JPS6147621B2 - - Google Patents

Info

Publication number
JPS6147621B2
JPS6147621B2 JP54044804A JP4480479A JPS6147621B2 JP S6147621 B2 JPS6147621 B2 JP S6147621B2 JP 54044804 A JP54044804 A JP 54044804A JP 4480479 A JP4480479 A JP 4480479A JP S6147621 B2 JPS6147621 B2 JP S6147621B2
Authority
JP
Japan
Prior art keywords
core
corer
sand
hollow
foundry sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54044804A
Other languages
Japanese (ja)
Other versions
JPS55136539A (en
Inventor
Masayuki Matsuoka
Teiichi Higuchi
Tadashi Yamashita
Akio Tanaka
Akinori Sakota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4480479A priority Critical patent/JPS55136539A/en
Publication of JPS55136539A publication Critical patent/JPS55136539A/en
Publication of JPS6147621B2 publication Critical patent/JPS6147621B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は特に中空体中子の製作に有益で、更に
発展的には中実体中子の製作にも利用でき、鋳物
用中子全般に適用できる新しい遠心力造芯方法を
提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly useful for the production of hollow body cores, and can be further developed to be used for the production of solid cores, and is a novel centrifugal core forming method that can be applied to foundry cores in general. The purpose is to provide a method.

第1図に示すように、例えば端部に受口を有す
る鋳鉄管1等の遠心力鋳造においては、所要の受
口形状を得るために遠心力鋳造鋳型2の端部には
中空体の中子3をセツトして行う必要がある。又
この種遠心力鋳造用のものに限らず、通常の置注
ぎ鋳造を行う場合も含めて、一般に鋳物製品を鋳
造するに当つては、その製品形状に応じて各種の
中空体中子を用いることが極めて頻繁である。
As shown in Fig. 1, for example, in centrifugal force casting of a cast iron pipe 1 having a socket at the end, the end of the centrifugal force casting mold 2 is provided with a hollow body in order to obtain the required socket shape. It is necessary to set child 3. In general, when casting products, including not only those for this type of centrifugal force casting but also ordinary pouring casting, various hollow body cores are used depending on the shape of the product. This is extremely common.

ところで、このような鋳物用中空体中子の製作
法についてみると、従来は第2図に示すように、
適宜割型に形成した芯取器(芯取型)4の中心に
マンドレル5をセツトし、この状態で芯取器4と
マンドレル5との間の空隙に鋳物砂6を突き固め
乍ら充填して造型するというのが通例であつた。
然るに、このような従来の中子造型法によれば、
その突き固め操作に手間を要し、特に複雑な外面
形状を有する中子を造型する場合では、作業が極
めて煩雑化すると共に、芯取器4の内面細部まで
砂が均一に充填されず寸法精度に欠けるという憾
みもあり、生産性、品質の両面で未だ改善すべき
点の多いものであつた。
By the way, looking at the manufacturing method of such a hollow body core for casting, the conventional method is as shown in Figure 2.
A mandrel 5 is set in the center of a corer (centering mold) 4 formed into a suitably split mold, and in this state, the gap between the corer 4 and the mandrel 5 is filled with molding sand 6 while being tamped. It was customary to make the mold using the same method.
However, according to this conventional core molding method,
The tamping operation requires time and effort, and especially when molding a core with a complex external shape, the work becomes extremely complicated, and the sand is not evenly filled to the inner details of the corer 4, resulting in dimensional accuracy. There was also a lack of quality, and there were still many points that needed to be improved in terms of both productivity and quality.

斯かる実情に鑑み、本発明は如何なる複雑な外
面形状を有する中空体中子であつても、簡単迅速
に製作し得る画期的造芯方法を開発することに成
功したものであり、本発明の特徴とする処は、軸
心廻りに回転されかつ予め加熱された中空芯取器
の内面に熱硬化性鋳物砂を投入し、該鋳物砂を遠
心力により中空の中子に成形すると共に、その成
形状態で鋳物砂の内面に火炎又は熱風を噴射して
固化し、固化後中子を芯取器より取り出す点にあ
る。
In view of these circumstances, the present invention has succeeded in developing an innovative core-forming method that can easily and quickly manufacture a hollow core having any complex external shape. The feature of this method is that thermosetting molding sand is put into the inner surface of a hollow corer that is rotated around the axis and heated in advance, and the molding sand is formed into a hollow core by centrifugal force. In the formed state, flame or hot air is injected onto the inner surface of the foundry sand to solidify it, and after solidification, the core is taken out from the corer.

