JPS6147593B2 - - Google Patents

Info

Publication number
JPS6147593B2
JPS6147593B2 JP5721178A JP5721178A JPS6147593B2 JP S6147593 B2 JPS6147593 B2 JP S6147593B2 JP 5721178 A JP5721178 A JP 5721178A JP 5721178 A JP5721178 A JP 5721178A JP S6147593 B2 JPS6147593 B2 JP S6147593B2
Authority
JP
Japan
Prior art keywords
wastewater
activated carbon
granular activated
water
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5721178A
Other languages
Japanese (ja)
Other versions
JPS54150845A (en
Inventor
Toshio Sawa
Masayoshi Kubota
Sankichi Takahashi
Toyohiko Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5721178A priority Critical patent/JPS54150845A/en
Publication of JPS54150845A publication Critical patent/JPS54150845A/en
Publication of JPS6147593B2 publication Critical patent/JPS6147593B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は排水の中水化処理方法及び装置に関
し、詳細には、排水中に含まれる有機物、アンモ
ニア性窒素及び懸濁物を効果的に除去しうる排水
の中水化処理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for treating wastewater, and more particularly, to a method and apparatus for treating wastewater, which can effectively remove organic matter, ammonia nitrogen, and suspended solids contained in wastewater. The present invention relates to a chemical treatment method and apparatus.

最近水の給水制限と同時に排水規制が強化さ
れ、大都市を中心として今後ますます水の再利用
が余儀なくされつつある。このような状況下にあ
つて、都市の新設ビルデイング地域あるいは団地
等においては、集中浄化施設及び再循環利用シス
テムが採用される傾向にある。これらのシステム
は、従来の上下水道システムに対して中水道ある
いは中水化処理システムと呼ばれている。このシ
ステムは近年急速に普及しかけている段階であ
り、従来の技術を組み合わせることが多く、特徴
を有するシステムはみられない。
Recently, along with restrictions on water supplies, wastewater regulations have been tightened, and water reuse is becoming increasingly necessary, especially in large cities. Under these circumstances, there is a tendency for centralized purification facilities and recirculation systems to be adopted in newly constructed urban building areas or housing complexes. These systems are called gray water or gray water treatment systems in contrast to conventional water and sewage systems. This system is rapidly becoming popular in recent years, and is often combined with conventional techniques, and no system with unique characteristics has been found.

これまでに提案されているシステムを大別する
と、生物化学的処理と物理化学的処理を中心に構
成されているものが多い。前者は、従来の下水処
理に採用されている活性汚泥法及び散水床法を
中心に沈降分離及び(又は)砂過法を結合させ
たものである。後者は、凝集分離法及び精密過
法を中心にして、砂過法更には活性炭吸着法を
水質の要求基準に応じて採用している。又、両者
ともに、塩素あるいはオゾンによる殺菌操作も付
随させている。そして、これらの方法は固定され
たものではなく、用途、水質及び処理規模等に応
じてその都度対応させている。
Broadly speaking, the systems proposed so far are mainly composed of biochemical processing and physicochemical processing. The former is a combination of the activated sludge method and the sprinkled bed method, which are used in conventional sewage treatment, and the sedimentation separation and/or sand filter method. The latter mainly uses a coagulation separation method and a precision filtration method, and also employs a sand filtration method and an activated carbon adsorption method depending on water quality requirements. Additionally, both methods involve sterilization using chlorine or ozone. These methods are not fixed, but are adjusted each time depending on the application, water quality, treatment scale, etc.

一方、中水化処理システムで要求される機能
は、設置面積が得られているので、固−液分離性
を良くして処理速度を速めること、運転保守等が
容易なこと及び防食、スケール防止等の水質管理
が十分であること、そして更には、臭気対策及び
殺菌処理あるいはスラツジの低減を図れること等
である。そして、一般的な水質の基準として、全
固形分を10ppm以下、COD成分を20ppm以下そ
して殺菌の指標としての大腸菌群数を200個/ml
以下にして、その用途は主にトイレの水洗用水あ
るいは空調用水としている。これらの要求機能に
対して従来の生物化学的処理法では設置面積及び
処理速度に難点があること、又物理化学的処理法
では有機物の処理すなわちCOD成分(以下有機
物という)の除去に有効でかつ安価な方法がない
等の問題点を有している。
On the other hand, the functions required for a gray water treatment system are that since the installation space is available, it is possible to improve solid-liquid separation and increase the processing speed, easy operation and maintenance, corrosion prevention, and scale prevention. The water quality must be managed sufficiently, and furthermore, odor control and sterilization treatment or sludge reduction can be achieved. As general water quality standards, the total solid content is 10 ppm or less, the COD component is 20 ppm or less, and the number of coliform bacteria is 200 cells/ml as an indicator of sterilization.
In the following, its main uses are water for flushing toilets and water for air conditioning. In response to these required functions, conventional biochemical treatment methods have drawbacks in terms of installation space and processing speed, and physicochemical treatment methods are effective in treating organic matter, that is, removing COD components (hereinafter referred to as organic matter). There are problems such as the lack of an inexpensive method.

