
EMDと黒鉛粉を混合し合剤となし、40%KOH中
にて5mA/0.2g合剤で定電流放電を行なつ
た。この場合の電圧はHg/HgO比較電極により
測定し、−400mVまでの放電容量で表示した。 また、ZnCl2放電容量は、単1型の塩化亜鉛型
電池を作製し、2Ωの定抵抗放電を行ない、端子
電圧が0.9Vまで低下する時間で表示した。 前記表から明らかな如く、本発明ではX線回
折、BET比表面積の物理特性は、従来法とほゞ
同程度であるが、ZnCl2放電容量が優れているの
が認められる。
[Table] The performance of EMD is determined by cleaning, crushing,
After neutralization and drying, the alkaline discharge performance is
EMD and graphite powder were mixed to form a mixture, and constant current discharge was performed at 5 mA/0.2 g of the mixture in 40% KOH. The voltage in this case was measured using a Hg/HgO reference electrode and expressed as a discharge capacity up to -400 mV. Further, the ZnCl 2 discharge capacity was expressed as the time required for the terminal voltage to decrease to 0.9V after producing a single type zinc chloride battery and performing constant resistance discharge of 2Ω. As is clear from the above table, in the present invention, the physical properties such as X-ray diffraction and BET specific surface area are approximately the same as those of the conventional method, but it is recognized that the ZnCl 2 discharge capacity is excellent.

Claims (1)

【特許請求の範囲】[Claims] 1 電解二酸化マンガンを製造するに当り、アセ
チレンブラツク、カーボンブラツク等の炭素粒子
を、電解液中0.001〜0.4g/の濃度で懸濁させ
て電解することを特徴とする電解二酸化マンガン
の製造法。
1. A method for producing electrolytic manganese dioxide, which comprises suspending carbon particles such as acetylene black or carbon black in an electrolytic solution at a concentration of 0.001 to 0.4 g/2 and electrolyzing the same.
JP24784983A 1983-12-26 1983-12-26 Manufacture of electrolytic manganese dioxide Granted JPS60138085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24784983A JPS60138085A (en) 1983-12-26 1983-12-26 Manufacture of electrolytic manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24784983A JPS60138085A (en) 1983-12-26 1983-12-26 Manufacture of electrolytic manganese dioxide

Publications (2)

Publication Number Publication Date
JPS60138085A JPS60138085A (en) 1985-07-22
JPS6147911B2 true JPS6147911B2 (en) 1986-10-21

Family

ID=17169571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24784983A Granted JPS60138085A (en) 1983-12-26 1983-12-26 Manufacture of electrolytic manganese dioxide

Country Status (1)

Country Link
JP (1) JPS60138085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433779Y2 (en) * 1986-11-25 1992-08-12

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213487A (en) * 1988-12-26 1990-08-24 Japan Metals & Chem Co Ltd Manufacture of electrolytic manganese dioxide
ES2119000T3 (en) * 1993-09-30 1998-10-01 Mitsui Mining & Smelting Co COMPOSITION OF CATHODIC ACTIVE MATERIAL FOR DRY BATTERIES, METHOD FOR PREPARATION AND ALKALINE ACCUMULATORS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433779Y2 (en) * 1986-11-25 1992-08-12

Also Published As

Publication number Publication date
JPS60138085A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
US9103044B2 (en) Electrolytic manganese dioxide, and method for its production and its application
JP5998510B2 (en) Electrolytic manganese dioxide and method for producing the same, and method for producing lithium manganese composite oxide
US10033038B2 (en) Electrolytic manganese dioxide, method for producing same, and use of same
US20220085387A1 (en) Oxygen catalyst and electrode using said oxygen catalyst
JP2002533288A (en) Large discharge capacity electrolytic manganese dioxide and method for producing the same
US3414440A (en) Gamma manganese dioxide, method of preparing and dry cell type battery employing gamma type manganese dioxide
US4818354A (en) Process for the preparation electrolytic manganese dioxide
US3959021A (en) Novel manganese dioxide
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
EP0184319B1 (en) Suspension bath and process for production of electrolytic manganese dioxide
JP6862766B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
JPS6147911B2 (en)
JPH02213487A (en) Manufacture of electrolytic manganese dioxide
US4048027A (en) Process for producing electrolytic MnO2 from molten manganese nitrate hexahydrate
JP2019081686A (en) Electrolytic manganese dioxide, manufacturing method therefor, and application thereof
EP0013415B1 (en) Fabrication of nickel electrodes for alkaline batteries
US4295943A (en) Process for the electrolytic production of manganese dioxide
JP6550729B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
WO2017170240A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and use for same
US4948484A (en) Process for producing improved electrolytic manganese dioxide
JPH05174842A (en) Manganese cell
US5352339A (en) Method for producing electrolytic manganese dioxide
JP2018076222A (en) Electrolytic manganese dioxide, and use thereof
JPH0336910B2 (en)
WO2024106304A1 (en) Electrolytic manganese dioxide, method for producing same, and use thereof