JPS6147810A - Fibrous poly-alpha-methylstyrene and production thereof - Google Patents

Fibrous poly-alpha-methylstyrene and production thereof

Info

Publication number
JPS6147810A
JPS6147810A JP16479884A JP16479884A JPS6147810A JP S6147810 A JPS6147810 A JP S6147810A JP 16479884 A JP16479884 A JP 16479884A JP 16479884 A JP16479884 A JP 16479884A JP S6147810 A JPS6147810 A JP S6147810A
Authority
JP
Japan
Prior art keywords
methylstyrene
poly
alpha
fibers
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16479884A
Other languages
Japanese (ja)
Other versions
JPH0377285B2 (en
Inventor
Ryuichi Sugimoto
隆一 杉本
Shinryu Uchikawa
進隆 内川
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16479884A priority Critical patent/JPS6147810A/en
Publication of JPS6147810A publication Critical patent/JPS6147810A/en
Publication of JPH0377285B2 publication Critical patent/JPH0377285B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily the titled fibers useful as easily decomposable fibers, and having fineness and ratio of the length to diameter within specific ranges, by joining melted poly-alpha-methylstyrene to a gas stream. CONSTITUTION:Preferably, >=10pts.wt. plasticizer, e.g. alpha-methylstyrene oligomer, having preferably usually >=250 deg.C boiling point is added to poly-alpha-methylstyrene, and the resultant mixture is melted. The resultant poly-alpha-methylstyrene having preferably <=1,000cP viscosity is made to flow out of a nozzle 4 and joined to a gas stream, e.g. nitrogen gas stream, jetted from a nozzle 5 preferably at >=20m/ sec to give the aimed fibers having <=100 deniers and >=50:1, preferably 200:1 ratio of the length to the diameter.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は繊維状のポリ−α−メチルスチレン及びその製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to fibrous poly-α-methylstyrene and a method for producing the same.

〔背景技術〕[Background technology]

ポリ−α−メチルスチレンは比較的低温で分解して揮発
性の低分子量化合物となることから種々の用途が期待で
きるポリマーである。しかしながら、軟化温度と分解温
度が比較的近いため、特定の形状のものしか得られず、
繊維状のポリ−α−メチルスチレンは知られていなかっ
た。
Poly-α-methylstyrene is a polymer that can be expected to have various uses because it decomposes at relatively low temperatures to become a volatile low-molecular-weight compound. However, because the softening temperature and decomposition temperature are relatively close, only certain shapes can be obtained.
Fibrous poly-α-methylstyrene was not known.

〔発明の開示〕[Disclosure of the invention]

本発明の目的は易分解性繊維として有用なポリ−α−メ
チルスチレン繊維を提供することにある。
An object of the present invention is to provide poly-α-methylstyrene fibers useful as easily degradable fibers.

本発明の他の目的はポリ−α−メチルスチレン繊維を容
易に製造する方法を提供することにある。
Another object of the present invention is to provide a method for easily producing poly-α-methylstyrene fibers.

本発明の繊維状ポリ−α−メチルスチレンは100デニ
ール以下であって、かつ長さ対直径の比が50:1以上
であるものである。長さ対直径の比は好ましくは100
: 1、特1に好ましくは200融したポリ−α−メチ
ルスチレン流をガス流と金流させることを特徴とするも
のである。
The fibrous poly-α-methylstyrene of the present invention has a denier of 100 or less and a length to diameter ratio of 50:1 or more. The length to diameter ratio is preferably 100
1. Particularly preferably 200% of melted poly-α-methylstyrene stream is made into a gas stream and a metal stream.

〔発明の実施態様〕[Embodiments of the invention]

本発明において使用するポリ−α−メチルスチレンは常
法に従ってα−メチルスチレンをイオン重合して得られ
るポリ−α−メチルスチレンを主成分とし、これに溶融
粘度を調整するための可塑剤を添加したものからなる。
The poly-α-methylstyrene used in the present invention is mainly composed of poly-α-methylstyrene obtained by ionic polymerization of α-methylstyrene according to a conventional method, and a plasticizer is added to this to adjust the melt viscosity. Consists of what was done.

これらの可塑剤としてはポリ−α−メチルスチレンと相
溶性がありかつ250℃以上の沸点を有する化合物が用
いられる。
As these plasticizers, compounds that are compatible with poly-α-methylstyrene and have a boiling point of 250° C. or higher are used.