以下本発明を図示の実施例を基に説明すると、
第3図は本発明方法を実施するための試験装置一
例を示し、この装置では既存の遠心力鋳造用金枠
7を便宜上使用し、その一端に本発明に係る中空
芯取器8を適宜固定具9を介して連繋装着して成
るもので、芯取器8は金枠7を支承する複数対の
回転ローラー10により金枠7と一体にその横軸
軸心廻りに回転駆動される。この図例装置は勿論
あくまでも簡易的な試験装置を例示するものであ
り、実際工業的には上記金枠7を使用せずとも直
接芯取器8を回転駆動する手段を採用することが
合理的であり、例えば第5図に示すように、図外
のモーター等の回転駆動体に連動する軸体11に
軸支されたターンテーブル12に芯取器8を着脱
自在に固設し、芯取器8を直接的にその縦軸軸心
廻りに回転駆動させる装置等も例示できる。何れ
にしても、芯取器8の回転手段及びその回転軸方
向は自由である。
The present invention will be explained below based on the illustrated embodiments.
FIG. 3 shows an example of a test device for carrying out the method of the present invention. In this device, an existing metal frame 7 for centrifugal force casting is conveniently used, and a hollow centering device 8 according to the present invention is appropriately fixed to one end of the metal frame 7. The centering device 8 is connected and attached via a tool 9, and the centering device 8 is driven to rotate integrally with the metal frame 7 about its horizontal axis by a plurality of pairs of rotating rollers 10 that support the metal frame 7. This illustrated device is, of course, just an example of a simple testing device, and in actual industry, it is reasonable to adopt a means of directly rotating the corer 8 without using the metal frame 7. For example, as shown in FIG. 5, a centering device 8 is removably fixed to a turntable 12 that is rotatably supported by a shaft 11 that is linked to a rotational drive body such as a motor (not shown), and An example may also be a device that directly drives the device 8 to rotate around its vertical axis. In any case, the rotation means of the centering device 8 and the direction of its rotation axis are free.

而して、本発明の遠心力造芯方法によれば、適
宜手段によりその軸心廻りに回転させた中空芯取
器8の内面に、第4図及び第5図に示す如くサン
ドホツパー等の移動自在に配設された砂供給手段
13より、鋳物砂14を投入し、これを遠心力に
より芯取器8の内面に貼付けて中空の中子形状に
成形するものである。このような遠心力による鋳
物砂14の成形は、遠心力鋳造法と全く同様にし
て行われるものであり、遠心力鋳造法の場合の金
属溶湯に代えて本発明方法では鋳物砂を投入する
ものである。従つて、鋳物砂14に所要の遠心力
が作用するよう芯取器8の回転数を設定すれば、
予め所望の形状に成形されてある芯取器8の如何
なる内面形状にも適合する外面形状の中空中子が
成形されるのであり、この際の中子厚さは鋳物砂
14の投入量によつて容易に調整される。実際、
本発明の遠心力造芯方法において、均一に鋳物砂
14が充填された中空中子を成形するために必要
とされる遠心力の大きさは、GNo.5〜100の範囲
であり、更に一般的にはGNo.10〜40程度で足り
る。そして、この範囲で鋳物砂14の流動性の悪
いもの程及び芯取器8の内面形状の複雑なもの程
高いGNo.値に設定する訳である。尚、芯取器8
の回転中に同時に振動を付与するようにすれば、
必要なGNo.値をある程度低減させることも可能
である。
According to the centrifugal core forming method of the present invention, a sand hopper or the like is moved onto the inner surface of the hollow corer 8, which is rotated around its axis by appropriate means, as shown in FIGS. 4 and 5. Foundry sand 14 is introduced from a freely disposed sand supply means 13, and is applied to the inner surface of the corer 8 by centrifugal force to form it into a hollow core shape. The molding sand 14 is shaped by centrifugal force in exactly the same manner as the centrifugal casting method, and in the method of the present invention, instead of the molten metal used in the centrifugal casting method, casting sand is introduced. It is. Therefore, if the rotation speed of the corer 8 is set so that the required centrifugal force acts on the foundry sand 14,
A hollow core with an outer surface that conforms to any inner surface shape of the corer 8, which has been previously formed into a desired shape, is molded, and the thickness of the core at this time depends on the amount of molding sand 14 input. and can be easily adjusted. actual,
In the centrifugal force core forming method of the present invention, the magnitude of the centrifugal force required to form the hollow core uniformly filled with the foundry sand 14 is in the range of GNo. 5 to 100, and more generally In general, G No. 10 to 40 is sufficient. Within this range, the poorer the fluidity of the foundry sand 14 and the more complex the internal shape of the corer 8, the higher the GNo. value is set. In addition, core remover 8
If you apply vibration at the same time while rotating,
It is also possible to reduce the required GNo. value to some extent.

