JPS6147683A - Laser oscillation device - Google Patents

Laser oscillation device

Info

Publication number
JPS6147683A
JPS6147683A JP16894584A JP16894584A JPS6147683A JP S6147683 A JPS6147683 A JP S6147683A JP 16894584 A JP16894584 A JP 16894584A JP 16894584 A JP16894584 A JP 16894584A JP S6147683 A JPS6147683 A JP S6147683A
Authority
JP
Japan
Prior art keywords
electro
light
optical element
reflection mirror
wavelength plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16894584A
Other languages
Japanese (ja)
Inventor
Toshio Sakane
敏夫 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16894584A priority Critical patent/JPS6147683A/en
Publication of JPS6147683A publication Critical patent/JPS6147683A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices

Abstract

PURPOSE:To realize an inexpensive unit while enabling the easy control of a pulse width, by arranging a 1/4 wavelength plate in series with an electro-optical element between a double refraction element and a total reflection mirror. CONSTITUTION:An incident light L3 entering into a 1/4 wavelength plate 6 goes out as a light L4, which has been circularly polarized counterclockwise. A phase of lambda/4 is further applied thereto by an electro-optical element 3. As a result, a light L5 applied to a reflection mirror 1 has a plane of polarization rotated by 90 deg. with respect to that of the incident light L3. When a light L6 reflected by the total reflection mirror 1 enters into the electro-optical element 3 in the opposite direction, it is again circularly polarized counterclockwise. A phase difference of lambda/4 is applied thereto by the 1/4 wavelength plate 6. Accordingly, a light L7 returning to a double refraction element 4 has the same plane of polarization with the incident light L3. If the application lambda/4 voltage to the electro-optical element 3 is stopped, the returning light L7 becomes an extraordinary ray in the double refraction element 4, and it goes along an optical path P and returns as a randomly polarized light L. Thus, the resonance conditions of a resonator are satisfied, realizing high Q, and the laser is caused to oscillate.

Description

【発明の詳細な説明】 本発明は、電気光学効果を利用してQスイッチング動作
を行い、短パルスを発生するレーザー発振装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser oscillation device that performs Q-switching operation using electro-optic effects to generate short pulses.

YAGレーザーにおいて、ナノ秒オーダの短パルスを得
る方法としては、電気光学効果によるQスイッチ法、音
響光学効果によるQスイッチ法、カー(Kerr)効果
を用いたQスイッチ法、更には電気光学効果或いは音響
光学効果によるキャビティ・ダンプ方式等が採用されて
いる。キャビティ・ダンプは光学系が複雑になること、
またカー効果は印加電圧が非常に高くなること、更に音
響光学効果によるQスイッチ法ではそのスイッチングの
立ち上がりカシ遅いため、出力パルス幅が大きく例えば
眼科への応用には適さなくなる。
In a YAG laser, methods for obtaining short pulses on the order of nanoseconds include a Q-switch method using an electro-optic effect, a Q-switch method using an acousto-optic effect, a Q-switch method using the Kerr effect, and a Q-switch method using an electro-optic effect or a Q-switch method using the Kerr effect. A cavity dump method using an acousto-optic effect is used. Cavity dump requires a complex optical system;
Further, in the Kerr effect, the applied voltage becomes very high, and in the Q-switch method using the acousto-optic effect, the switching start-up is slow, so the output pulse width is large, making it unsuitable for applications in, for example, ophthalmology.

このため眼科用のYAGレーザー発振装置においては、
電気・光学効果を用いたQスイッチ法が採用され、数十
ナノ秒程度の出力パルスが得られている。ところで、こ
の電気光学素子を用いた場合には、最も簡単な方法とし
て偏光子との組み合わせで使用されているが、YAGロ
ッドにはフラッシュランプポンプにより熱歪が生じ、直
線偏光で入射する光は光弾性効果により空間的に異なる
大きさの偏波面の回転を受け、望ましい偏波面の有効領
域は中心近傍に閉じ込められることになる。
For this reason, in the YAG laser oscillation device for ophthalmology,
A Q-switch method using electrical and optical effects is adopted, and an output pulse of several tens of nanoseconds can be obtained. By the way, when using this electro-optical element, the simplest method is to use it in combination with a polarizer, but the flash lamp pump causes thermal distortion in the YAG rod, and the incident light is linearly polarized. Due to the photoelastic effect, the plane of polarization undergoes rotation of spatially different magnitudes, and the desired effective area of the plane of polarization is confined near the center.