本発明はこのような現状に鑑みてなされたもの
であり、その目的は、従来技術の欠点を解消し、
処理速度を高めて有機物、懸濁固形物及びアンモ
ニウムイオンを効果的に除去しうる排水の中水化
処理方法及び装置を提供することである。
The present invention has been made in view of the current situation, and its purpose is to eliminate the drawbacks of the prior art,
It is an object of the present invention to provide a method and apparatus for water treatment of wastewater, which can effectively remove organic matter, suspended solids, and ammonium ions by increasing the treatment speed.

本発明は、上記の目的を達成するため次の構成
をとるものである。すなわち、本発明の排水の中
水化処理方法は、排水を、(a)上部の懸濁物浮上帯
域及び下部の電解帯域から成り、(b)浮上帯域には
整流板、浮上した懸濁物の溢流堰及び排水取入口
を設け、(c)電解帯域には少なくとも一対の陽極及
び陰極の支持電極及び支持電極内に充填された粒
状活性炭層を設けた処理槽に通し、かつ同時に直
流電流を通電して粒状活性炭を分極し、発生する
微細な気泡により排水中の懸濁物を浮上させて溢
流除去すると共に、分極された粒状活性炭にアン
モニウムイオンを固定しかつ有機物を吸着除去す
るこことを特徴とするものであり、又、本発明の
排水の中水化処理装置は、(a)処理槽が上部の懸濁
物浮上帯域及び下部の電解帯域から成り、(b)浮上
帯域には整流板、浮上した懸濁物の溢流堰及び排
水取入口を設け、(c)電解帯域には少なくとも一対
の陽極及び陰極の支持電極及び支持電極内に充填
された粒状活性炭層を設けたことを特徴とするも
のである。
The present invention has the following configuration to achieve the above object. That is, the wastewater treatment method of the present invention consists of (a) an upper suspended matter flotation zone and a lower electrolysis zone, and (b) a rectifier plate and a floated suspended matter zone in the flotation zone. (c) The electrolytic zone is provided with an overflow weir and a waste water intake; Electricity is applied to polarize the granular activated carbon, and the fine bubbles generated float suspended matter in the wastewater and remove it by overflow. At the same time, ammonium ions are fixed on the polarized granular activated carbon and organic matter is adsorbed and removed. Furthermore, the waste water treatment apparatus of the present invention is characterized in that (a) the treatment tank is composed of an upper suspension flotation zone and a lower electrolysis zone, and (b) the flotation zone is (c) the electrolytic zone is provided with at least one pair of anode and cathode supporting electrodes and a layer of granular activated carbon filled in the supporting electrode; It is characterized by this.

本発明において、処理槽下部の電解帯域に充填
された粒状活性炭層は少なくとも一対の陽極及び
陰極の支持電極間にあり、支持電極間に直流電源
から比較的高い電圧を印加することにより粒状活
性炭の各粒子は分極し、分極した各粒子の表面か
ら水電解による水素と酸素の微細な気泡(径約50
〜200μm)が発生する。排水中の懸濁物(着色
物も含む)はこの気泡の上昇力及び付着力により
浮上し、溢流により系外へ排出除去される。
In the present invention, the granular activated carbon layer filled in the electrolytic zone at the bottom of the treatment tank is located between at least a pair of anode and cathode supporting electrodes, and the granular activated carbon layer is formed by applying a relatively high voltage from a DC power source between the supporting electrodes. Each particle is polarized, and from the surface of each polarized particle, fine bubbles of hydrogen and oxygen (about 50 mm in diameter) are generated by water electrolysis.
~200μm) occurs. Suspended matter (including colored matter) in the wastewater floats up due to the upward force and adhesive force of the bubbles, and is discharged and removed from the system by overflow.

