JPS6147522A - Image processing apparatus - Google Patents

Image processing apparatus

Info

Publication number
JPS6147522A
JPS6147522A JP16951284A JP16951284A JPS6147522A JP S6147522 A JPS6147522 A JP S6147522A JP 16951284 A JP16951284 A JP 16951284A JP 16951284 A JP16951284 A JP 16951284A JP S6147522 A JPS6147522 A JP S6147522A
Authority
JP
Japan
Prior art keywords
circuit
pixel
intensity
correlation
level discrimination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16951284A
Other languages
Japanese (ja)
Other versions
JPH0432975B2 (en
Inventor
Mitsumasa Masutani
増谷 光正
Kimihiko Satake
佐竹 公彦
Mitsugi Asano
浅野 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
NEC Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
NEC Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, NEC Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP16951284A priority Critical patent/JPS6147522A/en
Publication of JPS6147522A publication Critical patent/JPS6147522A/en
Publication of JPH0432975B2 publication Critical patent/JPH0432975B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform a coloring image processing in a real time and to facilitate operation by miniaturization and wt. reduction, by successively re-constituting an image by extracting correlation wt. on the basis of the reflection signal corresponding to pixel. CONSTITUTION:A level discrimination circuit 3 receives an input signal Slambda2 and sends the same to an AND circuit 7 while performs level discrimination in a scanning order at every pixel. Next, a level discrimination circuit 4 receives an input signal Slambda1 at every pixel and outputs the said signal while performs level discrimination to send the same to the AND circuit 7. A divider circuit 5 has function for imparting a condition determining the upper bottom of a trapezoidal intensity distribution region B from the origin 0 of intensity correlation coordinates to the region indicated by said two condition processings and sends the output after level discrimination to the AND circuit 7. By this method, three condition processings limiting the intensity distribution region are performed and an AND condition is formed when the obtained outputs are simultaneously applied to the AND circuit 7 and applied to an output terminal 602 as a green in dication signal which is, in turn, sent out to a color display circuit through the output terminal 602 to display the intensity region B in a state colored by green.

Description

【発明の詳細な説明】 本発明は映像装置に関し、特に紫外線から遠赤外線に到
るスペクトル範囲のレーザ光を用いた目標の波長別反射
率測定と目標の発する輻射エネルギーの波長別測定を行
なって得られる目標の画素ごとの波長別入力信号の相関
をとシ、前記画素ごとの各波長に対応する入力信号強度
によって得られる複数の画像を相関強度座標上に展開し
たうえ、この座標上における目標を含む各物体の特徴領
域に任意の色を対応させこれらを合成して色付は映像と
して再生した、いわゆるマルチスペクトル映像によって
高コントラストの目標抽出を行なう映像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging device that measures the reflectance of a target by wavelength using laser light in a spectral range from ultraviolet to far infrared rays and measures the radiant energy emitted by the target by wavelength. After calculating the correlation of the input signals by wavelength for each pixel of the target, we develop the multiple images obtained by the input signal intensity corresponding to each wavelength of each pixel on the correlation strength coordinates, and then calculate the target on these coordinates. The present invention relates to an imaging device that performs high-contrast target extraction using a so-called multispectral video, in which an arbitrary color is associated with a characteristic region of each object, including coloring, and the colors are combined and reproduced as a video.

予め特定する複数の波長によるレーザ光を目標を含む照
射野に投光し、または目標を含む撮像視野内に存在する
各物体の発する輻射エネルギーを受けそれぞれ波長別、
反射率測定もしくは波長別輻射エネルギー測定を行なっ
て、視野内の画素(ピクセル)ごと得られるこれら波長
別の信号強度に対応して得られる複数の映像を各波長に
対する強度相関座標上に展開したうえ、この座標上に表
現された前記照射野等における各物体の存在領域ごとに
任意の色を対応づけて再び映像として合成することによ
シ、目標を特定する色で強調した色彩映像を得て高コン
トラストの目標抽出を図る、いわゆるマルチスペクトル
映像装置はリモートセンシングの分野で近時よく知られ
つつある。
Laser light with multiple wavelengths specified in advance is projected onto the irradiation field including the target, or radiant energy emitted by each object existing within the imaging field of view including the target is received for each wavelength.
After performing reflectance measurement or wavelength-specific radiant energy measurement, multiple images obtained corresponding to the signal intensity of each wavelength obtained for each pixel in the field of view are developed on intensity correlation coordinates for each wavelength. By associating an arbitrary color with each object's presence area in the irradiation field expressed on these coordinates and combining it again as an image, a color image is obtained in which the target is emphasized with a color that specifies the target. So-called multispectral imaging devices for high-contrast target extraction have recently become well known in the field of remote sensing.