250℃以下の沸点を有する化合物の場合、溶融時に揮
散したり、発泡の原因となるので好ましくない。具体的
には、フタル酸ンメチル、フタル酸ジエチル、フタル酸
ンプテル、フタル酸ジオクチル等のフタル酸エステル類
、リン酸トリブチル、リン酸トリフェニル等のリン酸エ
ステル類、α−メチルスチレンの2量体から6世体のオ
リゴマーなどが挙げられる。これらの化合物は単一で使
用しても、混合して使用しても差し支えない。これらの
可塑剤はポリ−α−メチルスチレン100重量部に対し
て10重量部以上添加することが好ましし\。
In the case of a compound having a boiling point of 250° C. or lower, it is not preferable because it volatilizes during melting or causes foaming. Specifically, phthalate esters such as methyl phthalate, diethyl phthalate, phthalate, dioctyl phthalate, phosphate esters such as tributyl phosphate and triphenyl phosphate, dimer of α-methylstyrene. Examples include oligomers of six generations. These compounds may be used alone or in combination. It is preferable to add 10 parts by weight or more of these plasticizers to 100 parts by weight of poly-α-methylstyrene.

繊維状ポリマーの生成条件及び形状は溶融したポリ−α
−メチルスチレンの粘度及びガス流速によって変化する
。一般的には溶融したポリ−α−メチルスチレンの粘度
が小さく、ガス流速が大きいほど生成する繊維の直径が
小さくなる傾向がある。
The production conditions and shape of the fibrous polymer are molten poly-α
-Varies with methylstyrene viscosity and gas flow rate. Generally, the smaller the viscosity of molten poly-α-methylstyrene and the higher the gas flow rate, the smaller the diameter of the produced fibers tends to be.

溶融したポリ−α−メチルスチレンの粘度が1000ポ
イズ以下であることが好ましい。粘度が1000ボイズ
以上になると、繊維状ポリ−α−メチルスチレンが得ら
れず、溶融したポリ−α−メチルスチレンは不定形の固
まりとなって流出する傾向がある。
It is preferable that the viscosity of the molten poly-α-methylstyrene is 1000 poise or less. When the viscosity exceeds 1000 voids, fibrous poly-α-methylstyrene cannot be obtained, and the molten poly-α-methylstyrene tends to flow out as an amorphous mass.

ポリ−α−メチルスチレンの溶融粘度は添加した可塑剤
及び溶融温度によっても大きな影響を受ける。添付図面
2は本発明において使用するポリ−α−メチルスチレン
の温度−溶融粘度曲線の一例を示す。
The melt viscosity of poly-α-methylstyrene is also greatly influenced by the added plasticizer and the melting temperature. Attached FIG. 2 shows an example of the temperature-melt viscosity curve of poly-α-methylstyrene used in the present invention.

本発明で使用するガスの流速は20m/sec以上であ
ることが好ましく20m/sec以下では繊維状ポリ−
α−メチルスチレンは得られず、不定形または球状の固
まりとなる傾向がある。
The flow rate of the gas used in the present invention is preferably 20 m/sec or more, and if it is 20 m/sec or less, the fibrous polyester
α-methylstyrene is not obtained and tends to form amorphous or spherical masses.

本発明の繊維状ポリ−α−メチルスチレンの製造方法を
第1図を参照して具体的に説明する。ポリ−α−メチル
ステノンは試料投入口2より加熱容器1中に投入され、
加熱ヒーター7により加熱されて溶融される。得られた
溶融ポリマー9は、・ガス導入管3より導入される加圧
ガスにより溶融ポリマー流出用ノズル4から押し出され
溶融したポリ−α−メチルスチレン流となって流出する
The method for producing fibrous poly-α-methylstyrene of the present invention will be specifically explained with reference to FIG. Poly-α-methylstenone is introduced into the heating container 1 through the sample input port 2,
It is heated and melted by the heater 7. The obtained molten polymer 9 is pushed out from the molten polymer outflow nozzle 4 by the pressurized gas introduced through the gas introduction pipe 3 and flows out as a stream of molten poly-α-methylstyrene.