一方、分極帯電した粒状活性炭の粒子間に、懸
濁物を除去した排水を通過させることにより、排
水中に含まれる有機物は活性化状態に保持された
粒状活性炭によつて効果的に吸着され、又、発生
する酸素により酸化分解され、更に又、排水中に
含まれるアンモニウムイオン及び硝酸イオン等の
窒素分は、前記活性化状態に保持された粒状活性
炭の触媒作用及び静電的中和作用により収着固定
され、印加電圧が高い場合には電解酸化により窒
素ガスにまで分解される。
On the other hand, by passing the wastewater from which suspended matter has been removed between particles of polarized and charged granular activated carbon, the organic matter contained in the wastewater is effectively adsorbed by the granular activated carbon maintained in an activated state. Furthermore, nitrogen content such as ammonium ions and nitrate ions contained in the wastewater is oxidized and decomposed by the generated oxygen, and nitrogen content such as ammonium ions and nitrate ions contained in the wastewater is reduced by the catalytic action and electrostatic neutralization action of the granular activated carbon maintained in the activated state. It is sorbed and fixed, and when the applied voltage is high, it is decomposed into nitrogen gas by electrolytic oxidation.

本発明によれば、上記の作用により、排水中の
懸濁物、有機物及びアンモニウムイオン等の窒素
分を同時に効率良く除去できるが、排水中に塩素
イオンが約100ppm以上溶存している場合には
(下水中には通常60〜100ppm程度含まれる)、粒
状活性炭の粒子の陽極部で放電して発生する塩素
により(粒状活性炭は塩素イオンの放電に対する
過電圧が小さい)、大腸菌のような細菌を滅菌す
ることができる。
According to the present invention, due to the above-mentioned action, suspended matter, organic matter, and nitrogen content such as ammonium ions in wastewater can be efficiently removed at the same time. (Sewage usually contains about 60 to 100 ppm), and the chlorine generated by discharging at the anode part of granular activated carbon particles (granular activated carbon has a small overvoltage against chlorine ion discharge) sterilizes bacteria such as E. coli. can do.

このような機能は、粒状活性炭の分極により発
揮されるものと考えられるが、この分極作用を利
用するため、本発明においては、粒径約5mm以上
の粒状活性炭を使用する。又、粒状活性炭の形状
は、特に限定されないが、比較的球状に近いもの
が一般に効果がある。
It is thought that such a function is exerted by the polarization of granular activated carbon, and in order to utilize this polarization effect, granular activated carbon having a particle size of about 5 mm or more is used in the present invention. Further, the shape of the granular activated carbon is not particularly limited, but a relatively spherical shape is generally effective.

本発明においては、排水中の懸濁物の浮上を更
に効果的にするため、水質に応じて排水中に凝集
剤を添加することができる。凝集剤の種類は特に
限定されず、一般に使用される硫酸アルミニウム
(Al2SO4)等でよいが、添加量が多過ぎると電圧
が低下するおそれがあるのでアルミニウムイオン
(Al+++)として2〜5ppm程度の添加が適当であ
り、これにより懸濁物は凝集してフロツク化し浮
上が容易となる。なお、凝集効果を高めるため排
水のPHは6〜8とすることが望ましい。
In the present invention, a flocculant can be added to the waste water depending on the water quality in order to make the floating of suspended matter in the waste water more effective. The type of flocculant is not particularly limited, and commonly used aluminum sulfate (Al 2 SO 4 ) may be used, but if the amount added is too large, the voltage may drop, so aluminum ions (Al +++ ) may be used. It is appropriate to add about 2 to 5 ppm, which causes the suspended matter to aggregate and become flocs, making it easier to float. In addition, in order to enhance the coagulation effect, it is desirable that the pH of the wastewater is 6 to 8.