このようなマルチスペクトル映像装置は、たとえばレー
ザ光を目標に向けて投光し、いわゆるアクチブ方式によ
って映像を得る場合と、目標の発する輻射エネルギーに
基づき映像を得る、いわゆるパッシブ方式による場合と
がおるが、たとえばアクチブ方式における場合には次の
ようにして映像を得ている。
Such multispectral imaging devices are divided into two types: one is to project a laser beam toward a target and obtain an image using a so-called active method, and the other is to obtain an image based on the radiant energy emitted by the target, which is a so-called passive method. However, in the case of the active method, for example, images are obtained in the following manner.

すなわち、紫外域から赤外域に亘るスペクトル範囲から
予め設定した複数のスペクトルの波長のレーザ光を送信
して目標に照射しその反射光を受光するという方法で目
標上を順次ピクセルに対応させつつ走査する。次に走査
された目標からの反射光を集めてこれらf、it電気信
号変換したうえピクセルごとに所定の演算処理を行なっ
て映像出力としてこれら波長別の画像を合成するという
方法で所望の映像を得ている。
In other words, laser beams with wavelengths in multiple spectra set in advance from the ultraviolet to infrared spectral range are transmitted, irradiated onto the target, and the reflected light is received, and the target is sequentially scanned while corresponding to each pixel. do. Next, the desired image is created by collecting the reflected light from the scanned target, converting these f and it electric signals, and then performing predetermined arithmetic processing for each pixel and synthesizing these wavelength-specific images as an image output. It has gained.

上述した方法において、目標に対する投射光は通常レー
ザ光を励起光とし波長変換器を介して所定の複数の波長
のレーザ光に変換、送光光学系によりて所定のビーム角
を有する投射光として目標に照射する。この投射光は、
たとえばノくルスモータとエンコーダ等の組合せ機構で
制御される光学系を介して目標とする照射範囲を水平お
よび垂直方向にピクセルに対応して走査せしめられる。
In the above-mentioned method, the projection light to the target is usually a laser beam as excitation light, which is converted into laser beams of a plurality of predetermined wavelengths via a wavelength converter, and the projection light having a predetermined beam angle is sent to the target by the light transmission optical system. irradiate. This projected light is
For example, the target irradiation range is scanned in pixel-by-pixel directions in the horizontal and vertical directions via an optical system controlled by a combination mechanism such as a Norculus motor and an encoder.

このような走査投光によりて得られた反射光は受光光学
系を介して受光されたのち、検出器によりて光電変換を
受けて電気信号に変換され所定のビット数のデジタル量
とじて出力されるが、このビット数はまた映像に対する
所望の階調によって決定される。
The reflected light obtained by such scanning light projection is received through the light receiving optical system, and then photoelectrically converted by the detector into an electrical signal and output as a digital quantity with a predetermined number of bits. However, this number of bits is also determined by the desired gradation for the video.

このようにして行なわれる走査送、受光は目標とする照
射野のピクセルを処理単位として行なわれるが、このピ
クセルはレーザ光によって通常縦。
The scanning and light reception carried out in this manner is carried out using each pixel in the target irradiation field as a processing unit, and this pixel is usually vertically divided by the laser beam.

横方向に走査される照射野をそれぞれ所定の数で分解し
て得られる矩形または方形の小さな範囲である。
It is a small rectangular or rectangular area obtained by dividing the irradiation field scanned in the horizontal direction into a predetermined number.

さて、こうして得られる各波長に対応する映像。Now, the images corresponding to each wavelength obtained in this way.

すなわちマルチスペクトル映像について次に目標抽出処
理を行なう。この処理は前述した如く、各波長による映
像の同一ピクセルの信号の強度によって複数の映像を相
関座標上に展開し、その座標上における各物体の特徴領
域に任意の色を対応させて色彩映像として再生するもの
である。これは、たとえば2次元相関座標に2波長の映
像ピクセルを展開する場合、画面の中の同じ位置のピク
セルについて横軸に波長λlの信号強度を、縦軸に波長
λ2の信号強度をとり、その信号強度に従って展開する
。したがって2波長の映像に波長の違いによる相違がな
ければ、全ての映像ピクセルは相関座標上の456の線
上に並ぶことになる。相関座標の45°の線上からはず
れた映像ピクセルは波長特性において他の物体と異なる
特徴を有することになるので、この部分に人為的に目立
つ色(例えば赤)をつけ、もとの画面に戻すと特徴部分
が他とは色付けされた中間色の全く存在しない明瞭な映
像が得られる。
That is, target extraction processing is then performed on the multispectral video. As mentioned above, this process develops multiple images on correlated coordinates based on the signal strength of the same pixel of images of each wavelength, and then associates an arbitrary color with the characteristic area of each object on the coordinates to create a color image. It is something to be regenerated. For example, when developing two-wavelength video pixels on two-dimensional correlation coordinates, the horizontal axis represents the signal intensity of wavelength λ1, and the vertical axis represents the signal intensity of wavelength λ2 for pixels at the same position on the screen. Expands according to signal strength. Therefore, if there is no difference between the two wavelength images due to the difference in wavelength, all the image pixels will be lined up on the 456 line on the correlation coordinates. Video pixels that fall outside of the 45° line of the correlation coordinates will have wavelength characteristics that are different from other objects, so this part is artificially given a noticeable color (for example, red) and returned to the original screen. A clear image with no intermediate colors in which characteristic parts are colored differently can be obtained.