本発明の遠心力造芯方法では、上記の如く芯取
器8の内面に遠心力で成形した中子(鋳物砂)
を、引き続き芯取器8内でその成形状態に固化
し、中子の固化完了後これを芯取器8から取り出
し、鋳物用中子として使用に供するものである。
即ち、鋳物砂14は芯取器8内で、その投入当初
乃至投入完了後から後述する適宜固化手段により
早期に固化され、遠心力による所定の成形状態に
固化される。
In the centrifugal force core making method of the present invention, a core (foundry sand) formed by centrifugal force on the inner surface of the corer 8 as described above is used.
is then solidified into the molded state in the corer 8, and after the core has solidified, it is taken out from the corer 8 and used as a core for casting.
That is, the foundry sand 14 is quickly solidified in the centering device 8 from the time of charging to after the completion of charging by an appropriate solidifying means described later, and is solidified into a predetermined molded state by centrifugal force.

尚本発明方法では、中子が固化した後、これを
芯取器8より取り出して使用に供するものである
故、複雑な形状の中子を製作する場合には、その
中子形状に応じて芯取器8を軸方向及び径方向に
分割して成る割型に形成しておく必要があり、例
えば第4図に示すような内面形状の芯取器では、
径方向の分割面Aにて締結具15を介し着脱自在
とされていると共に、軸方向にも図外の適数分割
面を有する割型に形成されている。又、芯取器8
から中子を取り出す際の両者の分離性の促進及び
中子の型崩れを防止する意味で、芯取器8の内面
に予め離型剤を塗布しておくのが好適である。そ
して、この離型剤が良好な性能を発揮するもので
は、円筒体等の単純形状の中子の製作する場合に
おいて、芯取器8を割型とせずとも、中子を芯取
器8から抜き取るようにして取り出すことも可能
となる。
In addition, in the method of the present invention, after the core is solidified, it is taken out from the corer 8 and used, so when manufacturing a core with a complicated shape, it is necessary to It is necessary to form the centering device 8 into a split mold that is divided into axial and radial directions. For example, in a centering device with an inner surface shape as shown in FIG.
It is detachable at the radial dividing surface A via a fastener 15, and is also formed into a split mold having an appropriate number of dividing surfaces (not shown) in the axial direction. Also, core remover 8
It is preferable to apply a mold release agent to the inner surface of the corer 8 in advance in order to facilitate the separation of the two cores and to prevent the core from losing its shape when the core is taken out. If this mold release agent exhibits good performance, when manufacturing cores with simple shapes such as cylinders, the core can be removed from the corer 8 without using a split mold. It is also possible to take it out by pulling it out.

本発明の遠心力造芯方法によれば、第4図に例
示するもの以外に、成形される中空体中子の外面
形状は自由に変更でき、例えば第6図に平面形状
を概略的に図示するもの(図中16,17,18
は中子、B,C,Dは各々芯取器の分割面を示
す)等、如何なる外面形状のものであつても容易
に製作でき、更に発展的には中空体中子製作後、
その中空部に改めて鋳物砂を充填すれば、中実体
中子も本発明方法により製作し得るものとなる。
尚本発明の遠心力造芯方法においては、芯取器8
をその軸心方向に長尺なものとし、その内面に2
又はそれ以上の中子成形面を断続的に形成すれ
ば、一度に複数の中子取りを行うことも可能とな
るは云う迄もない。
According to the centrifugal force core forming method of the present invention, the outer surface shape of the hollow core to be molded can be freely changed in addition to that illustrated in FIG. 4. For example, the planar shape is schematically shown in FIG. 6. (16, 17, 18 in the diagram)
is a core, and B, C, and D are the dividing surfaces of the centering device).It can be easily manufactured with any external shape.
By filling the hollow portion with foundry sand again, a solid core can also be manufactured by the method of the present invention.
In the centrifugal core forming method of the present invention, the corer 8
is long in the axial direction, and has 2 holes on its inner surface.
Needless to say, by intermittently forming a core molding surface of one or more core molding surfaces, it is possible to remove a plurality of cores at the same time.