懸濁物の大部分は、発生する微細な気泡に伴な
われて処理槽を上昇浮上し溢流により除去排出さ
れるが、長時間に亘る排水処理により懸濁物の一
部は粒状活性炭を充填した層に堆積される。これ
に対処し、本発明においては、中水化処理の終了
した処理水を循環させ粒状活性炭を充填した層に
通すことにより堆積した懸濁物を除去することが
できる。
Most of the suspended matter floats up the treatment tank along with the fine air bubbles that are generated and is removed and discharged by overflow, but some of the suspended matter becomes granular activated carbon due to the long-term wastewater treatment. Deposited in a packed layer. To deal with this, in the present invention, the accumulated suspended matter can be removed by circulating the treated water that has undergone the gray water treatment and passing it through a layer filled with granular activated carbon.

本発明の装置については、後に図面を参照して
説明するが、上部浮上帯域及び下部電解帯域を有
する処理槽により構成され、排水取入口、処理水
(中水)排出口及び処理水循環配管を備えてい
る。そして、排水取入口は、特に浮上帯域中に設
けられ、排水取入管の先端に取付けた分配管から
流入する排水は添加された凝集剤とよく混合され
懸濁物のフロツク化が良好に行われる。浮上帯域
には、排水取入管の先端に取付けた分配管からの
排水流入部の両側に整流板を設けて気泡及び液の
流動状態を良くする。又、処理槽の上辺には溢流
堰が設けられ、これを経て溢流水と共に懸濁物が
排出される。処理水の循環は、循環ポンプにより
循環配管を通して行なわれ、処理水は粒状活性炭
を充填した層の上部から導入されて堆積した懸濁
物を除去する。
The apparatus of the present invention will be explained later with reference to the drawings, but it is composed of a treatment tank having an upper flotation zone and a lower electrolysis zone, and is equipped with a wastewater intake, a treated water (gray water) outlet, and treated water circulation piping. ing. The wastewater intake port is especially provided in the flotation zone, and the wastewater flowing in from the distribution pipe attached to the tip of the wastewater intake pipe is well mixed with the added flocculant, and the suspended matter is flocculated well. . In the flotation zone, rectifier plates are provided on both sides of the drainage inflow section from the distribution pipe attached to the tip of the drainage intake pipe to improve the flow of bubbles and liquid. Further, an overflow weir is provided on the upper side of the treatment tank, through which the suspended matter is discharged together with the overflow water. Circulation of the treated water is carried out through circulation piping by a circulation pump, and the treated water is introduced from the top of the bed filled with granular activated carbon to remove accumulated suspended matter.

本発明の装置は、構造が簡単でかつ処理時間が
短いので、排水の負荷変動に対して通電量の調節
だけで対応できる。
Since the device of the present invention has a simple structure and a short processing time, it can respond to changes in wastewater load by simply adjusting the amount of electricity.