このポリ−α−メチルスチレン流は、ガス噴射装置6の
ガス流出用ノズル5から噴射されるガス流と合流して吹
き飛ばされて、繊維状ポリ−α−メチルスチレンが生成
する。生成したポリ−α−メチルスチレンの繊維は網製
のローラー8などにより集められる。以下に実施例を示
して本発明をさらに具体的に説明する。
This poly-α-methylstyrene flow merges with the gas flow injected from the gas outflow nozzle 5 of the gas injection device 6 and is blown away to produce fibrous poly-α-methylstyrene. The produced poly-α-methylstyrene fibers are collected by a net roller 8 or the like. EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 α−メチルスチレンオリゴマーを含有し、環球法による
軟化点温度が150℃であるポリ−α−メチルスチレン
を、第1図に示したスティンレススチール製加熱容器に
投入し、200℃に加熱してポリマーを溶融した。得ら
れた200℃の溶融ポリマーは加熱容器内部を軽く加圧
することにより加熱容器の下部に取りつげた内径1.5
器のノズルから流出する。溶融したポリ−α−メチルス
チレン流はさらに50m/secの窒素ガス流と合流さ
れポリマーは繊維状になって吹き飛ばされ網製のロール
によって集められた。繊維状ポリ−α−メチルスチレン
は19デニールの長繊維であった。
Example 1 Poly-α-methylstyrene containing α-methylstyrene oligomer and having a softening point temperature of 150°C by the ring and ball method was placed in a stainless steel heating container shown in Fig. 1 and heated to 200°C. Heat was applied to melt the polymer. The obtained molten polymer at 200°C was placed at the bottom of the heating container by lightly pressurizing the inside of the heating container.
It flows out from the nozzle of the vessel. The molten poly-alpha-methylstyrene stream was further combined with a nitrogen gas stream at a rate of 50 m/sec, and the polymer was blown into fibers and collected by a mesh roll. The fibrous poly-α-methylstyrene was a 19 denier long fiber.

さらに加熱容器の加熱温度を下げてい(と、流出して(
るポリ−α−メチルスチレンの粘度が増加し、175℃
では溶融したポリ−α−メチルスチレンは窒素ガス流と
合流しても吹き飛ばされることな(ノズル出口付近で塊
まりとなってしまった。
Furthermore, the heating temperature of the heating container was lowered (and the water leaked out).
The viscosity of poly-α-methylstyrene increases and
In this case, the molten poly-α-methylstyrene was not blown away even when it merged with the nitrogen gas flow (it formed a lump near the nozzle exit).

ここで使用したポリ−α−メチルスチレンの溶融粘度一
温度曲線を測定した結果を第2図の曲線1に示した。第
2図から明らかなように、200 ”Cの溶融粘度は1
90ポイズであり、175℃における溶融粘度が120
0ポイズである。
The results of measuring the melt viscosity versus temperature curve of the poly-α-methylstyrene used here are shown in curve 1 in FIG. As is clear from Figure 2, the melt viscosity of 200"C is 1
90 poise, and the melt viscosity at 175°C is 120
It is 0 poise.

実施例2 α−メチルスチレンオリゴマーを含有し、環球法による
軟化点温度が100℃であるポリ−α−メチルスチレン
を第1図に示したステンレススチール製の加熱容器に仕
込んだ後に加熱して150’Cでポリマーを溶融させた
Example 2 Poly-α-methylstyrene containing α-methylstyrene oligomer and having a softening point temperature of 100°C by the ring and ball method was charged into a stainless steel heating container shown in Fig. 1 and heated to 150°C. The polymer was melted at 'C.

加熱容器の下部には内径1.5 +uのノズルが取りつ
げてあり、加熱容器内部を軽(加圧することによりノズ
ルから溶融ポリマーが流出する。溶融ポリマー流はさら
に80m/secの窒素ガス流と合流され、ポリマーは
繊維状になって吹き飛ばされ網製のロール上に集められ
た。3デニールのポリ−α−メチルスチレン長繊維が得
られた。
A nozzle with an inner diameter of 1.5 + U is attached to the bottom of the heating container, and by applying light pressure to the inside of the heating container, the molten polymer flows out from the nozzle. The polymers were combined and blown into fibers and collected on a mesh roll to obtain 3 denier poly-α-methylstyrene filaments.

