JPS6147578A - Doppler radar equipment - Google Patents
Doppler radar equipmentInfo
- Publication number
- JPS6147578A JPS6147578A JP16827284A JP16827284A JPS6147578A JP S6147578 A JPS6147578 A JP S6147578A JP 16827284 A JP16827284 A JP 16827284A JP 16827284 A JP16827284 A JP 16827284A JP S6147578 A JPS6147578 A JP S6147578A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- pulse
- output
- time
- doppler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/64—Velocity measuring systems using range gates
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電波のドツプラー効果を利用して車輌等の速
度を測定するドツプラ−効果の中で、パルス変調波を用
いることによって一定距離以内の対象物のみを測定する
ようにしたドツプラレーダー装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention utilizes the Doppler effect of radio waves to measure the speed of vehicles, etc., and uses pulse modulated waves to measure the speed of objects within a certain distance. This relates to a Doppler radar device that measures only objects.
従来例の構成とその問題点
従来のパルス変調方式は例えば第1図に示すような構成
となっていた。以下に第2図に示す波形図を用いてその
動作を説明する。Conventional configuration and its problems A conventional pulse modulation system has a configuration as shown in FIG. 1, for example. The operation will be explained below using the waveform diagram shown in FIG.
第1図において1は高周波発振器、2はパルス変調回路
、3は分岐器、4はサーキュレークー、5は送受信兼用
アンテナ(空中線)、6はホモダイン検波器、7はロー
パスフィルり、8はクロック発生回路、9はパルス発生
回路である。また八〜eは各部の信号であって第2図に
その波形の例を示しである。In Fig. 1, 1 is a high frequency oscillator, 2 is a pulse modulation circuit, 3 is a brancher, 4 is a circular loop, 5 is a transmitting/receiving antenna (antenna), 6 is a homodyne detector, 7 is a low-pass filter, and 8 is a clock. The generating circuit 9 is a pulse generating circuit. Further, 8 to 8e are signals of various parts, and an example of their waveforms is shown in FIG.
次に上記従来例の動作について説明する。高周波発振器
1で発生した高周波(例えばマイクロ波あるいはミリ波
等)の連続信づ・は、パルス変調回路2でtlの間だけ
出力され、その他の時間は5兆信号状態となり、これを
t4の周期で繰シ返す断続波とな乙。この断続波はサー
キュレータ4を通してアンテナ5より送出され、測定対
象物で反射して再びアンテナで受信される。この受信信
号は測定対象物の速度に比例したドツプラー偏移を受け
ているので、ホモダイン検波器6で分岐器3で取り出し
た送出信号の一部と混合されると、そのドツプラー成分
が信号として出力される。このときアンテナと測定対象
物の距離をR1電波の速度をCとすると受信信号の包絡
は送出信号の包絡緑肥ホモダイン検波器の出力は送出波
と受信波が重なる期間t3(tx=t+ tl)の間
だけ出力され、これをローパスフィルタアを通すことに
よってドツプラ信号eが取シ出される。したがってアン
テナと測定対象物の距離が大きくなると送出波と受信波
の包路線が重ならなくなるので、測定可能な距離の最大
値を限定することが出来る。この測定えることができる
。Next, the operation of the above conventional example will be explained. Continuous transmission of high frequencies (e.g. microwaves or millimeter waves) generated by the high frequency oscillator 1 is outputted by the pulse modulation circuit 2 only during the period tl, and the rest of the time is in the 5 trillion signal state, which is transmitted at the period of t4. It is an intermittent wave that repeats. This intermittent wave is transmitted from the antenna 5 through the circulator 4, reflected by the object to be measured, and received by the antenna again. This received signal is subjected to a Doppler shift proportional to the speed of the object to be measured, so when it is mixed with a part of the transmitted signal extracted by the splitter 3 in the homodyne detector 6, the Doppler component is output as a signal. be done. At this time, if the distance between the antenna and the object to be measured is R1 and the speed of the radio wave is C, the envelope of the received signal is the envelope of the transmitted signal. The Doppler signal e is extracted by passing it through a low-pass filter. Therefore, as the distance between the antenna and the object to be measured increases, the envelope lines of the transmitted wave and the received wave no longer overlap, so it is possible to limit the maximum value of the measurable distance. This measurement can be done.