次に、本発明の一具体例を図面により詳細に説
明する。第1図は本発明の装置の一具体例を示し
た断面概略図であり、1は浮上帯域、2は電解帯
域、3は排水取入口、4は凝集剤調整槽、5は分
配管、6は気泡、7は溢流水、8は溢流水排出
管、9は支持電極、10は粒状活性炭、11は直
流電源、12は処理水排出口、13は循環ポン
プ、14は循環配管、15はベント、16は整流
板を表わす。排水は、途中で凝集剤調整槽4から
凝集剤の添加を受け、浮上帯域の中に設けられた
分配管5を有する排水取入口3から流入する。流
入された排水は、凝集剤と混合されその中に含ま
れる懸濁物をフロツク化し、このフロツクは、処
理槽下部の電解帯域2から上昇する微細な気泡6
に伴なわれて浮上し、溢流水7と共に溢流水排出
管8から排出される。排水取入口の各両側には整
流板16を設けて、排水及び気泡の流動状態を良
くしてある。懸濁物の除去された排水は電解帯域
2へ流入する。電解帯域2には、支持電極9の間
に粒状活性炭10が充填されており、処理槽外部
の直流電源11から電圧を印加することにより、
充填された粒状活性炭10の各粒子を分極させる
とともに活性化状態に保持する。分極された粒子
の表面からは、水の電気分解により水素と酸素か
ら成る径50〜100μm程度の微細な気泡6を発生
すると同時に、有機物及びアンモニウムイオン等
を吸蔵により固定する。又、この活性炭の粒子は
前記したように塩素イオンの放電に対する過電圧
が小さいので、容易に塩素ガスを発生させて排水
の殺菌に役立つ。このように処理された処理水は
中水として排出口12から排出される。又、電解
帯域2の粒状活性炭10の表面に、浮上分離しき
れなかつた懸濁物又はフロツクが堆積して電解効
率が低下する場合には、循環ポンプ13により循
環配管14を通して処理水を強制的に電解帯域に
循環させて堆積物を除去する。又、電解時に発生
したガスは水素を含有しているので、危険防止の
点から処理槽は密閉型としベント15から放散さ
せるようにする。
Next, a specific example of the present invention will be explained in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a specific example of the device of the present invention, in which 1 is a flotation zone, 2 is an electrolytic zone, 3 is a wastewater intake port, 4 is a flocculant adjustment tank, 5 is a distribution pipe, and 6 are bubbles, 7 is overflow water, 8 is overflow water discharge pipe, 9 is support electrode, 10 is granular activated carbon, 11 is DC power supply, 12 is treated water outlet, 13 is circulation pump, 14 is circulation piping, 15 is vent , 16 represents a rectifying plate. The wastewater receives a coagulant added from the coagulant adjustment tank 4 on the way, and flows into the wastewater from the wastewater intake port 3 having a distribution pipe 5 provided in the flotation zone. The inflowing wastewater is mixed with a coagulant and the suspended matter contained therein becomes a floc, and this floc is made up of fine air bubbles 6 rising from the electrolytic zone 2 at the bottom of the treatment tank.
It floats up along with the overflow water and is discharged from the overflow water discharge pipe 8 together with the overflow water 7. A rectifying plate 16 is provided on each side of the drainage inlet to improve the fluidity of the drainage and air bubbles. The wastewater from which suspended matter has been removed flows into the electrolysis zone 2. The electrolysis zone 2 is filled with granular activated carbon 10 between supporting electrodes 9, and by applying a voltage from a DC power source 11 outside the treatment tank,
Each particle of the filled granular activated carbon 10 is polarized and maintained in an activated state. From the surface of the polarized particles, fine bubbles 6 of about 50 to 100 μm in diameter made of hydrogen and oxygen are generated by electrolysis of water, and at the same time, organic substances, ammonium ions, etc. are fixed by occlusion. In addition, as described above, the activated carbon particles have a small overvoltage for chlorine ion discharge, so they easily generate chlorine gas and are useful for sterilizing wastewater. The treated water thus treated is discharged from the outlet 12 as gray water. In addition, if suspended matter or flocs that cannot be floated and separated accumulate on the surface of the granular activated carbon 10 in the electrolytic zone 2 and the electrolytic efficiency decreases, the treated water is forcibly passed through the circulation pipe 14 by the circulation pump 13. is circulated through the electrolytic zone to remove deposits. Furthermore, since the gas generated during electrolysis contains hydrogen, the treatment tank is of a closed type and is vented through the vent 15 to prevent danger.

次に、本発明及びその効果を実施例により説明
するが、本発明はこれによりなんら限定されるも
のではない。
Next, the present invention and its effects will be explained with reference to Examples, but the present invention is not limited thereto in any way.

実施例 本実施例は第2図に示す装置により実験を行な
つたものである。第2図はこの装置の断面概略図
であり、1は浮上帯域、2は電解帯域、3は排水
取入口、9は支持電極(フエライト極板)、10
は粒状活性炭、12は処理水排出口、16は整流
板を示す。
Example In this example, an experiment was conducted using the apparatus shown in FIG. FIG. 2 is a schematic cross-sectional view of this device, in which 1 is a flotation zone, 2 is an electrolytic zone, 3 is a drainage inlet, 9 is a support electrode (ferrite plate), 10
12 indicates a treated water outlet, and 16 indicates a rectifying plate.