上述した内容は、アクチブ方式による場合を例としてい
るが、パッシブ方式によって得られる映像処理について
も基本的にはほぼ同様にして実施しうろことは明らかで
ある。
Although the above description is based on an example of an active method, it is clear that video processing obtained by a passive method can be basically implemented in substantially the same manner.

反射光の強度は、たとえばアクチブ方式においては投射
光の各波長ごとに異なり、これら各波長に対応する反射
強度の特性、いわゆる分光反射特性はまた照射野におけ
る各物体ごとにそれぞれ異なる。
For example, in the active method, the intensity of the reflected light differs for each wavelength of the projected light, and the characteristics of the reflected intensity corresponding to each wavelength, so-called spectral reflection characteristics, also differ for each object in the irradiation field.

第1図は地上の照射野に存在する代表的自然物体の分光
反射特性図である。
FIG. 1 is a diagram showing the spectral reflection characteristics of typical natural objects existing in the irradiation field on the ground.

代表的自然物としては例として松、枯葉および砂地をと
9上げ、これらの分光反射特性は第1図のそれぞれa、
b、cで示す。
Typical natural objects include pine trees, dead leaves, and sandy soil, and their spectral reflection characteristics are shown in Figure 1, a and a, respectively.
Shown as b and c.

第1図の横軸は投射光の波長を示し、単位はnm(ナノ
メータ)であシ、縦軸は反射率をチで示している。第1
図からもわかるように、各物体の反射率は投光するレー
ザ光の波長によって大きく相違する。第1図は例として
自然物体をとり上げたが、これら自然物体に介在する建
物、車輌等の人工物体についてもそれぞれ特有の分光反
射特性を示す・従って肉眼によっては弁別困朧な同系統
の色彩による異種物体間の識別もこのような分光反射特
性を利用して可能となる。
The horizontal axis in FIG. 1 indicates the wavelength of the projected light in nanometers (nm), and the vertical axis indicates the reflectance in units of nm (nanometers). 1st
As can be seen from the figure, the reflectance of each object differs greatly depending on the wavelength of the laser beam projected. Figure 1 takes natural objects as examples, but artificial objects such as buildings and vehicles that are interposed between these natural objects also exhibit unique spectral reflection characteristics.Therefore, they are colored in the same family, which is difficult to distinguish with the naked eye. Discrimination between different types of objects is also possible using such spectral reflection characteristics.

第2図は2つの波長による反射強度の相関的分布の一例
を゛示す反射強度相関分布図である。
FIG. 2 is a reflection intensity correlation distribution diagram showing an example of a correlation distribution of reflection intensities at two wavelengths.

第2図においては反射物体の例として第1図に示す松、
枯葉、砂地等を対象とした場合を示し、横軸には同レベ
ルで投光された2つの波長のうち一方のλlによる反射
強度を反射率で示し、縦軸には他方のλ2による反射強
度を反射率を以って示している。この場合λt=500
nm、λ2=800nmである。
In Figure 2, the pine tree shown in Figure 1 is used as an example of a reflective object.
This shows the case where dead leaves, sandy soil, etc. are the target.The horizontal axis shows the reflection intensity of one of the two wavelengths projected at the same level, λl, as a reflectance, and the vertical axis shows the reflection intensity of the other wavelength, λ2. is shown in terms of reflectance. In this case λt=500
nm, λ2=800 nm.

これら2つの波長のレーザ光による原映像はピクセルご
とに取得され、2つの原映像上のそれぞれのピクセルは
2つの波長における反射強度の相違によってこの相関座
標上の1点にその位置が決定される。a′は照射野すな
わちレーザ光走査野における松の木の2波長による反射
強度相関領域、blは枯葉 c/は砂地に対するもので
ある。このようにして映像を構成するすべてのピクセル
についてこのような相関座標のどの点に位置するかをし
らべる。
The original image by the laser light of these two wavelengths is acquired pixel by pixel, and the position of each pixel on the two original images is determined as one point on this correlation coordinate by the difference in reflection intensity at the two wavelengths. . a' is the reflection intensity correlation area of the pine tree due to two wavelengths in the irradiation field, that is, the laser beam scanning field, bl is the dead leaves, and c/ is the area for the sandy ground. In this way, it is determined at which point on such correlation coordinates all the pixels that make up the image are located.