ここで使用したポリ−α−メチルスチレンの溶融粘度一
温度曲線を第2図の曲線2に示した。との図から明らか
なように150℃の溶融粘度が75ポイズである。窒素
ガス流速を80m/secから徐々に小さくしていくと
生成繊維の直径が大きくなり、20m/secの流速で
約100デニールのポリ−α−メチルスチレン繊維が得
られた。窒素ガス流速を20 m/s e cよりも小
さくするとポリ−α−メチルスチレンが液滴状になり始
めさらに小さくすると繊維状のポリ−α−メチルスチレ
ンは全く得ることができな(なった。
The melt viscosity versus temperature curve of poly-α-methylstyrene used here is shown in curve 2 in FIG. As is clear from the figure, the melt viscosity at 150°C is 75 poise. As the nitrogen gas flow rate was gradually reduced from 80 m/sec, the diameter of the produced fibers increased, and poly-α-methylstyrene fibers of about 100 denier were obtained at a flow rate of 20 m/sec. When the nitrogen gas flow rate was lower than 20 m/sec, poly-α-methylstyrene began to form into droplets, and when the flow rate was further reduced, no fibrous poly-α-methylstyrene could be obtained.

実施例3 実施例2において溶融温度を180℃として窒素ガス流
速を185m/secに変えたところ0.6〜1デニー
ルで平均長さ10Mのポリ−α−メチルスチレン短繊維
が得られた。
Example 3 In Example 2, when the melting temperature was changed to 180° C. and the nitrogen gas flow rate was changed to 185 m/sec, short poly-α-methylstyrene fibers with a denier of 0.6 to 1 denier and an average length of 10 M were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明方法により、100デニール以下であって、かつ
50:1以上の長さ対直径比を有する長繊維及び短繊維
状ポリ−α−メチルスチレンを容易に製造することがで
きる。また本発明の繊維状ポリスチレンは、易分解性繊
維としてセラミックス成形体用添加物などに利用するこ
とができるなど産業上の利用効果が高い。
By the method of the present invention, long and short fiber poly-α-methylstyrene having a length of 100 deniers or less and a length-to-diameter ratio of 50:1 or more can be easily produced. Furthermore, the fibrous polystyrene of the present invention has high industrial utility effects, such as being able to be used as an additive for ceramic molded bodies as an easily degradable fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用されるポリ−α−メチルス
チレン繊維の製造装置を示す概略図、第2図はポリ−α
−メチルスチレンの温度−溶融粘度曲線であり、曲線1
は実施例1で使用したポリ−α−メチルスチレンのそれ
を、曲@2は実施例2で使用したポリ−α−メチルスチ
レンのそれを示す。 1・・・加熱容器 2・・・試料投入口 3・・・ガス導入管 4・・・溶融ポリマー流出用ノズル 5・・・ガス流出用ノズル 6・・・ガス噴射装置 7・・・加熱ヒーター 8・・・網製ドラム 9・・・溶融ポリマー
FIG. 1 is a schematic diagram showing the production equipment for poly-α-methylstyrene fiber used in the present invention, and FIG.
- Temperature-melt viscosity curve of methylstyrene, curve 1
shows that of the poly-α-methylstyrene used in Example 1, and song @2 shows that of the poly-α-methylstyrene used in Example 2. 1...Heating container 2...Sample inlet 3...Gas introduction tube 4...Nozzle for outflow of molten polymer 5...Nozzle for outflow of gas 6...Gas injection device 7...Heating heater 8...Mesh drum 9...Melted polymer

Claims (3)

【特許請求の範囲】[Claims] (1)100デニール以下であつて、かつ長さ対直径の
比が50:1以上である繊維状ポリ−α−メチルスチレ
ン。
(1) Fibrous poly-α-methylstyrene having a denier of 100 denier or less and a length-to-diameter ratio of 50:1 or more.
(2)溶融したポリ−α−メチルスチレン流をガス流と
合流させることを特徴とする100デニール以下であつ
て、かつ長さ対直径の比が50:1以上の繊維状ポリ−
α−メチルスチレンの製造方法。
(2) A fibrous polyester resin having a diameter of 100 denier or less and a length-to-diameter ratio of 50:1 or more, characterized in that a stream of molten poly-α-methylstyrene is merged with a gas stream.
Method for producing α-methylstyrene.
(3)溶融したポリ−α−メチルスチレンの粘度が10
00ポイズ以下であり、かつガスの流速が20m/se
c以上である特許請求の範囲第2項記載の方法。
(3) The viscosity of molten poly-α-methylstyrene is 10
00 poise or less, and the gas flow velocity is 20 m/sec
3. The method according to claim 2, which is at least c.
JP16479884A 1984-08-08 1984-08-08 Fibrous poly-alpha-methylstyrene and production thereof Granted JPS6147810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16479884A JPS6147810A (en) 1984-08-08 1984-08-08 Fibrous poly-alpha-methylstyrene and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16479884A JPS6147810A (en) 1984-08-08 1984-08-08 Fibrous poly-alpha-methylstyrene and production thereof