この効果の大きさは、励起と冷却との関係で決まるもの
であり、使用頻度、即ち発光パルス数とその間隔を変え
る場合に゛おいては、パルス毎の出力パワーの変動の原
因となり、また時にはホットスポットと云われるYAG
ロッドの破壊に繋がる現象を生ずる虞れがある。
The magnitude of this effect is determined by the relationship between excitation and cooling, and when changing the frequency of use, that is, the number of emission pulses and their intervals, it may cause fluctuations in the output power for each pulse, and YAG is sometimes called a hot spot
There is a possibility that a phenomenon that leads to the destruction of the rod may occur.

このような熱歪による光弾性効果の影響を解消する方法
として、幾つかの例の報告があるが、その1つに偏光子
に代えて方解石から成る複屈折板を用い、電気光学素子
に電圧を印加した場合の共振のQが高い時に常光線と異
常光線との光路を一致させ、電気光学素子に電界を印加
しない場合、即ちQが低い時には、それぞれが共振器で
決まる共振条件を満さない屈折を与えるようにした方式
%式% (1883)に報告されている。
Several examples have been reported as methods for eliminating the effects of photoelastic effects caused by thermal distortion, one of which is to use a birefringent plate made of calcite instead of a polarizer and apply a voltage to the electro-optic element. The optical paths of the ordinary ray and the extraordinary ray are made to match when the Q of resonance is high when . (1883) reported a method that gave a refraction that did not occur.

ここで第1図はレーザー構成、第2図(a)、(b)は
それぞれQが低い時、Qが高い時の光線屈折の様子を示
している。第1図において、lは全反射ミラーであり、
2の出力ミラーからレーザー出力が取り出される。全反
射ミラー1と出力ミラー2の間には、電気光学素子3、
第2図(a)、(b)に図示される溶融石英プリズム4
aと方解石プリズム4bとを組み合わせた複屈折素子4
、YAGロッド5が配列されている。
Here, FIG. 1 shows the laser configuration, and FIGS. 2(a) and 2(b) show the state of ray refraction when Q is low and when Q is high, respectively. In FIG. 1, l is a total reflection mirror,
Laser output is taken out from output mirror 2. Between the total reflection mirror 1 and the output mirror 2, an electro-optical element 3,
Fused silica prism 4 illustrated in FIGS. 2(a) and (b)
Birefringent element 4 combining a and a calcite prism 4b
, YAG rods 5 are arranged.

電気光学素子3に電圧を印加しないQが低い場合には、
第2図(a)において複屈折素子4の方解石プリズム4
bに垂直に入射するランダム偏光光りのうち、異常光線
L1は方解石プリズム4bの光軸と入射方向で決まる角
度だけ屈折され、一方の常光線L2は直進する。これら
の各光線L1、L2は、溶融石英プリズム4aにおける
方解石の異常光線、常光線に対する屈折率Ne、 No
と溶融石英の屈折率Nとの関係から、光線Ll’ 、 
L2’に示すような屈折を受けて出射し1反射ミラー1
で反射後にそれぞれ異なる偏光の光路を逆方向に伝播し
、溶融石英プリズム4aを経て再び方解石プリズム4b
に入射するにこで異常光線はLl”、常光線はL2゛′
に示すように屈折されて、その結果として共振条件から
ずれ、共振器はQが低い状態となり発振はなされない。
When Q is low and no voltage is applied to the electro-optical element 3,
In FIG. 2(a), the calcite prism 4 of the birefringent element 4
Of the randomly polarized light incident perpendicularly to b, the extraordinary ray L1 is refracted by an angle determined by the optical axis of the calcite prism 4b and the direction of incidence, while the ordinary ray L2 travels straight. Each of these rays L1 and L2 has a refractive index Ne, No for the extraordinary ray and ordinary ray of calcite in the fused silica prism 4a.
From the relationship between and the refractive index N of fused silica, the light ray Ll',
1 Reflection mirror 1
After reflection, the light propagates in opposite directions through different polarized light paths, passes through the fused silica prism 4a, and returns to the calcite prism 4b.
The extraordinary ray is Ll'' and the ordinary ray is L2''
As a result, the resonant condition deviates from the resonant condition, and the Q of the resonator becomes low and no oscillation occurs.