装置(処理槽)は縦70cm、横15cm、巾5cmの直
方体でできており、装置の上部は浮上帯域1で、
浮上帯域1中の排水取入口3の両側には、液及び
気泡の流動状態を良くするための整流板16を設
けた。装置の下部には、縦20cm、横15cmの支持電
極(フエライト極板)9を4cmの間隔で設け、そ
の間に500gの球状活性炭10(粒径8cm)を充
填した。下水処理場の流入排水を供試水として用
いた。実験条件は、電解気泡の発生量及び球状活
性炭10の充填層間での通電量が流量に関係する
ので、流量を100ml/分に調整し、電解帯域2に
おける滞流時間を40分とし、0〜3A(電流密度
0.3〜1.0A/dm2)の範囲に電流を変化させて実験
を行なつた。排水の処理性能をみるために、浮上
帯域1及び処理水排出口12における試料(S1
及びS2)を採取し、懸濁物濃度(SS)、有機物の
指標として全酸素要求量(TOD)、全窒素濃度
(TN)、大腸菌群数、塩素イオン(Cl-)、残留塩
素(Cl2)、PH、電導度、色、臭気等を測定又は観
察した。なお、排水の性状は、SSが45ppm、
TODが180ppm、TNが20ppm、PHが6.8、Cl-
120ppm、大腸菌群数が約50000個/mlであり、
臭気があり着色したものであつた。
The device (processing tank) is made of a rectangular parallelepiped with a length of 70 cm, a width of 15 cm, and a width of 5 cm.The upper part of the device is the floating zone 1.
On both sides of the wastewater intake port 3 in the flotation zone 1, rectifying plates 16 were provided to improve the fluidity of liquid and bubbles. At the bottom of the device, supporting electrodes (ferrite plates) 9 measuring 20 cm long and 15 cm wide were provided at intervals of 4 cm, and 500 g of spherical activated carbon 10 (particle size 8 cm) was filled between them. Influent wastewater from a sewage treatment plant was used as test water. The experimental conditions were that the amount of electrolytic bubbles generated and the amount of current flowing between the packed beds of spherical activated carbon 10 are related to the flow rate, so the flow rate was adjusted to 100 ml/min, the residence time in the electrolytic zone 2 was 40 minutes, and the flow rate was 0 to 40 minutes. 3A (current density
Experiments were conducted by changing the current in the range of 0.3 to 1.0 A/dm 2 ). In order to examine the wastewater treatment performance, samples (S1
and S2), suspended solids concentration (SS), total oxygen demand (TOD) as an index of organic matter, total nitrogen concentration (TN), coliform count, chloride ion (Cl - ), residual chlorine (Cl 2 ), PH, conductivity, color, odor, etc. were measured or observed. The properties of the wastewater are as follows: SS is 45ppm.
TOD is 180ppm, TN is 20ppm, PH is 6.8, Cl -
120ppm, the number of coliform bacteria is approximately 50,000 pieces/ml,
It smelled and was colored.

電流変化によるSS、TN及びTOD値の変化の関
係を第3図のa、b及びcのグラフに示す。第3
図のグラフから明らかなように、通電量が増すに
つれてSSは急激に減少し、TOD及びTNも通電量
にほぼ比例して減少している。更に、浮上帯域1
(S1)においては、SSが殆んど除去されるのに対
応してTODもSSに依存する割合として約50%減
少している。更に又、大腸菌群は約1000個/ml程
度まで減少しており、塩素ガスによる殺菌効果が
確認され、又、臭気は殆んどなく着色のない処理
水が得られた。以上の結果から、本発明によれ
ば、下水処理場の流入排水から中水として十分な
水質の処理水が得られることがわかる。
The relationship between changes in SS, TN, and TOD values due to current changes is shown in graphs a, b, and c in FIG. 3. Third
As is clear from the graph in the figure, as the amount of current applied increases, SS decreases rapidly, and TOD and TN also decrease almost in proportion to the amount of current applied. Furthermore, levitation zone 1
In (S1), as SS is almost removed, TOD also decreases by about 50% as a proportion of its dependence on SS. Furthermore, the number of coliform bacteria was reduced to about 1000 cells/ml, confirming the sterilizing effect of chlorine gas, and treated water with almost no odor and no coloring was obtained. From the above results, it can be seen that according to the present invention, treated water of sufficient quality as gray water can be obtained from inflow wastewater of a sewage treatment plant.