以下本発明方法にて使用する鋳物砂14及びそ
の芯取器8内での固化手段について説明すると、
先ず鋳物砂14としては、一般に中子製作用に使
用されているあらゆる種類のものが適用できる。
The foundry sand 14 used in the method of the present invention and its solidification means in the corer 8 will be explained below.
First, as the foundry sand 14, any type of sand that is generally used for making cores can be used.

今このうち、本発明方法で使用する好適な具体
例として、熱硬化性樹脂をそのバインダーとして
配合して成る所謂ホツトボツクスタイプの鋳物砂
を挙げて説明すると、この種鋳物砂の代表例とし
て、珪砂を骨材とし、主にフエノール樹脂(更に
はレジン及び硬化剤の配合も可とする)をバイン
ダーとする一般的なシエル砂を例示することがで
きる。周知のように、このホツトボツクスタイプ
の鋳物砂にあつては、適当な温度に加熱すること
により速やかに焼結固化する特性を備えたもので
ある。
Among these, a so-called hot box type foundry sand which is blended with a thermosetting resin as a binder will be described as a preferred specific example for use in the method of the present invention.As a representative example of this type of foundry sand, An example is general shell sand, which uses silica sand as an aggregate and mainly uses a phenol resin (in addition, a resin and a hardening agent may be added) as a binder. As is well known, this hot box type foundry sand has the property of being rapidly sintered and solidified by heating to an appropriate temperature.

従つて、本発明の遠心力造芯方法においても、
この種鋳物砂の固化手段として加熱手段を採用す
れば良く、最も簡単且つ基本的には予め芯取器8
自体を適当な温度(通常シエル砂の場合で250〜
350℃)に加熱しておく手段を提示でき、これに
より芯取器8内で成形された中子(鋳物砂)を簡
単迅速に固化せしめることが可能となる。例え
ば、鋳物砂14としてシエル砂(6#珪砂+3%
フエノール樹脂)を用い、芯取器8を250℃に予
熱した条件にて、これを砂厚20〜40mmに遠心力造
芯した場合の実例によると、2分間の焼結により
抗折強度60Kg/cm2に固化した中子を製作すること
が可能である。
Therefore, also in the centrifugal core forming method of the present invention,
It is sufficient to adopt heating means as a means for solidifying this type of foundry sand, and the simplest and basically
itself at an appropriate temperature (usually 250~250°C for shell sand)
350° C.), thereby making it possible to easily and quickly solidify the core (foundry sand) formed in the corer 8. For example, as foundry sand 14, shell sand (6# silica sand + 3%
According to an example of centrifugally cored sand with a thickness of 20 to 40 mm using corer 8 (phenol resin) and preheated to 250°C, a bending strength of 60 Kg/2 minutes was achieved by sintering for 2 minutes. It is possible to produce cores solidified to cm2 .