一方、電気光学素子3にλ/4電圧を印加すると、第2
図(b)に示すように異常光線L1.常光線L2は電気
光学素子3を1往復した後に90度回転されるため、全
反射ミラー1における反射光L1°、L2゛はそれぞれ
入射光と同じ軌跡を逆行することになり、Qが高い条件
が満される。この場合に、偏光子を入れる場合のような
偏波面に依存する損失の変化はないので、YAGロッド
5を有効に使用でき、上述した欠点はなくなる。しかし
ながら、Qが高い方への遷移は、電気光学素子3がλ/
4の位相差を生ずるための電圧を印加することが必要で
ある。電気光学素子3として用いられる結晶KD” P
 (KD2PO4)においてはこの電圧は約3KVであ
り、この値をナノ秒程度で急速に立ち上げるための装置
は大掛りなものとなる。また、繰り返し条件に応じてパ
ルス幅を可変にすることを要するが、このための装置も
高価なものになる。
On the other hand, when a λ/4 voltage is applied to the electro-optical element 3, the second
As shown in Figure (b), the extraordinary ray L1. Since the ordinary ray L2 is rotated by 90 degrees after making one round trip through the electro-optical element 3, the reflected lights L1° and L2' on the total reflection mirror 1 will each travel backwards along the same trajectory as the incident light, which is a high Q condition. is fulfilled. In this case, since there is no change in loss depending on the plane of polarization unlike when a polarizer is inserted, the YAG rod 5 can be used effectively and the above-mentioned drawbacks are eliminated. However, when transitioning to a higher Q, the electro-optical element 3
It is necessary to apply a voltage to produce a phase difference of 4. Crystal KD''P used as electro-optical element 3
In (KD2PO4), this voltage is about 3 KV, and a device for rapidly raising this voltage in about nanoseconds would be large-scale. Further, it is necessary to vary the pulse width depending on the repetition conditions, but the equipment for this also becomes expensive.

このように従来の方式は、偏光がない安定した出力のQ
スイッチングパルスを得る有用な方法ではあるが、Qス
イッチング動作を行うために電気光学素子3へ立ち上り
の早い高電圧パルスを印加′する必要があって、実用上
安価になり難い欠点がある。
In this way, the conventional method has a stable output Q with no polarization.
Although this is a useful method for obtaining switching pulses, it is necessary to apply a high voltage pulse with a fast rise to the electro-optical element 3 in order to perform the Q-switching operation, which has the drawback that it is difficult to achieve a practical cost.

本発明の目的は、上述の欠点を解消し、電気光学素子と
複屈折素子の間に174波長板を配置する構成により、
安価な装置を実現でき、パルス幅の制御も容易に行い得
るレーザー発振装置を提供′することにあり、その要旨
は、電気光学効果を用いたQスイッチ法によるレーザー
発振装置であって、複屈折素′子と電気光学素子とを有
し、前記複屈折素子と全反射ミラーとの間に、前記電気
光学素子と直列に1/4波長板を配置し−たことを特徴
とするものである。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a structure in which a 174-wave plate is disposed between an electro-optical element and a birefringent element.
The purpose is to provide a laser oscillation device that can be realized at low cost and whose pulse width can be easily controlled. and an electro-optical element, and is characterized in that a quarter-wave plate is arranged between the birefringent element and the total reflection mirror in series with the electro-optical element. .