いまたとえば、領域a′に分布したピクセルについては
赤、領域b′に分布したピクセルは青、領域C′に分布
したピクセルについては緑と人為的な色付けを行なった
のちこれら2つの映像を再構成すると、松の部分は赤、
枯葉の部分は青、砂地の部分は緑と色付けされ、砂地に
対し松、枯葉の位置が明瞭に弁別された映像を得ること
ができる。
For example, after artificially coloring pixels distributed in area a' red, pixels distributed in area b' blue, and pixels distributed in area C' green, these two images are reconstructed. Then, the pine part is red,
Dead leaves are colored blue and sandy areas are colored green, making it possible to obtain an image in which the positions of pine trees and dead leaves are clearly distinguished from the sandy area.

このような映像処理技術はリモートセンシングによって
取得したマルチスペクトル画像から対象とする目標を抽
出する場合に有効な手段として近時しばしば利用されて
いる。
Such image processing technology has recently been frequently used as an effective means for extracting a target from a multispectral image obtained by remote sensing.

しかしながら従来のこの種の目標抽出を目的とする映像
装置では、各波長に対する反射光をピクセルごとにそれ
ぞれメモリにストアしたうえ、上述した相関処理を含む
映像処理をコンピュータで処理しているため、リアルタ
イム処理が出来ず、全体のシステム構成も大型化し、操
作も複雑であるといったさまざまな欠点を有する。
However, in conventional imaging equipment for the purpose of target extraction of this type, the reflected light for each wavelength is stored in memory for each pixel, and the image processing including the above-mentioned correlation processing is processed by a computer, so it is not possible to do so in real time. It has various disadvantages, such as being unable to process data, making the overall system configuration large, and requiring complicated operation.

本発明の目的は上述した欠点を除去し、映像処理ラリア
ルタイムで行なえ、システム構成の大幅な簡素化が図れ
るとともに操作容易で安価な映像装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, to provide a video device that can perform video processing in real time, greatly simplifies the system configuration, is easy to operate, and is inexpensive.

本発明の装置は、複数波長のレーザ光を順次ピクセルに
対応させて走査照射する手段と、走査された目標からの
前記ピクセル対応の反射光を電気反射信号に変換する手
段と、この反射信号企基にして目標ごとの前記波長別反
射率もしくは波長別輻射エネルギーの強度相関分布特性
に対応する前記強度相関の重みを抽出する相関重み抽出
手段と前記ピクセル対応に得られた強度相関の重みに対
応して予め特定した色指定による目標の色付は表示を前
記ピクセル対応に行なう手段とを備える。
The apparatus of the present invention includes means for sequentially scanning and irradiating laser beams of a plurality of wavelengths in correspondence to pixels, means for converting reflected light corresponding to the pixels from the scanned target into an electrical reflection signal, and a means for converting the reflected signal from the scanned target into an electrical reflection signal. Correlation weight extraction means for extracting a weight of the intensity correlation corresponding to the intensity correlation distribution characteristic of the reflectance by wavelength or radiant energy by wavelength for each target based on the intensity correlation, and a weight of the intensity correlation obtained corresponding to the pixel. and means for displaying a target color according to a color specified in advance in accordance with the pixel.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第3図は本発明の一実施例を示すブロック図である。FIG. 3 is a block diagram showing one embodiment of the present invention.

第3図に示す実施例は2波長のレーザ光によってリモー
トセンシングして得られるマルチスペクトル画像から目
標を抽出する場合の各波長について得られる入力信号の
各、ピクセルごとの相関の重みを抽出する手段を示すも
のであり、反射光もしくは輻射エネルギーを集めて電気
信号に変換する受信回路、ならびに目標抽出後のカラー
表示回路等は従来のこの種の映像装置とほぼ同一のもの
を利用している。
The embodiment shown in FIG. 3 is a means for extracting correlation weights for each pixel of input signals obtained for each wavelength when a target is extracted from a multispectral image obtained by remote sensing using two wavelengths of laser light. The receiving circuit that collects reflected light or radiant energy and converts it into an electrical signal, the color display circuit after target extraction, etc. are almost the same as those of conventional video devices of this type.

第3図において、レベルの等しい2つの波長λ1および
λ2によるレーザ光を投光して照射野を走査しつつ得ら
れる反射光はピクセルごとに次々に電気信号に変換され
入力信号Sλ1およびSλ2としてそれぞれ入力端子1
01および102を介して入力される。
In Fig. 3, the reflected light obtained while scanning the irradiation field by projecting laser light with two wavelengths λ1 and λ2 of equal level is converted into electrical signals one after another for each pixel and is converted into an electric signal as input signals Sλ1 and Sλ2, respectively. Input terminal 1
01 and 102.