しかしながら上記従来例では、tl 測定限界距IC
Rmをlトさくしようとすると、パフレスの巾t1も小
さくなるためパルス変調回路の製作が困難で高価となる
。またパルスの繰シ返し周期を短かくすると変調波の占
有帯域中が広くなるので、周期t4 もあまり短かく
は出来ず、周期t4に対するドツプラー信号が実際に検
出される時間t5の比率が小さくなり、結局取り出され
るドツプラ信号のエネルギーが少なくなって信号のS/
Nが連続波によるドツプラレーダーに較べて非常に悪く
なる。また必要なS/Nを確保するためにはt5がある
程度以上の巾でなければならないが、受信レベルの大き
さによって、この時間巾の大きさが変わってしまう。つ
まり測定対象物が大きければ測定に必要な時間巾t5は
小さくて済み、測定対象物が小さければ受信信号の小さ
な分だけ時間巾t5が大きくなければ必要なS/Nが得
られないことになる。したがって測定限界距離は、上記
計算値より実際には短かくなるだけでなく、測定対象物
の大きさによってバラツキを生じるという欠点があった
。However, in the above conventional example, tl measurement limit distance IC
If an attempt is made to reduce Rm by l, the width t1 of the puffless will also become smaller, making it difficult and expensive to manufacture the pulse modulation circuit. Also, if the pulse repetition period is shortened, the occupied band of the modulated wave becomes wider, so the period t4 cannot be made too short, and the ratio of the time t5 during which the Doppler signal is actually detected to the period t4 becomes small. , the energy of the extracted Doppler signal eventually decreases and the signal's S/
N is much worse than that of continuous wave Doppler radar. Further, in order to secure the necessary S/N ratio, t5 must have a certain width or more, but the size of this time width changes depending on the magnitude of the reception level. In other words, if the object to be measured is large, the time width t5 required for measurement will be small, and if the object to be measured is small, the required S/N will not be obtained unless the time width t5 is increased by the small size of the received signal. . Therefore, the measurement limit distance is not only actually shorter than the above-mentioned calculated value, but also has the disadvantage that it varies depending on the size of the object to be measured.
発明の目的
本発明は、上記従来例の欠点を除去するものであシ、S
/Nの良いドツプラ信号が得られ、測定対象物の大きさ
による測定限界距離のバラツキの少ないドツプラレーダ
ー装置を実現することを目的とするものである。OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of the above-mentioned conventional examples.
It is an object of the present invention to realize a Doppler radar device that can obtain a Doppler signal with a good /N and has little variation in measurement limit distance depending on the size of an object to be measured.
発明の構成
本発明は上記目的を達成するために、測定対象物との距
離が測定限界距離を越えているか否かの判定は送出信号
パルスの立ち上り時刻の一定時刻後のドツプラ信号の有
無で行ない、ドツプラ信号とによって、送出信号のパル
レス巾を広くすることが可能となり、S/Nが向上する
とともに、距離限界の検出を一定の短い時間巾でサンプ
リングした電圧レベルで判定出来るので、測定対象物の
大きさによる測定限界距離のバラツキを小さくなる効果
を得るものである。Structure of the Invention In order to achieve the above object, the present invention determines whether the distance to the object to be measured exceeds the measurement limit distance based on the presence or absence of a Doppler signal after a certain time after the rising time of the sending signal pulse. , Doppler signals make it possible to widen the pulse response width of the transmitted signal, improving the S/N ratio, and detecting the distance limit using the voltage level sampled over a fixed short time span. This has the effect of reducing the variation in the measurement limit distance due to the size of the distance.
実施例の説明 以下に本発明の実施例を図によって説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.
第3図は本発明の一実施例の(’ilj成を示すもので
あって、1〜9は第1図の従来例と同じで1.10はパ
ルス発生回路9の立ち上り時間より一定時到達れて細い
パルスを発生するサンプリングパルス発生回路、11は
サンプリング回路、12はサンプリング出力のレベルを
判定する判定回路、13はアナログスイッチである。ま
た、第4図は第3図における各部の信号波形を示す。FIG. 3 shows the ('ilj configuration) of one embodiment of the present invention, where 1 to 9 are the same as the conventional example shown in FIG. 11 is a sampling circuit, 12 is a determination circuit that determines the level of the sampling output, and 13 is an analog switch. Fig. 4 shows the signal waveforms of each part in Fig. 3. shows.