本発明を第3図以下に図示の実施例に基づいて詳細に説
明する。なお、第1図、第2図と同一の符号は同一の部
材又は同等の性質のものを表している。
The present invention will be explained in detail based on the embodiment shown in FIG. 3 and below. Note that the same reference numerals as in FIGS. 1 and 2 represent the same members or those with equivalent properties.

第3図は本発明でのYAGレーザー発振器の構成図を示
し、第1図の従来例に加えて、電気光学素子3と複屈折
素子4の間に1/4波長板6が配置されている。この1
/4波長板6は例えば雲母板のような2軸性結晶とし、
その厚みは異常光線と常光線との位相差がλ/4になる
ようなものとし、複屈折素子4からの異常光線、常光線
が1/4波長板6の異常光線、常光線に対し、45度の
角度で入射するように光軸が配置されている。また、l
/4波長板6は方解石のような1軸性結晶であってその
光軸を共振器軸にとり、厚みをλ/4の4n+1(nは
整数)倍になるようにカー/ )したものでもよい。1
/4波長板6の入出力面は、寄生発振の原因となる挿入
損を少なくするためにARコート(無反射コート)が施
されているものとする。
FIG. 3 shows a configuration diagram of a YAG laser oscillator according to the present invention, and in addition to the conventional example shown in FIG. . This one
The /4 wavelength plate 6 is made of biaxial crystal such as a mica plate,
Its thickness is such that the phase difference between the extraordinary ray and the ordinary ray is λ/4, and the extraordinary ray and ordinary ray from the birefringent element 4 are different from the extraordinary ray and ordinary ray from the quarter-wave plate 6. The optical axis is arranged so that the light enters at an angle of 45 degrees. Also, l
The /4 wavelength plate 6 may be a uniaxial crystal such as calcite, whose optical axis is the resonator axis, and whose thickness is 4n+1 (n is an integer) times λ/4. . 1
It is assumed that the input and output surfaces of the /4 wavelength plate 6 are coated with an AR coating (anti-reflection coating) in order to reduce insertion loss that causes parasitic oscillation.

この配置において、Qスイッチング発振動作は次のよう
になされる。説明を簡明にするために、複屈折素子4に
おける常光線1.2の軌跡のみを考える。1/4波長板
6の異常光線及び常光線の軸を第4図に示すように配置
したとすれば、174波長板6が方解石のような負の1
軸性結晶、つまり屈折率がNe> Noの関係にあると
きには、第5図に示すように1/4波長板6から入る入
射光L3が1/4波長板6を光L4として出ると、この
光L4は左廻りの円偏光となる。λ/4電圧を印加した
位相差が同符号で加算される軸配置とする電気光学素子
3により、更にλ/4の位相が生じ、結果として反射ミ
ラーlに入射する光L5は入射光L3とは偏波面が90
度回転した光となる。
In this arrangement, the Q-switching oscillation operation is performed as follows. To simplify the explanation, only the trajectory of the ordinary ray 1.2 in the birefringent element 4 will be considered. If the axes of the extraordinary ray and ordinary ray of the 1/4 wavelength plate 6 are arranged as shown in FIG.
In the case of an axial crystal, that is, when the refractive index is in the relationship Ne>No, as shown in FIG. The light L4 becomes counterclockwise circularly polarized light. Due to the electro-optical element 3 having an axial arrangement in which the phase difference to which the λ/4 voltage is applied is added with the same sign, a phase of λ/4 is further generated, and as a result, the light L5 incident on the reflection mirror l is different from the incident light L3. has a polarization plane of 90
The light is rotated by a degree.