第3図に示す実施例はレベル弁別回路1,2゜3および
4、除算回路5、AND回路6および7等を備えて構成
されこれらのレベル弁別回路および除算回路の組合せ動
作を基本として前述した2波長の反射光のピクセルごと
の相関の重み抽出を次のようにして実施したうえAND
回路を介して所望の2色の色付は指定を行なわせている
The embodiment shown in FIG. 3 is comprised of level discrimination circuits 1, 2, 3 and 4, a division circuit 5, AND circuits 6 and 7, etc., and is based on the combined operation of these level discrimination circuits and division circuits as described above. The weight extraction of the correlation for each pixel of the two wavelengths of reflected light is carried out as follows, and then AND
Two desired colors are specified through a circuit.

入力信号Sλ2はレベル弁別回路l、レベル弁別回路3
および除算回路5にそれぞれ送出され、また入力信号S
λ1はレベル弁別回路2.レベル弁別回路4および除算
回路5にそれぞれ送出される。
Input signal Sλ2 is sent to level discrimination circuit 1 and level discrimination circuit 3.
and the division circuit 5, and the input signal S
λ1 is a level discrimination circuit 2. The signals are sent to the level discrimination circuit 4 and the division circuit 5, respectively.

入力信号Sλ1およびSλ2はいずれも同じ照射野から
の反射光に対応するものであシ、目標による反射光もピ
クセル単位でこれら入力信号Sλ!。
The input signals Sλ1 and Sλ2 both correspond to reflected light from the same irradiation field, and the reflected light from the target is also divided into these input signals Sλ! in pixel units. .

Sλ2に含まれている。Included in Sλ2.

第4図は第3図の実施例における2波長の入力信号の強
度相関分布図である。以下第4図を参照しながら第3図
の実施例について説明する。
FIG. 4 is an intensity correlation distribution diagram of input signals of two wavelengths in the embodiment of FIG. 3. The embodiment shown in FIG. 3 will be described below with reference to FIG. 4.

第4図においては、目標は方形でモデル化された強度分
布領域A、および梯形でモデル化された強度分布領域B
で示される2つであるとする。2波長のレーザ光によっ
て照射されて得られる地上の目標はこのように方形もし
くは梯形で近似しうる強度分布領域を有する入力信号に
変換され入力端子101および102を介して入力され
る。
In Figure 4, the targets are intensity distribution area A, which is modeled as a rectangle, and intensity distribution area B, which is modeled as a trapezoid.
Assume that there are two shown in . A target on the ground obtained by irradiation with laser beams of two wavelengths is thus converted into an input signal having an intensity distribution region that can be approximated as a rectangle or trapezoid, and is inputted via input terminals 101 and 102.

第4図において強度分布領域AはSλ2のレベルが強く
、1辺がSλ2のレベルb1とb2との間、他辺がSλ
1のレベルa3と84間の大きさで示される方形領域で
あり、強度分布領域BはSλ1 のレベルが強く第4図
に示す如く底辺がSλ1のレベルa1と82間の大きさ
かつSλ2のレベルとしてはレベルb8以上の範囲でさ
らに上底はSλ2/Sλlで示される傾斜aをもつ梯形
として示される。
In Fig. 4, the intensity distribution area A has a strong level of Sλ2, one side is between levels b1 and b2 of Sλ2, and the other side is Sλ2.
It is a rectangular area with a size between levels a3 and 84 of Sλ1, and the intensity distribution area B has a strong level of Sλ1, as shown in FIG. In the range above level b8, the upper base is shown as a trapezoid with a slope a represented by Sλ2/Sλl.

本実施例にあっては、強度分布領域Aに対しては赤、強
度分布領域Bに対しては緑を人工的に指ボしてこれら強
度分布領域で第4図の相関強度座標に示された2つの目
標が次のようにして色付けされる。
In this embodiment, the intensity distribution area A is artificially colored red, and the intensity distribution area B is colored green, and these intensity distribution areas are shown in the correlation intensity coordinates of FIG. The two goals are colored as follows.

第3図において、レベル弁別回路1は入力信号Sλ2を
受けるとこのSハに含まれるすべての信号に対してレベ
ル弁別を行ない、b、<sλ2<blを満足する各ピク
セルごとの信号をピクセル走査の時間系列順に弁別しこ
れをAND回路6に送出する。
In FIG. 3, when a level discrimination circuit 1 receives an input signal Sλ2, it performs level discrimination on all the signals included in this S, and pixel scans the signal for each pixel that satisfies b,<sλ2<bl. are discriminated in time series order and sent to the AND circuit 6.

同様にして、レベル弁別回路2は入力信号Sλlを受け
るとこのSλlに含まれるすべての信号に対してレベル
弁別を行ないa4(8λ1〈a3を満足する各ピクセル
ごとの信号をピクセル走査順に弁別出力しこれIAND
回路6に送出する。
Similarly, upon receiving the input signal Sλl, the level discrimination circuit 2 performs level discrimination on all signals included in this Sλl, and discriminately outputs signals for each pixel that satisfy a4(8λ1<a3) in pixel scanning order. This IAND
The signal is sent to circuit 6.