次に上記実施例の動作を説明する。高周波信号出力がパ
ルス変調回路2で変調されアンテナより送出され、測定
対象物からの反射信号がホモダイン検波器6に入力され
るのは第1図の従来例と同じであるが、ホモダイン検波
器6への局発信号入力が、高周波発信器1の出力分岐し
て取シ出した連続信号波であって、パlレス変調された
断続信号では無い点が、従来例と異なる。したがって、
ホモダイン検波出力は第4図C′に示すようにtlだけ
遅延はするが、送出信号パルレス巾t1の全中の間ドツ
プラ信号が得られる。このホモダイン検波出力はアナロ
グスイッチ回路13とサンプリング回路11に入力され
る。サンプリング回路11では送出パルスの立ち上り時
刻よυ時間t5だけ遅れた時刻に短い時間巾で入力信号
レベルの検出を行なう。この時間t5は測定限界距離を
Rmとすサンプリング出力は判定回路12でレベルの判
定を受け、その絶対値がノイズレベルよりは大きい値に
設定された基準レベル以上であるときに、次のサンプリ
ングパルスが立ち上る直前までアナログスイッチ13を
導通状態にするように慟ら〈。Next, the operation of the above embodiment will be explained. The high frequency signal output is modulated by the pulse modulation circuit 2 and sent from the antenna, and the reflected signal from the object to be measured is input to the homodyne detector 6, as in the conventional example shown in FIG. This differs from the conventional example in that the local signal input to the oscillator is a continuous signal wave extracted from the output branch of the high-frequency oscillator 1, and is not an intermittent pulse modulated signal. therefore,
Although the homodyne detection output is delayed by tl as shown in FIG. 4C', a Doppler signal is obtained during the entire pulse width t1 of the output signal. This homodyne detection output is input to the analog switch circuit 13 and the sampling circuit 11. The sampling circuit 11 detects the input signal level in a short time span at a time delayed by the time υ t5 from the rising time of the sending pulse. At this time t5, the measurement limit distance is Rm, and the sampling output undergoes a level judgment in the judgment circuit 12, and when the absolute value is equal to or higher than the reference level set to a value larger than the noise level, the next sampling pulse Make sure to keep the analog switch 13 conductive until just before the voltage rises.
アナログスイッチ13の出力はローバスフィルり7の出
力を通して取9出され、ドツプラ信号が得られる。この
ようにすると送出信号のパルス巾t1′は測定限界距離
Rmによっては限定されず、さらに遠方の反射によって
次のパルスに重なることが無いようにだけ注意すれば良
い。したがって従来例のtlに較べて1 、/は充分大
きくすることが出来る。またホモダイン検波出力はtl
の巾全体(t7= tt’+t2−ts t6)で取
シ出すことが出来るので、従来例に比して取シ出し得る
信号のエネルギーが非常に大きく、また測定限界距離付
近で部分にS/Nが落ちることも無く、むしろ距離が近
い時すなわちtlがtsより小さくなるほど検出し得る
時間巾t7が小さくなるが、距離が近いほど受信信号レ
ベルは大きくなるので、結果的にはS/Nが落ちること
が無く好都合である。The output of the analog switch 13 is taken out through the output of the low-pass filter 7, and a Doppler signal is obtained. In this way, the pulse width t1' of the transmitted signal is not limited by the measurement limit distance Rm, and it is only necessary to be careful not to overlap the next pulse due to reflection from a further distance. Therefore, 1,/ can be made sufficiently larger than tl in the conventional example. Also, the homodyne detection output is tl
Since the signal can be extracted over the entire width (t7 = tt' + t2 - ts t6), the energy of the signal that can be extracted is very large compared to the conventional example, and the S/ N does not drop; rather, when the distance is short, that is, the smaller tl is than ts, the detectable time width t7 becomes smaller, but the shorter the distance, the higher the received signal level becomes, so as a result, the S/N becomes lower. It is convenient because it does not fall off.
また距II:の判定そのものは一定の細いパルレス巾t
6の時間でサンプリングしたホモダイン検波出力電圧で
行なうので、測定対象物の大きさによって検出位置がず
れる恐れが少なくなる。さらに限界距離の設定はサンプ
リングパルスの遅延時間t5の設定によってのみ決まる
ので、高周波部分を変更すること無く測定限界距離の変
更が出来る。Also, the judgment itself of distance II: is a constant thin pulse width t.
Since the detection is performed using the homodyne detection output voltage sampled at the time 6, there is less possibility that the detection position will shift depending on the size of the object to be measured. Furthermore, since the setting of the limit distance is determined only by the setting of the delay time t5 of the sampling pulse, the measurement limit distance can be changed without changing the high frequency part.
発明の効果
本発明は上記のような溝成であり、小さな高周波発信出
力でS/Nの良いドツプラレーダー装置を作ることが出
来るのでコストが安くなシ、また測定対象物の大きさに
よる測定限界距離のバラツキが小さくなるので装置の信
頼性が上が9、さらには高周波部分に無関係に距離設定
が出来るので測定限界距離可変型のドツプラレーダーを
低コストで実現することが出来る。Effects of the Invention The present invention has the structure described above, and it is possible to manufacture a Doppler radar device with a good S/N ratio with a small high-frequency transmission output, so the cost is low. Since the variation in the limit distance is reduced, the reliability of the device is improved9.Furthermore, since the distance can be set regardless of the high frequency part, a Doppler radar with a variable measurement limit distance can be realized at low cost.