次に上記ホツトボツクスタイプの鋳物砂の固化
手段乃至固化促進手段として有効な他の加熱手段
を第7図、第8図に図示し説明する。第7図に示
す加熱手段は鋳物砂14の成形進行中乃至成形完
了後に、芯取器8の中空部に噴込管19を装入
し、この噴込管19から鋳物砂14の内面に火炎
又は熱風20を噴射せしめるものである。又第8
図に示す加熱手段は同じく鋳物砂14の成形進行
中乃至成形完了後に、密閉蓋21を芯取器8の開
口端に施蓋するなどして芯取器8内を密閉状態に
すると共に、噴込管19′から鋳物砂14の内面
に圧力熱風20を吹き込み、一方、芯取器8には
予め外部と連通するベントプラグ等の多数の通気
孔22を設けておき、圧力熱風20′が鋳物砂1
4中を通り外部に排出されるようにしたものであ
る。これら鋳物砂14の内面に火炎又は熱風20
を噴射する加熱手段並びに鋳物砂14の中を圧力
熱風20′が通過するようにした加熱手段によれ
ば、各々鋳物砂14の有効な固化手段となり得、
又前記芯取器8自体を予熱しておく手段と併用し
た場合では著しい固化促進手段ともなる訳であ
る。
Next, another heating means effective as a means for solidifying or promoting solidification of the hot box type foundry sand will be described with reference to FIGS. 7 and 8. The heating means shown in FIG. 7 inserts an injection pipe 19 into the hollow part of the corer 8 during or after the molding of the foundry sand 14 is completed, and from this injection pipe 19 a flame is applied to the inner surface of the foundry sand 14. Alternatively, hot air 20 is injected. Also the 8th
Similarly, the heating means shown in the figure is used to seal the inside of the corer 8 by placing a sealing lid 21 on the open end of the corer 8 during or after the molding of the foundry sand 14 is completed. Pressurized hot air 20 is blown into the inner surface of the foundry sand 14 from the pouring pipe 19', and on the other hand, the corer 8 is previously provided with a large number of ventilation holes 22 such as vent plugs communicating with the outside, and the pressurized hot air 20' is blown into the casting sand 14. sand 1
4 and is discharged to the outside. Flame or hot air 20 is applied to the inner surface of these foundry sands 14.
The heating means that injects the molding sand 14 and the heating means that allows the pressurized hot air 20' to pass through the molding sand 14 can be effective means for solidifying the molding sand 14, respectively.
In addition, when used in combination with a means for preheating the corer 8 itself, it becomes a means for significantly promoting solidification.

以上鋳物砂14として熱硬化性樹脂をバインダ
ーとするものについて述べたが、本発明の考え方
はその他の鋳物砂を使用する場合にも同様に応用
できるものであつて、例えば自硬性鋳物砂等の他
の鋳物砂を使用する場合では、その配合バインダ
ーに応じた反応性ガスを吹き込むなどし鋳物砂の
種類に応じる適宜固化手段を採れば良いのであ
る。
Although the molding sand 14 used as the binder is described above, the concept of the present invention can be similarly applied to the use of other molding sands, such as self-hardening molding sand, etc. When using other foundry sand, it is sufficient to take appropriate solidifying means depending on the type of foundry sand, such as blowing in a reactive gas depending on the blended binder.

以上説明したように、本発明の遠心力造芯方法
は、回転中の中空芯取器内に鋳物砂を投入し、遠
心力によりこれを中空の中子に成形すると共に、
その成形状態に固化せしめ、成形固化した中子を
取り出して使用に供するものである。このような
本発明方法によれば、中空体中子の造型時には勿
論マンドレルを必要とせず、しかも煩雑なる突き
固め作業も一切不要であり、如何なる複雑な芯取
器内面形状に対しても遠心力によりこれと適合し
且つ均一に充填された外面形状を有する中子を簡
単迅速に製作できるものとなる。従つて、本発明
方法は中子特に中空体中子の製作における生産性
及び品質両面を著しく改善するものであり、更に
は中空体中子製作後その中空部に別途鋳物砂の充
填を行えば中実体中子の製作も容易に可能ならし
めるものであり、結局本発明は鋳物用中子全般に
適用できる画期的造芯方法と云える。
As explained above, the centrifugal force core forming method of the present invention involves introducing foundry sand into a rotating hollow corer, forming it into a hollow core by centrifugal force, and
The molded core is solidified and the molded and solidified core is taken out and used. According to the method of the present invention, a mandrel is not required when molding a hollow body core, and there is no need for any complicated tamping work. This makes it possible to easily and quickly produce a core that is compatible with this and has an evenly filled outer surface shape. Therefore, the method of the present invention significantly improves both productivity and quality in the production of cores, especially hollow body cores, and furthermore, if the hollow part is separately filled with foundry sand after the hollow body core is manufactured, This makes it possible to easily produce solid cores, and the present invention can be said to be an innovative core-making method that can be applied to all casting cores.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中空体中子の使用状態一例を示す遠心
力鋳造鋳型の断面図、第2図は従来の中空体中子
造型法を示す断面図、第3図は本発明を実施する
ための試験的装置一例を示す正面図、第4図は第
3図の要部拡大断面図、第5図は本発明を実施す
るための実際的装置一例を示す一部破断正面図、
第6図a,b,cは本発明方法により製作し得る
中子の平面形状例を示す説明図、第7図、第8図
は各々芯取器内での中子固化手段を示す断面図で
ある。 8……中空芯取器、14……鋳物砂(中子)。
Fig. 1 is a sectional view of a centrifugal casting mold showing an example of the usage state of a hollow body core, Fig. 2 is a sectional view showing a conventional hollow body core manufacturing method, and Fig. 3 is a sectional view of a centrifugal casting mold showing an example of the usage state of a hollow body core. 4 is an enlarged cross-sectional view of the main part of FIG. 3; FIG. 5 is a partially cutaway front view showing an example of a practical device for carrying out the present invention;
Figures 6a, b, and c are explanatory views showing examples of planar shapes of cores that can be manufactured by the method of the present invention, and Figures 7 and 8 are sectional views showing core solidifying means in the corer, respectively. It is. 8...Hollow corer, 14...Casting sand (core).