反射ミラー1において反射した光L6が、電気光学素子
3を逆方向に入射すれば、この入射光L6は再び左廻り
の円・偏光となり、1/4波長板6により更にλ/4の
位相差が加えられ、複屈折素子4への戻り光L7は、入
射光L3と同じ偏波面の光となる。これは、前述したよ
うに複屈折素子4により共振器条件からずれた方向に光
L8として屈折され、共振器はQが低い状態となり発振
が停止される。
When the light L6 reflected by the reflection mirror 1 enters the electro-optical element 3 in the opposite direction, this incident light L6 becomes counterclockwise circularly polarized light again, and the quarter-wave plate 6 further increases the phase difference by λ/4. is added, and the return light L7 to the birefringent element 4 becomes light with the same polarization plane as the incident light L3. As described above, this is refracted by the birefringent element 4 as light L8 in a direction deviating from the resonator conditions, and the resonator enters a low Q state and oscillation is stopped.

電気光学素子3へのλ/4電圧の印加を停止すれば、入
射光L3はλ/4位相差を2回受け、λ/2の位相差つ
まり入射光L3と戻り光L7とは偏波面が90度回転し
、戻り光L7は複屈折素子4において異常光線となり、
光路Pを通りランダム偏光光りとして戻ることになる。
When the application of the λ/4 voltage to the electro-optical element 3 is stopped, the incident light L3 receives a λ/4 phase difference twice, and the polarization planes of the incident light L3 and the returned light L7 are different from each other due to the λ/2 phase difference. Rotated by 90 degrees, the returned light L7 becomes an extraordinary ray in the birefringent element 4,
It passes through the optical path P and returns as randomly polarized light.

即ち、共振器の共振条件が満され、Qが高い状態となり
レーザーは発振する。ここで1/4波長板6の位置は、
電気光学素子3と反射ミラー1の間であってもよいこと
は明らかである。
That is, the resonance condition of the resonator is satisfied, the Q becomes high, and the laser oscillates. Here, the position of the quarter wavelength plate 6 is
It is clear that it may be between the electro-optical element 3 and the reflecting mirror 1.

このように174波長板6を、複屈折素子4と反射ミラ
ーlの間に、電気光学素子3と直列に配置すると、この
とき電気光学素子3と1/4波長板6とは複合素子とし
て機能し、電気光学素子3がλ/4電圧を印加した状態
のアクティブ状態にしたときに1往復当りλ/2の位相
差となるように、また電気光学素子3にλ/4電圧を印
加しないときはλ/4位相差となるように配置すること
により、電気光学素子3へのQスイッチングの電圧極性
を高い方から低い方に変えることが可能となる。
When the 174 wavelength plate 6 is arranged in series with the electro-optic element 3 between the birefringent element 4 and the reflection mirror l, the electro-optical element 3 and the quarter-wave plate 6 function as a composite element. When the electro-optical element 3 is in the active state with a λ/4 voltage applied, the phase difference is λ/2 per round trip, and when the λ/4 voltage is not applied to the electro-optical element 3. By arranging them so that they have a phase difference of λ/4, it is possible to change the voltage polarity of Q switching applied to the electro-optical element 3 from a high side to a low side.