以上述べたように、本発明は、オフイスビル等
の雑用水を処理して中水化する方法及び装置にお
いて活性炭充填層電解方法を利用し、同一装置内
で同時にかつ効果的に排水中の懸濁物、有機物及
びアンモニウムイオン等の窒素含有イオンを除去
することをを可能にし、更には排水中の大腸菌等
の殺菌も可能にしたものであり、その経済性及び
有用性は明らかである。
As described above, the present invention utilizes an activated carbon packed bed electrolysis method in a method and apparatus for treating miscellaneous water such as office buildings and turning it into gray water, thereby simultaneously and effectively removing suspended water from wastewater within the same apparatus. It makes it possible to remove turbid matter, organic matter, and nitrogen-containing ions such as ammonium ions, and also makes it possible to sterilize E. coli in wastewater, and its economic efficiency and usefulness are obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一具体例を示した断面
概略図、第2図は本発明の実施例における実験装
置を示した断面概略図、第3図は本発明の実施例
における電流変化によるSS、TN及びTOD値の変
化の関係を示したグラフである。 1……浮上帯域、2……電解帯域、3……排水
取入口、4……凝集剤調整槽、5……分配管、6
……気泡、7……溢流水、8……溢流水排出管、
9……支持電極、10……粒状活性炭、11……
直流電源、12……処理水排出口、13……循環
ポンプ、14……循環配管、15……ベント、1
6……整流板。
Fig. 1 is a schematic cross-sectional view showing a specific example of the device of the present invention, Fig. 2 is a schematic cross-sectional view showing an experimental device in an embodiment of the present invention, and Fig. 3 is a current change in the embodiment of the present invention. It is a graph showing the relationship between changes in SS, TN, and TOD values. 1...flotation zone, 2...electrolysis zone, 3...waste water intake, 4...flocculant adjustment tank, 5...distribution pipe, 6
... Air bubbles, 7 ... Overflow water, 8 ... Overflow water discharge pipe,
9... Support electrode, 10... Granular activated carbon, 11...
DC power supply, 12... Treated water outlet, 13... Circulation pump, 14... Circulation piping, 15... Vent, 1
6... Rectifier plate.

Claims (1)

【特許請求の範囲】 1 排水を、(a)上部の懸濁物浮上帯域及び下部の
電解帯域から成り、(b)浮上帯域には整流板、浮上
した懸濁物の溢流堰及び排水取入口を設け、(c)電
解帯域には少なくとも一対の陽極及び陰極の支持
電極及び支持電極内に充填された粒状活性炭層を
設けた処理槽に通し、かつ同時に直流電流を通電
して粒状活性炭を分極し、発生する微細な気泡に
より排水中の懸濁物を浮上させて溢流除去すると
共に、分極された粒状活性炭にアンモニウムイオ
ンを固定しかつ有機物を吸着除去することを特徴
とする排水の中水化処理方法。 2 粒状活性炭の粒径が約5mm以上である特許請
求の範囲第1項記載の排水の中水化処理方法。 3 排水に凝集剤を添加する特許請求の範囲第1
項又は第2項記載の排水の中水化処理方法。 4 中水化処理水を粒状活性炭を充填した層に循
環しその層内に堆積した懸濁物を除去する特許請
求の範囲第1項ないし第3項のいずれかに記載の
排水の中水化処理方法。 5 (a)処理槽が上部の懸濁物浮上帯域及び下部の
電解帯域から成り、(b)浮上帯域には整流板、浮上
した懸濁物の溢流堰及び排水取入口を設け、(c)電
解帯域には少なくとも一対の陽極及び陰極の支持
電極及び支持電極内に充填された粒状活性炭層を
設けたことを特徴とする排水の中水化処理装置。 6 排水取入口を整流板内に設けた特許請求の範
囲第5項記載の排水の中水化処理装置。 7 排水取入口の先端に分配管を設けた特許請求
の範囲第5項又は第6項記載の排水の中水化処理
装置。 8 粒状活性炭を充填した層の下部に処理水排出
口を設けた特許請求の範囲第5項ないし第6項の
いずれかに記載の排水の中水化処理装置。 9 粒状活性炭を充填した層の上部に中水化処理
水を循環供給する分配管を設けた特許請求の範囲
第5項ないし第8項のいずれかに記載の排水の中
水化処理装置。
[Claims] 1. Drainage consists of (a) an upper suspension flotation zone and a lower electrolytic zone, (b) the flotation zone includes a rectifying plate, an overflow weir for the floated suspension, and a drainage intake. (c) the electrolytic zone is passed through a treatment tank having at least one pair of anode and cathode supporting electrodes and a layer of granular activated carbon filled in the supporting electrode, and at the same time a direct current is applied to form the granular activated carbon; In wastewater, which is polarized and generated by fine bubbles, suspended matter in wastewater is floated and removed by overflowing, ammonium ions are fixed on polarized granular activated carbon, and organic matter is adsorbed and removed. Water treatment method. 2. The method for gray water treatment of wastewater according to claim 1, wherein the particle size of the granular activated carbon is about 5 mm or more. 3 Claim 1 which adds a flocculant to wastewater
The method for turning wastewater into water as described in item 1 or 2. 4. The gray water treatment according to any one of claims 1 to 3, wherein the gray water treated water is circulated through a layer filled with granular activated carbon and suspended matter accumulated in the layer is removed. Processing method. 5 (a) The treatment tank consists of an upper suspension flotation zone and a lower electrolysis zone, (b) the flotation zone is equipped with a rectifying plate, an overflow weir for the floated suspension, and a wastewater intake; (c) ) A gray water treatment device for wastewater, characterized in that an electrolytic zone is provided with at least a pair of anode and cathode supporting electrodes and a granular activated carbon layer filled in the supporting electrodes. 6. The waste water gray water treatment device according to claim 5, wherein the waste water intake port is provided in the rectifying plate. 7. The waste water gray water treatment device according to claim 5 or 6, wherein a distribution pipe is provided at the tip of the waste water intake port. 8. The waste water gray water treatment device according to any one of claims 5 to 6, wherein a treated water outlet is provided at the bottom of the layer filled with granular activated carbon. 9. The waste water gray water treatment apparatus according to any one of claims 5 to 8, wherein a distribution pipe for circulating and supplying gray water treated water is provided above the layer filled with granular activated carbon.
JP5721178A 1978-05-16 1978-05-16 Method and device for neutralizing water Granted JPS54150845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5721178A JPS54150845A (en) 1978-05-16 1978-05-16 Method and device for neutralizing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5721178A JPS54150845A (en) 1978-05-16 1978-05-16 Method and device for neutralizing water