Claims (1)

【特許請求の範囲】[Claims] 1 軸心廻りに回転されかつ予め加熱された中空
芯取器の内面に熱硬化性鋳物砂を投入し、該鋳物
砂を遠心力により中空の中子に成形すると共に、
その成形状態で鋳物砂の内面に火炎又は熱風を噴
射して固化し、固化後中子を芯取器より取り出す
ことを特徴とする遠心力造芯方法。
1. Thermosetting molding sand is poured into the inner surface of a hollow corer that is rotated around the axis and heated in advance, and the molding sand is formed into a hollow core by centrifugal force, and
A centrifugal core making method characterized by injecting flame or hot air onto the inner surface of the foundry sand in its formed state to solidify it, and after solidifying, taking out the core from a corer.
JP4480479A 1979-04-11 1979-04-11 Centrifugal force core boring method Granted JPS55136539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4480479A JPS55136539A (en) 1979-04-11 1979-04-11 Centrifugal force core boring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4480479A JPS55136539A (en) 1979-04-11 1979-04-11 Centrifugal force core boring method

Publications (2)

Publication Number Publication Date
JPS55136539A JPS55136539A (en) 1980-10-24
JPS6147621B2 true JPS6147621B2 (en) 1986-10-20

Family

ID=12701604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4480479A Granted JPS55136539A (en) 1979-04-11 1979-04-11 Centrifugal force core boring method

Country Status (1)

Country Link
JP (1) JPS55136539A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176634A (en) * 1986-01-28 1987-08-03 Sintokogio Ltd Molding method for shell core
CN103182476B (en) * 2013-04-03 2015-04-15 阳城县煜锟铸造厂 Technique for producing large and medium-sized cylindrical iron castings through clay green sand molding

Also Published As

Publication number Publication date
JPS55136539A (en) 1980-10-24

Similar Documents

Publication Publication Date Title
GB1161769A (en) Apparatus and method for casting metal.
US3835913A (en) Investment casting
US3216074A (en) Method for making shaped foundry articles
CN101293276B (en) Method for casting brass ware
US3480070A (en) Permanent mold for casting a wheel
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
JPS6147621B2 (en)
HU189416B (en) Method for producing mould made of moulding material of chemical bond
US3077014A (en) Molding machine and process
Deore et al. A study of core and its types for casting process
JP5159330B2 (en) Sand mold for centrifugal casting mold and method for producing rolling roll
US3220071A (en) Combination ingot molds and cores and methods of making ingot molds and cores
CN209139761U (en) A kind of 3D printing wax pattern fusible pattern gray cast iron bracket casting
JPH0469023B2 (en)
JPS558328A (en) Casting mold molding method
US4043378A (en) Method for forming casting molds
US2856655A (en) Machine for forming hollow sand-resin cores and moulds
US2770855A (en) Apparatus for making liner sleeves and refractory shell type molds
JPS594217B2 (en) Centrifugal core forming method
JPS597457A (en) Casting method
SU1637946A1 (en) Method of manufacturing metal-shell cores
US1581790A (en) Casting and method of producing the same
JPS58202944A (en) Production of metallic mold
JP4337074B2 (en) Sand mold making and mold matching method and sand mold
JPS5659573A (en) Centrifugal casting apparatus