Publications (2)

Publication Number Publication Date
JPS6147810A true JPS6147810A (en) 1986-03-08
JPH0377285B2 JPH0377285B2 (en) 1991-12-10

Family

ID=15800132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16479884A Granted JPS6147810A (en) 1984-08-08 1984-08-08 Fibrous poly-alpha-methylstyrene and production thereof

Country Status (1)

Country Link
JP (1) JPS6147810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595694A (en) * 1992-12-22 1997-01-21 Reedy; Michael E. Process for producing alkenyl aromatic foams using a combination of atmospheric and organic gases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167411A (en) * 1974-12-09 1976-06-11 Asahi Chemical Ind
JPS5493117A (en) * 1977-11-29 1979-07-24 Exxon Research Engineering Co Ionic thermoplastic polymer fiber
JPS554842A (en) * 1978-06-27 1980-01-14 Shin Kobe Electric Mach Co Ltd Preparation of plate for lead accumulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167411A (en) * 1974-12-09 1976-06-11 Asahi Chemical Ind
JPS5493117A (en) * 1977-11-29 1979-07-24 Exxon Research Engineering Co Ionic thermoplastic polymer fiber
JPS554842A (en) * 1978-06-27 1980-01-14 Shin Kobe Electric Mach Co Ltd Preparation of plate for lead accumulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595694A (en) * 1992-12-22 1997-01-21 Reedy; Michael E. Process for producing alkenyl aromatic foams using a combination of atmospheric and organic gases
US5817261A (en) * 1992-12-22 1998-10-06 Reedy International Corp. Process for producing alkenyl aromatic foams using a combination of atmospheric and organic gases and foams produced thereby
USRE38993E1 (en) * 1992-12-22 2006-02-28 Reedy International Corporation Process for producing alkenyl aromatic foams using a combination of atmospheric and organic gases and foams produced thereby

Also Published As

Publication number Publication date
JPH0377285B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
US2508462A (en) Method and apparatus for the manufacture of synthetic staple fibers
US6520425B1 (en) Process and apparatus for the production of nanofibers
US6382526B1 (en) Process and apparatus for the production of nanofibers
US4782097A (en) Process for the preparation of hollow microspheres
US4867931A (en) Methods for producing fiber reinforced microspheres made from dispersed particle compositions
US2988469A (en) Method for the production of reticulated webs
US6093750A (en) Expandable thermoplastic polymer particles and method for making same
US4642262A (en) Method of making fibrids from thermoplastics
US4013744A (en) Process for the manufacture of fibrids of thermoplastics materials
US3102865A (en) Method for foaming a crystalline olefin polymer containing a blowing agent and a heat sink
JPS6147810A (en) Fibrous poly-alpha-methylstyrene and production thereof
JPS63219629A (en) Production of alumina based fiber
US3330899A (en) Method of forming filaments from polyamide and styrene polymer mixtures
US2831845A (en) Process for the production of powdered polymers and copolymers of ethylene
EP1000115B1 (en) Expandable thermoplastic particles and atomization method for making same
JPS6410604B2 (en)
EP0551837A1 (en) Polyethylene composites
KR850002489A (en) High speed method to produce fully drawn polyester yarn
US4923646A (en) Method and apparatus for the manufacture of fibrids
US4546171A (en) Method for continuous polycondensation of higher aliphatic ω-amino acid particles
CA1053871A (en) Manufacture of thermoplastics fibrids
US2977721A (en) Method of manufacturing light-weight, porous acid slag
JPH024692B2 (en)
JPS55137208A (en) Novel type of hollow fiber with fine pore
US3401140A (en) Methylene chloride solution of polyethylene terephthalate