AND回路6はレベル弁別回路1および2から出力を同
時にうけるときAND条件が成立し、赤指定信号を出力
端子601に送出する。レベル弁別回路1および2から
出力される各ピクセルごとの出力信号はAND回路6に
送出され、AND回路6はこれら2出力の供給を同時に
うけるときだけ赤指定信号を出力するが、これは第4図
に示す強度分布領域Aに対応する反射光による人力があ
るときのみ赤指定信号を出力することを意味し、この赤
指定信号が出力端子601を介してカラー表示回路に送
出されて強度領域Aが赤で表示されることとなる。
When the AND circuit 6 receives outputs from the level discrimination circuits 1 and 2 at the same time, an AND condition is satisfied and a red designation signal is sent to the output terminal 601. The output signals for each pixel output from the level discrimination circuits 1 and 2 are sent to the AND circuit 6, and the AND circuit 6 outputs a red designation signal only when receiving these two outputs at the same time. This means that a red designation signal is output only when there is human power due to reflected light corresponding to the intensity distribution area A shown in the figure, and this red designation signal is sent to the color display circuit via the output terminal 601 and is sent to the color display circuit through the output terminal 601. will be displayed in red.

一方、強度分布領域Bについて言えば次のようにして緑
指定信号によって緑に色付けされる。
On the other hand, regarding the intensity distribution area B, it is colored green by the green designation signal as follows.

レベル弁別回路3は入力信号Sλ2を受けこの入力信号
に含まれるすべての信号からSλ2〉b3の条件を満足
するものをピクセルごとにその走査順にレベル弁別しつ
つAND回路7に送出する。このことは第4図の強度相
関座標上で強度分布領域Bの存在範囲がSλ2について
はb3よシも大きいレベル範囲にある条件処理である。
The level discrimination circuit 3 receives the input signal Sλ2 and sends out to the AND circuit 7 those signals satisfying the condition Sλ2>b3 from all the signals included in this input signal while discriminating the level of each pixel in the scanning order. This is a conditional process in which the existence range of the intensity distribution area B on the intensity correlation coordinates of FIG. 4 is in a level range larger than b3 for Sλ2.

次に、レベル弁別回路4は入力信号Sλ1をビ“クセル
ごとに受け、この入力信号に含まれるすべての信号から
a2〈Sλthatの条件を満足するものをレベル弁別
しつつ出力しこれをAND回路7に送出する。このレベ
ル弁別は梯形で示される強度分布領域Bの底辺のレベル
範囲に対する条件処理である。
Next, the level discrimination circuit 4 receives the input signal Sλ1 for each pixel, performs level discrimination on all the signals included in this input signal, and outputs a signal that satisfies the condition a2<Sλthat. This level discrimination is conditional processing for the level range at the bottom of the intensity distribution area B shown in the shape of a trapezoid.

除算回路5は、上述した2つの条件処理によって指定さ
れる領域に対し第4図に示す強度相関座標の原点0から
梯形の強度分布領域Bの上底を決定する条件を付与する
もので、ピクセルごとに入力するSλ1とSλ2とにつ
いての除算Sλz/Sλ1を行ない、さらにこの値がα
を越えないものだけをレベル弁別したうえその出力をA
ND回路7に送出する。ここでα=tanθである。
The division circuit 5 provides a condition for determining the upper base of the trapezoidal intensity distribution area B from the origin 0 of the intensity correlation coordinates shown in FIG. 4 to the area specified by the two conditional processes described above. The division Sλz/Sλ1 is performed on the input Sλ1 and Sλ2 for each input, and furthermore, this value is α
Level discrimination is performed only for those that do not exceed A
The signal is sent to the ND circuit 7. Here α=tanθ.

このようにして強度分布領域Bを限定する3っの条件処
理を行ない、これら3つの条件処理によって得られる出
力がAND回路7に同時に印加されるときAND条件が
成立してAND回路7から緑指定信号として出力端子6
02に印加され、この出力端子602を介し°Cカラー
表示回路に送出され強度領域Bが緑で色付は表示される
In this way, the three conditional processes that limit the intensity distribution area B are performed, and when the outputs obtained by these three conditional processes are simultaneously applied to the AND circuit 7, the AND condition is satisfied and the AND circuit 7 designates green. Output terminal 6 as a signal
02 and is sent to the °C color display circuit through this output terminal 602, and the intensity region B is displayed in green.