以上説明したように本発明に係るレーザー発振装置は、
共振器内に1/4波長板を挿入することにより、Qスイ
ッチングを従来の電圧印加型から電圧解除型に置換して
いるためパルス幅の制御も容易に実施可能となり、発振
出力の安定化を図ることができる。
As explained above, the laser oscillation device according to the present invention has
By inserting a quarter-wave plate into the resonator, Q-switching is replaced from the conventional voltage application type to a voltage release type, making it easy to control the pulse width and stabilize the oscillation output. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成図、第2図(a) 、 (b)は
その動作説明図、第3図以下は本発明に係るレーザー発
振装置の実施例を示し、第3図はレーザー発振器の構成
図、第4図は主軸と入射波面の関係図、第5図は動作説
明図である。 符号1は全反射ミラー、2は出力ミラー、3は電気光学
素子、4は複屈折素子、4aは溶融石英プリズム、4b
は方解石プリズム、5はYAGロッド、6は1/4波長
板である。 第1図 第2図 (CI) 第3図 第4図
FIG. 1 is a configuration diagram of a conventional example, FIGS. 2(a) and (b) are diagrams explaining its operation, FIG. FIG. 4 is a diagram showing the relationship between the principal axis and the incident wavefront, and FIG. 5 is an explanatory diagram of the operation. 1 is a total reflection mirror, 2 is an output mirror, 3 is an electro-optical element, 4 is a birefringent element, 4a is a fused silica prism, 4b
is a calcite prism, 5 is a YAG rod, and 6 is a quarter wavelength plate. Figure 1 Figure 2 (CI) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、電気光学効果を用いたQスイッチ法によるレーザー
発振装置であって、複屈折素子と電気光学素子とを有し
、前記複屈折素子と全反射ミラーとの間に、前記電気光
学素子と直列に1/4波長板を配置したことを特徴とす
るレーザー発振装置。 2、前記電気光学素子と1/4波長板は複合素子として
機能し、前記電気光学素子にλ/4に相当する電圧を印
加するとλ/2の位相差を、前記電気光学素子にλ/4
に相当する電圧を解除するとλ/4の位相差を与えるよ
うに構成した特許請求の範囲第1項に記載のレーザー発
振装置。
[Claims] 1. A laser oscillation device using a Q-switch method using an electro-optic effect, which includes a birefringent element and an electro-optical element, and between the birefringent element and a total reflection mirror, A laser oscillation device characterized in that a quarter wavelength plate is arranged in series with the electro-optical element. 2. The electro-optical element and the quarter-wave plate function as a composite element, and when a voltage corresponding to λ/4 is applied to the electro-optical element, a phase difference of λ/2 is generated to the electro-optical element.
2. The laser oscillation device according to claim 1, wherein the laser oscillation device is configured to provide a phase difference of λ/4 when the voltage corresponding to .
JP16894584A 1984-08-13 1984-08-13 Laser oscillation device Pending JPS6147683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16894584A JPS6147683A (en) 1984-08-13 1984-08-13 Laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16894584A JPS6147683A (en) 1984-08-13 1984-08-13 Laser oscillation device

Publications (1)

Publication Number Publication Date
JPS6147683A true JPS6147683A (en) 1986-03-08

Family

ID=15877445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16894584A Pending JPS6147683A (en) 1984-08-13 1984-08-13 Laser oscillation device

Country Status (1)

Country Link
JP (1) JPS6147683A (en)

Similar Documents

Publication Publication Date Title
US5052815A (en) Single frequency ring laser with two reflecting surfaces
US5199042A (en) Unstable laser apparatus
US3564450A (en) Electro-optic q-switch using brewstek angle cut pockels cell
US4546477A (en) Pulse transmission or reflection mode laser
US7675958B2 (en) Intra-cavity non-degenerate laguerre mode generator
US5640412A (en) Prism folded laser cavity with controlled intractivity beam polarization
KR0169538B1 (en) Monolithic multifunctional optical elements
US7248397B1 (en) Wavelength-doubling optical parametric oscillator
JP3683360B2 (en) Polarization control element and solid-state laser
US4507785A (en) Unpolarized electro-optically Q-switched laser
US4326175A (en) Multi-color, multi-pulse laser system
US5222094A (en) Ring laser
CN115224580A (en) Short pulse laser system with switchable polarization
EP1169755B1 (en) Thermal birefringence compensator for double pass laser
JPS6147683A (en) Laser oscillation device
JPH0688979A (en) Q switch/second harmonic generating combined element
CN111313219A (en) Double-mode pulse solid laser
JPH0795614B2 (en) Double frequency laser
CN213093554U (en) Electro-optical Q-switch replacing LN crystal cut by Brewster angle
CN112736635B (en) Anti-detuning long-pulse wide-angle conical cavity solid laser
CN112164972A (en) Electro-optical Q-switch replacing LN crystal cut by Brewster angle
AU551954B2 (en) Unpolarised electro-optically q-switched laser
JPH0927648A (en) Summed frequency laser
JPH08227085A (en) Laser device
CN116435855A (en) Eye safety laser device