第1図はパルス変調方式のドツプラレーダーの従来例の
ブロック図、第2図はその各部の信号波形図、第3図は
本発明の一実施例におけるドツプラレーダー装置のブロ
ック図、第4図はその各部の信号波形図である。
2・・・・・・変調回路、5・川・・アンテナ、6・・
・・・・ホモダイン検波器、11・・・・・・サンプリ
ング回路、アナログスイッチ。
代即人の氏名 弁理士 中 尾 敏 男 はが1名第2
図
第3図
、ダFIG. 1 is a block diagram of a conventional example of a pulse modulation Doppler radar, FIG. 2 is a signal waveform diagram of each part thereof, FIG. 3 is a block diagram of a Doppler radar device according to an embodiment of the present invention, and FIG. The figure is a signal waveform diagram of each part. 2... Modulation circuit, 5... Antenna, 6...
...homodyne detector, 11...sampling circuit, analog switch. Name of representative Patent attorney Toshi Nakao Haga 1 person 2nd person
Figure 3, da
Claims (1)
パルス変調回路と、前記空中線の受信信号を入力とし、
パルス変調される以前の連続した高周波を局部発信入力
とするホモダイン検波器と、各変調パルスの立ち上り時
刻より一定時刻後に前記ホモダイン検波器の出力をサン
プリングするサンプリング回路と、前記サンプリング回
路の出力レベルの絶対値が基準のレベルより大きくなっ
た時に前記ホモダイン検波器の出力を一定の期間導通さ
せるアナログスイッチとからなるドップラレーダー装置
。a pulse modulation circuit for pulse-modulating a high-frequency signal and transmitting it from an antenna, and receiving a signal received from the antenna as input;
a homodyne detector which receives continuous high frequency waves before being pulse modulated as a local oscillation input; a sampling circuit which samples the output of the homodyne detector after a fixed time from the rise time of each modulated pulse; A Doppler radar device comprising an analog switch that conducts the output of the homodyne detector for a certain period of time when the absolute value becomes larger than a reference level.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16827284A JPS6147578A (en) | 1984-08-11 | 1984-08-11 | Doppler radar equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16827284A JPS6147578A (en) | 1984-08-11 | 1984-08-11 | Doppler radar equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6147578A true JPS6147578A (en) | 1986-03-08 |
Family
ID=15864940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16827284A Pending JPS6147578A (en) | 1984-08-11 | 1984-08-11 | Doppler radar equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6147578A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431782A (en) * | 1990-05-28 | 1992-02-03 | Mitsubishi Electric Corp | Microwave circuit device |
-
1984
- 1984-08-11 JP JP16827284A patent/JPS6147578A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431782A (en) * | 1990-05-28 | 1992-02-03 | Mitsubishi Electric Corp | Microwave circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4313216A (en) | Dual frequency radar receiver | |
US4315261A (en) | Radar signal detector | |
US5477226A (en) | Low cost radar altimeter with accuracy enhancement | |
EP1262793A1 (en) | Method and apparatus for removing a DC-offset in the frequency spectrum before performing Fourier transform in a radar | |
US6362777B1 (en) | Pulse-doppler radar apparatus | |
JP2002507728A (en) | Differential pulse radar motion sensor | |
EP1239299B1 (en) | FMCW radar receiver with frequency dependent gain | |
US4698632A (en) | Radar detector | |
US4142189A (en) | Radar system | |
US6977611B1 (en) | FM-CW altimeter detector | |
JP2604075B2 (en) | FM radar | |
JP3973036B2 (en) | Pulse radar equipment | |
JPS6147578A (en) | Doppler radar equipment | |
JP2762143B2 (en) | Intermittent FM-CW radar device | |
JP4353583B2 (en) | 1 antenna millimeter wave radar system | |
JPH02223884A (en) | Moving object detecting device | |
JP2586184B2 (en) | Microwave circuit device | |
JP2962983B2 (en) | CW Doppler measurement radar device | |
JPH11231044A (en) | Radar equipment, voltage control oscillator and control method for voltage control oscillator | |
JP2930740B2 (en) | Servo slope type FM-CW radar | |
JPH04315979A (en) | Method and device for mesuring distance using microwave | |
KR102632074B1 (en) | Phase demodulator with negative feedback loop | |
JP3018860B2 (en) | Speed measuring device | |
JP2584482B2 (en) | Speed measuring device built into data transmission equipment | |
JP2000171556A (en) | Radar apparatus for vehicle |