以上のようにして強度相関座標上の強度分布領域Aおよ
びBK対する2波長の反射光の強度相関の重み、すなわ
ち強度分布領域AおよびBにおける2波長の反射光の強
度の程度をレベル弁別回路および除算回路を含む演算回
路によって容易に原映像から抽出することができ、それ
ぞれには予め特定する色付け、本実施例の場合は強度分
布領域Aには赤、強度分布領域Bには緑を指定し、これ
ら強度分布領域人およびBに対応する目標を明瞭に翫示
することかできる。
As described above, the weight of the intensity correlation of the two wavelengths of reflected light with respect to the intensity distribution areas A and BK on the intensity correlation coordinate, that is, the degree of intensity of the two wavelengths of reflected light in the intensity distribution areas A and B, is determined by the level discrimination circuit and They can be easily extracted from the original video by an arithmetic circuit including a division circuit, and each color is specified in advance. In this example, intensity distribution area A is specified as red, and intensity distribution area B is specified as green. , the target corresponding to these intensity distribution areas and B can be clearly shown.

なお、第3図に示す実施例は2波長のレーザ光による反
射光によって得られる映像を対象とし、かつ第4図に示
す強度相関分布を示す2目標を対象として波長別強度の
相関重みを抽出し、これら2目標に対してそれぞれ赤お
よび緑を指定した色付けを行なった場合を例としてとり
上げているが、これら2波長は3波長もしくは任意の波
長数としてもよく、またこの波長数に対応した目標数の
増大といった変形例もレベル弁別回路、除算回路の個数
ならびにそれらの組合せを強度相関座標上の目標の強度
レベル分布等に対応させて適当に選定しこれらとAND
回路との結合によって容易に実施しうろことは明らかで
あり、また色付けの指定もまた任意に設定しうるもので
ある。
The example shown in FIG. 3 targets images obtained by reflected light from laser beams of two wavelengths, and extracts correlation weights of intensity by wavelength for two targets showing the intensity correlation distribution shown in FIG. 4. However, the case where these two targets are colored red and green respectively is taken as an example, but these two wavelengths may be three wavelengths or any number of wavelengths, and the number of wavelengths corresponding to this number of wavelengths may be For a modification such as increasing the number of targets, the number of level discrimination circuits and division circuits and their combinations are appropriately selected in accordance with the intensity level distribution of the target on the intensity correlation coordinates, etc., and these are ANDed.
It is obvious that this can be easily implemented by combining it with a circuit, and the coloring can also be arbitrarily set.

さらに、本実施例では第4図に示す如くモデル化された
強度相関分布を有する2目標を対象としているが、この
ような強度相関分布の近似モデル化はどのような目標に
対しても波長別強度の分布に対応させた矩形を含む方形
もしくは梯形表示で容易に実施しうろことも明らかであ
り、さらに近似モデル化される強度分布領域が方形もし
くは矩形のみであるときは第3図における除算回路5を
利用せずに相関の重み抽出が可能である。
Furthermore, although this example deals with two targets having intensity correlation distributions modeled as shown in FIG. It is obvious that this can be easily implemented using a rectangular or trapezoidal display that includes a rectangle corresponding to the intensity distribution. Furthermore, when the intensity distribution region to be approximated is only a rectangle or a rectangle, the division circuit 5 in FIG. It is possible to extract correlation weights without using .

またこのような相関1み抽出手段によって色付は表示さ
れる原映像は地対地、あるいは空対地等どのような2点
間におけるリモート七ンンングによって取得されたもの
であっても差支えなく、また第3図の実施例は波長別反
射率を利用した場合を例としているが、輻射エネルギー
を利用する場合についてもほぼ同様に実施しうろことは
明らかであり、以上はすべて本発明の主旨を損なうこと
なく容易に実施しうる。
Furthermore, the original image displayed in color by such a correlation extraction means may be obtained by remote scanning between any two points, such as ground-to-ground or air-to-ground. The embodiment shown in Figure 3 is an example of a case where wavelength-based reflectance is used, but it is clear that it can be implemented in almost the same way when using radiant energy, and all of the above will defeat the purpose of the present invention. It can be easily implemented.

以上説明した如く本発明によれば、ピクセル対応の反射
信号を基にして相関重みを抽出して1狐次映像を再構成
しているので、色付は映像処理がリアルタイムで実施で
き、小型軽量にして操作容易従って映像処理効率を大幅
に改善しうる映像装置が実現できるという効果がある。
As explained above, according to the present invention, a first-order image is reconstructed by extracting the correlation weight based on the reflection signal corresponding to each pixel, so coloring can be performed in real time, and the image processing apparatus is small and lightweight. This has the effect that it is possible to realize a video device that is easy to operate and can greatly improve video processing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