Publications (2)

Publication Number Publication Date
JPS54150845A JPS54150845A (en) 1979-11-27
JPS6147593B2 true JPS6147593B2 (en) 1986-10-20

Family

ID=13049173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5721178A Granted JPS54150845A (en) 1978-05-16 1978-05-16 Method and device for neutralizing water

Country Status (1)

Country Link
JP (1) JPS54150845A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354023B (en) * 2021-08-10 2021-12-07 东营昱辰技术有限公司 Oil field fatlute mud effluent treatment plant

Also Published As

Publication number Publication date
JPS54150845A (en) 1979-11-27

Similar Documents

Publication Publication Date Title
US4294697A (en) Apparatus for treatment of sewage
US3523891A (en) Electrolytic sewage treatment system and process
KR100953085B1 (en) Sewage water and waste water treating system using capacitive deionization
US3756933A (en) Method of purifying sewage efluent and apparatus therefor
US6916427B2 (en) Electrochemical method for treating wastewater
US3846300A (en) Water purification
CN110422913A (en) A kind of electric floating combination electric flocculation sewage treatment process and its processing equipment
CN107337301A (en) A kind of method of the electric Fenton processing waste water of additional hydrogen peroxide
KR101221565B1 (en) Electrolytic treatment of waste water
RU2687416C1 (en) Method for electrochemical cleaning of domestic, drinking and industrial water
EP0668244A1 (en) Effluent treatment involving electroflotation
JP2003093807A (en) Apparatus for circularly using vehicle washing wastewater
CN214088061U (en) Zinc-containing wastewater recycling treatment system
JPS6147593B2 (en)
JP2006224064A (en) Wastewater purification system
JP3883645B2 (en) Dephosphorization processing equipment
KR20200125217A (en) Water treatment device comprising plasma underwater discharge module
CN111573972A (en) Grinding ultrasonic cleaning wastewater zero-discharge recycling or standard-reaching treatment system and process
JP3802185B2 (en) Sewage treatment equipment
KR20000013756A (en) Livestock wastewater treatment method using combination of membrane separation type activated sludge method and electrolytic method
JPH07155767A (en) Method for electrolytically purifying water and device therefor
CN111320311B (en) Integrated concentric horizontal pipe electrochemical precipitation adsorption sewage treatment system
KR200229123Y1 (en) Electrolytic purification system
KR102536237B1 (en) Water treatment system
JPH04334593A (en) Advanced water treatment system and method for starting up the same