゛第1図は地上の照射野に存在する代表的自然物体の分
光反射特性図、第2図は2つの波長による反射強度相関
分布図、第3図は本発明の一実施例を示すブロック図、
第4図は第3図の実施例における2彼長入力信号の強度
相関分布図である。 1.2,3.4・・・・・・レベル弁別回路、5・・・
・・・除代理人 弁理士  内 原   晋(21,9
てシシフ支−もしくフtypt) 茶1図 10    20    JO4050入lの反射強度 荊?閉
゛Figure 1 is a spectral reflection characteristic diagram of typical natural objects existing in the irradiation field on the ground, Figure 2 is a reflection intensity correlation distribution diagram at two wavelengths, and Figure 3 is a block diagram showing one embodiment of the present invention. ,
FIG. 4 is an intensity correlation distribution diagram of the two-length input signal in the embodiment of FIG. 1.2, 3.4...Level discrimination circuit, 5...
... Excluded agent Patent attorney Susumu Uchihara (21, 9
Brown 1 Figure 10 20 Reflection intensity of JO4050 liter? closed

Claims (1)

【特許請求の範囲】[Claims] 複数波長のレーザ光を順次ピクセルに対応させて走査、
照射する手段と;走査された目標からのピクセル対応の
反射光を電気反射信号に変換する手段と;この反射信号
を基にして目標ごとの前記波長別反射率もしくは波長別
輻射エネルギーの強度相関分布特性に対応する前記強度
相関の重みを抽出する相関重み抽出手段と;前記ピクセ
ル対応に得られた強度相関の重みに対応して予め特定し
た色指定による目標の色付け表示を前記ピクセル対応に
行なう手段とを備えて成ることを特徴とする映像装置。
Scans laser beams of multiple wavelengths sequentially corresponding to pixels,
means for irradiating; means for converting the reflected light corresponding to each pixel from the scanned target into an electrical reflection signal; and the intensity correlation distribution of the reflectance by wavelength or radiant energy by wavelength for each target based on this reflection signal. Correlation weight extracting means for extracting the weight of the intensity correlation corresponding to the characteristic; means for displaying a target color for each pixel by specifying a color specified in advance corresponding to the weight of the intensity correlation obtained for the pixel. An imaging device comprising:
JP16951284A 1984-08-14 1984-08-14 Image processing apparatus Granted JPS6147522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16951284A JPS6147522A (en) 1984-08-14 1984-08-14 Image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16951284A JPS6147522A (en) 1984-08-14 1984-08-14 Image processing apparatus

Publications (2)

Publication Number Publication Date
JPS6147522A true JPS6147522A (en) 1986-03-08
JPH0432975B2 JPH0432975B2 (en) 1992-06-01

Family

ID=15887881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16951284A Granted JPS6147522A (en) 1984-08-14 1984-08-14 Image processing apparatus

Country Status (1)

Country Link
JP (1) JPS6147522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016827A1 (en) * 1991-03-19 1992-10-01 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Method and device for analyzing area
JP2011175387A (en) * 2010-02-23 2011-09-08 Pasuko:Kk Ground surface observation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016827A1 (en) * 1991-03-19 1992-10-01 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Method and device for analyzing area
US5418367A (en) * 1991-03-19 1995-05-23 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Method and device for analyzing substances contained in an area
JP2011175387A (en) * 2010-02-23 2011-09-08 Pasuko:Kk Ground surface observation method

Also Published As

Publication number Publication date
JPH0432975B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
Oh et al. Do it yourself hyperspectral imaging with everyday digital cameras
JP5992116B2 (en) Image generation device
CN111062378B (en) Image processing method, model training method, target detection method and related device
US20180224333A1 (en) Image capturing apparatus and image capturing computer program product
EP2268043B1 (en) Image processing device, imaging device, method, and program
CN107408298A (en) Life entity detection device, life body detecting method and recording medium
EP0540313B1 (en) Color adjustment for smoothing a boundary between color images
US8199228B2 (en) Method of and apparatus for correcting contour of grayscale image
WO2016175234A1 (en) Color image processing method, color image processing program, and object recognition method and device
JP3482990B2 (en) 3D image capturing device
CN106104630A (en) Detection equipment, detection method and record medium
CN107678041A (en) System and method for detection object
CN102713972A (en) Pixel information reproduction using neural networks
JP2003284082A (en) Apparatus and method for accurate electronic color capture and reproduction
JPH05261101A (en) Three-dimensional color doppler image display method
CN109410161A (en) A kind of fusion method of the infrared polarization image separated based on YUV and multiple features
US10721448B2 (en) Method and apparatus for adaptive exposure bracketing, segmentation and scene organization
US5821999A (en) Method and system for fractally interpolating intensity values for a single color component array obtained from a single color sensor
Meyer et al. Electronic image analysis of crop residue cover on soil
WO2020027210A1 (en) Image processing device, image processing method, and image processing program
JP3384329B2 (en) 3D image capturing device
JPS6147522A (en) Image processing apparatus
CN105784113B (en) Distinguish the imaging system and method for fluorescence emission spectrum image and reflection spectrum images
Withagen et al. Band selection from a hyperspectral data-cube for a real-time multispectral 3CCD camera
JP2007235760A (en) Ultraviolet image, imaging apparatus for imaging ultraviolet image, and imaging method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term